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Abstract 
This paper discusses the effect that conformal symmetry can have on a charged 
wormhole. The analysis yields a physical interpretation of the conformal factor in 
terms of the electric charge. The rate of change of the conformal factor determines 
much of the outcome, which ranges from having no solution to wormholes having 
either one or two throats. 
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1. Introduction 

Wormholes are handles or tunnels in spacetime connecting different regions of our 
Universe or different universes altogether. That wormholes could be actual physical 
structures suitable for interstellar travel was first proposed by Morris and Thorne [1]. 
Such wormholes can be described by the static and spherically symmetric line element 

( )

( ) ( )
2

22 2 2 2 2 2dd e d d sin d ,
1

r rs t r
b r r

θ θ φΦ= − + + +
−

             (1) 

using units in which 1c G= = . Here ( )rΦ = Φ  is called the redshift function, which 
must be everywhere finite to avoid an event horizon. The function ( )b b r=  is called 
the shape function since it determines the spatial shape of the wormhole when viewed, 
for example, in an embedding diagram [1]. The spherical surface 0r r=  is the throat 
of the wormhole. Here ( )b r  must satisfy the following conditions: ( )0 0b r r= , 
( )b r r<  for 0r r> , and ( )0 1b r′ ≤ , usually called the flare-out condition. For Mor-

ris-Thorne wormholes, this condition can only be satisfied by violating the null energy 
condition, requiring the use of “exotic matter.” Since ( )b r′  is proportional to the den-
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sity in the Einstein field equations, we ordinarily require that ( ) 0b r′ > . 
In this paper, we study the effect of conformal symmetry on wormholes that have an 

electric charge. More precisely, we assume the existence of a conformal Killing vector 
ξ  defined by the action of ξ  on the metric tensor: 

( ) ,g r gξ µν µνψ=                          (2) 

where ξ  is the Lie derivative operator and ( )rψ  is the conformal factor. Charged 
wormholes were first proposed by Kim and Lee [2]. Compatibility of such wormholes 
with quantum field theory is discussed in Ref. [3]. 

In addition to studying its effect on a charged wormhole, we obtain a physical inter-
pretation of the conformal factor in terms of the electric charge. The combination of 
electric charge and conformal symmetry results in a wormhole model that may actually 
have two throats. 

2. Conformal Killing Vectors 

As noted in the Introduction, we assume that our static spherically symmetric space-
time admits a one-parameter group of conformal motions, i.e., motions along which 
the metric tensor remains invariant up to a scale factor. Equivalently, there exist con-
formal Killing vectors such that 

( ); ; ,g g g r gη η
ξ µν ην µ µη ν µνξ ξ ψ= + =                    (3) 

where the left-hand side is the Lie derivative of the metric tensor and ( )rψ  is the 
conformal factor [4] [5]. The vector ξ  generates the conformal symmetry and the me- 
tric tensor gµν  is conformally mapped into itself along ξ . As discussed in Refs. [6] 
[7], this type of symmetry has been used effectively to describe relativistic stellar-type 
objects, thereby leading to new solutions, as well as new geometric and kinematical in-
sights [8] [9] [10] [11] [12]. Even more significantly, it has also been shown that the 
Kerr black hole is conformally symmetric [13]. Two earlier studies assumed non-static 
conformal symmetry [5] [12]. 

To study the effect of conformal symmetry, it is convenient to use an alternate form 
of the metric [14] [15]: 

( ) ( ) ( )2 2 2 2 2 2 2d e d e d d sin d .r rs t r rν λ θ θ φ= − + + +               (4) 

Using this form, the Einstein field equations become 

2 2

1 1e 8π ,
r r r

λ λ ρ− ′ − + = 
 

                      (5) 

2 2

1 1e 8π ,rp
rr r

λ ν− ′ + − = 
 

                     (6) 

and 

( ) ( )21 1 1 1e 8π .
2 2 2 tp

r
λ ν ν λ ν ν λ−  ′ ′′ ′ ′ ′ ′+ − + − =  

             (7) 

To keep the analysis tractable, we follow Herrera and Ponce de León [6] and restrict 
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the vector field by requiring that 0Uα αξ = , where Uα  is the four-velocity of the per-
fect fluid distribution, so that fluid flow lines are mapped conformally onto fluid flow 
lines. The assumption of spherical symmetry then implies that 0 2 3 0ξ ξ ξ= = =  [6]. 
Equation (3) now yields the following results: 

