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Abstract

In 2000, Wu and Gong [1] introduced the thought of the Henstock integrals of in-
terval-valued functions and fuzzy-number-valued functions and obtained a number
of their properties. The aim of this paper is to introduce the thought of the AP-
Henstock integrals of interval-valued functions and fuzzy-number-valued functions
which are extensions of [1] and investigate a number of their properties.
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1. Introduction

As it is well known, the Henstock integral for a real function was first defined by Hens-
tock [2] in 1963. The Henstock integral is a lot of powerful and easier than the Lebes-
gue, Wiener and Richard Phillips Feynman integrals. Furthermore, it is also equal to
the Denjoy and the Perron integrals [2] [3]. In 2016, Hamid and Elmuiz [4] introduced
the concept of the Henstock-Stieltjes (HS) integrals of interval-valued functions and
fuzzy-number-valued functions and discussed a number of their properties.

In this paper, we introduce the concept of the AP-Henstock integrals of interval-valued
functions and fuzzy-number-valued functions and discuss some of their properties.

The paper is organized as follows. In Section 2, we have a tendency to provide the
preliminary terminology used in this paper. Section 3 is dedicated to discussing the
AP-Henstock integral of interval-valued functions. In Section 4, we introduce the AP-
Henstock integral of fuzzy-number-valued functions. The last section provides conclu-

sions.
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2 Preliminaries

Let E be a measurable set and let C be a real number. The density of E at C is
defined by

LE = lim #(E(c—h,c+h))

) 2.1
h—0* 2h ( )

provided the limit exists. The point C is called a point of density of E if d E=1.
The set E® represents the set of all points x € E such that X isa point of density of
E.

A measurable set S, < [a, b] is called an approximate neighborhood (br.ap-nbd) of
x e[a,b] if it containing X as a point of density. We choose an ap-nbd S, c[a,b]
for each XeEc [a, b] and denote a choice on E by S={S :xeE}. A tagged in-
terval-point pair ([u,v],&) issaidtobe S-fineif &efu,v] and uves,.

A division P is a finite collection of interval-point pairs {([u V] é‘,)}:, where

{[ui WV, ]}::1 are non-overlapping subintervals of [a,b] . We say that P = {([u,, ,] & )}
is
1) a division of [a,b] if LnJ[ui WV, ] = [a, b] ;

2) s -fine division of [a,b] if & e[u,Vv] and ([u,, vi], i) is S -fine for all
i=12,-

Definition 2.1. (2] [3] A real-valued function f :[a,b] > R is said to be Henstock
integrable to A on [a,b] ifforevery &>0, thereis a function 5(t)>0 such that
for any § -fine division Pz{[ Ak é‘,} _, of [a,b], we have

Zf( D(vi—u)-A<e, (2.2)

b
where the sum z is understood to be over P and we write (H )If (t)dt = A, and

a
feH [a, b] .
Definition 2.2. [5] A function f [a, b] — R is AP-Henstock integrable if there ex-
ists a real number A e R such that for each ¢ >0 thereisa choice S such that

n

2f (&) (vi—u)-A

i=1

<& (2.3)

for each S -fine division P:{([u V] df,)}lnzl of [a,b]. A is called AP-Henstock

b
integral of f on [a,b], and we write A=(APH )jf .

Theorem 2.1. If f and g are AP-Henstock integrable on [a,b] and f <g
almost everywhere on [a,b], then

(APH T (APH) j (2.4)
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Proof. The proof is similar to the Theorem 3.6 in [3]. O

3. The AP-Henstock Integral of Interval-Valued Functions

In this section, we shall give the definition of the AP-Henstock integrals of inter-

val-valued functions and discuss some of their properties.
Definition 3.1. [1] Let

I ={I =[ 17,17 ]: I'is the closed bounded interval on the real line R}.

For ABel;, we define A<B iff A-<B” and A'"<B*, A+B=C iff
C =A+B and C*'=A"+B",and AoB:{a'b:aeA,beB},where

(A-B) =min{A"-B",A"-B*,A"-B",A"-B'| (3.1)
and
(A-B) =max{A -B",A -B",A"-B",A"-B"}. (3.2)

Define d(A,B)=max(|A"-B| A -B

and B.
Definition 3.2. [1] Let F:[a,b]—> |, be an interval-valued function. €, for

) as the distance between intervals A

every £>0 thereisa &(t)>0 such that for any & -fine division P = {[ui V], fi}

n
i=1

we have

d(zn:F(gi)(vi_ui)vloj<g’ (3.3)
=
then F(t) issaid to be Henstock integrable over [a,