1 ,ξ ν ψ′ =                               (8) 

1 ,
2
rψξ =                               (9) 

and 
1 1

,12 .ξ λ ξ ψ′ + =                            (10) 

From Equations (8) and (9), we then obtain 2 rν ′ =  and thereby 
2

1e ,c rν =                              (11) 

where 1c  is an integration constant. Now from Equation (9) we get 

( )1
,1

1 .
2

rξ ψ ψ′= +  

Substituting in Equation (10) and using 2 rν ′ = , simplification yields 

2 .ψλ
ψ
′

′ = −  

Solving for λ  produces the final result, 
2

2e ,
cλ

ψ
 

=  
 

                            (12) 

where 2c  is another integration constant. 
The Einstein field equations can be rewritten as follows: 

( )22

2 2 2
2 2

1 1 8π ,
r c c r

ψψ ρ
′

 
− − = 

 
                     (13) 

2

2 2
2

1 3 1 8π ,rp
r c

ψ 
− = 

 
                          (14) 

and 

( )22

2 2 2
2 2

8π .tp
c r c r

ψψ
′

+ =                         (15) 

It now becomes apparent that 2c  is merely a scale factor in Equations (12)-(15); so 
we may assume that 2 1c = . The constant 1c , on the other hand, will have to be ob-
tained from the junction conditions, the need for which can be seen from Equation (11): 
since our wormhole spacetime is not asymptotically flat, the wormhole material must 
be cut off at some r a=  and joined to an exterior Schwarzschild solution, 

( )
2

2 2 2 2 2 22 dd 1 d d sin d ,
1 2

M rs t r
r M r

θ θ φ = − − + + +  − 
         (16) 
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so that ( ) 2
1e 1 2a c a M aν = = − , whence 

1 2

1 2 ,M ac
a

−
=                           (17) 

where M  is the mass of the wormhole as seen by a distant observer. 

3. Charged Wormholes 

It was proposed by Kim and Lee [2] that for a wormhole with constant charge Q  the 
Einstein field equations take on the form 

( ) ( ) ( ) ( )0 1 0 18π .G G T Tµν µν µν µν
 + = +                       (18) 

Given that the usual form is ( ) ( )0 08πG Tµν µν= , the modified form in Equation (18) is 
obtained by adding the matter term ( )1Tµν  to the right side and the corresponding back 
reaction term ( )1Gµν  to the left side. The proposed metric is 

( ) ( )
12 2

2 2 2 2 2 2 2
2 2d 1 d 1 d d sin d .

b rQ Qs t r r
rr r

θ θ φ
−

  
= − + + − + + +  

   
     (19) 

Kim and Lee go on to note that with 0b ≡ , the wormhole becomes a Reissner- 
Nordström black hole, and if 0Q = , the spacetime becomes a Morris-Thorne worm-
hole with a shape function ( )b b r=  that meets the usual requirements. It therefore 
became necessary to show that the metric, Equation (19), is a self-consistent solution of 
the Einstein field equations. The shape function ( )b b r=  of the Morris-Thorne 
wormhole is now replaced by the effective shape function 

( ) ( )
2

eff .Qb r b r
r

= −                          (20) 

The effective shape function also has the usual properties, to be discussed later. 

4. Charged Wormholes with Conformal Symmetry 

In this section we return to the assumption of conformal symmetry mentioned in Sec-
tion 2. Let us first consider the Kim-Lee model, Equation (19). Then by Equation (11), 

2
1e c rν = , we have, for all r , 

2
2

121 ,Q c r
r

+ =  

which is impossible. So this model is not compatible with the assumption of conformal 
symmetry. This difficulty can be overcome, however, by introducing a new differentia-
ble function ( )S r  to yield the line element 

( ) ( ) ( )
12 2

2 2 2 2 2 2 2
2 2d 1 d 1 d d sin d .

b rQ Qs S r t r r
rr r

θ θ φ
−

  
= − + + + − + + +  

   
   (21) 

Evidently, 

( )
2

2
2 2

1 21 Q M aS r r
r a

  −
= − + + 

 
                   (22) 
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by Equation (17). Since a r>  on the interval [ ]0 ,r a , it follows that ( ) 0S r < , while 
( ) 0S r′ > . 
As already noted, given the effective shape function ( ) ( ) 2

effb r b r Q r= −  and the 
total matter ( ) ( )0 1eff ,T T Tµν µν= +  the Kim-Lee model yields a self-consistent solution. The 
inclusion of ( )S r  has no effect on this conclusion. So our metric, Equation (21), is a 
valid solution of the Einstein field equations representing a wormhole with an electric 
charge. 

The major objective in this section is to obtain a physical interpretation of the con-
formal factor ( )rψ , as well as the restrictions required to obtain a wormhole. First we 
recall that for some 1r r= , ( )1 1b r r=  and ( )1 1b r′ ≤ . Also, for 1r r> , ( )b r r< . For 
the new (effective) shape function, ( ) ( ) 2

effb r b r Q r= − , we have ( )eff 0 0b r r=  and 
( )eff 0 1b r′ ≤  to meet the flare-out condition. (This implies that ( ) 2 2

0 01b r Q r′ ≤ − .) 
Since ( )b b r=  is assumed to be a typical shape function, ( )b r r<  for 1r r> , and 
( )b r r>  for 1r r< . Since ( ) 2

0 0 0 0b r r Q r− = >  by Equation (20), it follows that 

0 1r r<  (see Figure 1). 
Next, from Equations (4), (12), and (21) (and recalling that 2 1c = ), 

( ) ( )
2

2
21 .

b r Q r
r r

ψ− + =                        (23) 

Since ( ) ( )2 2 21b r r Q r rψ= + − , it also follows that 

( ) ( )
2

2
21 Qb r r r

r
ψ

 
= + − 

 
                     (24) 

and 
 

 
Figure 1. The throat of beff(r) at r = r0 remains near r = r1. 



P. K. F. Kuhfittig 
 

2122 

( ) ( ) ( )( )
2 2

2 2
eff 2 21 1 .Q Qb r r r r r

r r
ψ ψ

 
= + − − = − 

 
             (25) 

The condition ( )eff 0 0b r r=  now implies that 

( )2
0 0.rψ =                             (26) 

Also, since ( )1 1b r r= , we have 

( ) ( )
2

1 2
12

1 1

1
b r Q r

r r
ψ− + =  

and 

( )
2

2
1 2

1

.Qr
r

ψ =                            (27) 

So Equations (26) and (27) give us a physical interpretation for the conformal factor 
( )rψ  in terms of the charge Q . Additional connections to Q  are given below. 
Having just learned that ( )2 rψ  increases to the right of 0r r= , let us examine the 

slope of ( )2 rψ  more closely. First note that from Equation (24) we have 

( ) ( ) ( ) ( )2 2 2
0 0

0

d d1 1 .
d dr r

b r r r r r r
r r

ψ ψ ψ
=

′ = − − = −             (28) 

From the inequality ( )eff 00 1b r′< ≤ , we get 

( ) ( )
2 2

2
0 0 02 2

0 0

d0 1 1.
d

Q Qb r r r
rr r
ψ′< + = − + ≤  

Solving, we obtain the inequality 

( )
2 2

2
03 3

00 0

d 1 .
d

Q Qr
r rr r
ψ≤ < +                       (29) 

Similarly, since ( )2 2 2
1 1r Q rψ =  and ( )10 1b r′< ≤ , we have 

( )
2

2
1 12

1

d0 1 1.
d

Q r r
rr
ψ< − − ≤  

Solving, we obtain the second inequality: 

( )
2 2

2
13 3

11 1

d 1 .
d

Q Qr
r rr r
ψ− ≤ < −                      (30) 

Our final task is to check the violation of the null energy condition (NEC) required 
to hold the wormhole open. Recall that the NEC states that given the stress-energy 
tensor Tαβ , 0T α β

αβ µ µ ≥  for all null vectors. So we obtain from the null vector 
( )1,1,0,0  that 0rpρ + <  whenever the condition is violated. By Ref. [1], this viola-
tion is equivalent to the condition 

( ) ( )
( )

0 0 0
2

0

0
2

b r b r r

b r

′ −
<

  
 

for a generic shape function. For ( )effb r , we already know that the last inequality  
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holds whenever ( )2 2 3
0 0

d
d

r Q r
r
ψ ≥  by inequality (29). By Equation (23), ( )2 rψ  is  

associated with effb ; so we can use the field equations, Equations (13) and (14), to de-
termine 

( ) ( )
0

2
0

0

1 d8π
dr r r

p r
r r

ρ ψ
=

+ = −                     (31) 

since ( )2
0 0rψ = . Near the throat 0r r= , ( )2 rψ  is rising, so that the NEC is indeed 

violated at and near 0r r= . 
For 1r r= , the throat of ( )b b r= , we can not use Equations (13) and (14), since the 

null vectors are not the same. Moreover, we can infer from Equation (28) that 

( ) ( )2 2d0 1,
d

r r r
r

ψ ψ< + <                       (32) 

showing that ( )2 rψ  cannot keep increasing indefinitely. In fact, given that 

( )2 2 3
1 1

d
d

r Q r
r
ψ ≥ − , ( )2 rψ  could already be decreasing at 1r r= . We therefore have 

to require that 1r r=  be close enough to 0r r=  so that 

( )2
1

d 0.
d

r
r
ψ ≥                            (33) 

(Since 2Q  is small in geometrized units, 1r  is close to 0r  to begin with.) As a result, 
if the NEC is violated at 0r r= , it is also violated at 1r r= . 

5. An Analogue of the Kerr-Newman Black Hole 

In thia section we study the various conditions under which the NEC is violated. So let 
us restate Inequality (29) and the modified Inequality (30): 

( )
2 2

2
03 3

00 0

d 1
d

Q Qr
r rr r
ψ≤ < +                       (34) 

and 

( )
2

2
1 3

1 1

d 10 .
d

Qr
r r r
ψ≤ < −                        (35) 

From 
2 2 2

3 3 3
1 00 1 0

1 10 ,Q Q Q
r rr r r

< < − < +  

we obtain the following half-open intervals: 

Interval I: 
2

3
0

0, ,Q
r

 


 
 

Interval II: 
2 2

3 3
10 1

1, ,Q Q
rr r

 
− 

 
 

and 
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Interval III: 
2 2

3 3
1 01 0

1 1, .Q Q
r rr r
 

− + 
 

 

We now observe that whenever ( )2d
d

r
r
ψ  is in Interval I, the NEC is violated at 

1r r= , but not at 0r r= . (The reason is that ( )2
1

d
d

r
r
ψ  now satisfies Inequality (35), 

but ( )2
0

d
d

r
r
ψ  does not satisfy Inequality (34).) So only ( )b r  has a legitimate throat. 

If ( )2d
d

r
r
ψ  is in Interval III, the NEC is violated at 0r r= , but not at 1r r= . (Here 

( )2
0

d
d

r
r
ψ  satisfies Inequality (34), but ( )2

1
d
d

r
r
ψ  does not satisfy Inequality (35).) 

So only ( )effb r  has a legitimate throat. Finally, if ( )2d
d

r
r
ψ  is in Interval II, the NEC 

is violated at both 0r  and 1r . So given the right conditions, our wormhole can have 
two throats. 

Now recall that the event horizon of a black hole is often viewed as the analogue of 
the throat of the wormhole. In fact, according to Hayward [16], if enough negative 
energy is injected into a black hole, it may become a traversable wormhole; the event 
horizon becomes the throat. From this perspective, our wormhole can be viewed as the 
natural analogue of the Kerr-Newman black hole: this type of black hole also has two 
surfaces that are characterized by coordinate singularities. 

Remark: The existence of two throats invites the following speculation: a variation on 
the Kim-Lee model is 

( ) ( ) ( )
12

,2 2 2 2 2 2 2
2d e d 1 d d sin d .r Q b r Qs t r r

r r
θ θ φ

−
Φ  

= − + − + + + 
 

       (36) 

Unlike our earlier model, this metric can lead to an event horizon. In particular, 
suppose 

( ) ( )22, 2e e ,Q r rr Q − −Φ =  

where 0 2 1r r r< < . Since Inequalities (34) and (35) still hold, this model suggests that it 
is in principle possible to pass through the throat at 1r r=  and return via the throat at 

0r r= , not only bypassing the event horizon of the black hole, but allowing a return 
trip. 

6. Conclusions 

This paper discusses the effect that conformal symmetry can have on a charged worm-
hole. Conversely, the physical requirements are seen to place severe constraints on the 
wormhole geometry. 

The analysis yields a physical interpretation of the conformal factor ( )rψ  in terms  

of the charge Q. Moreover, the outcome is heavily dependent on ( )2 rψ  and ( )2d
d

r
r
ψ   
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and ranges from having no solution to wormholes having two throats. The latter case 
can be viewed as the analogue of the Kerr-Newman black hole. 
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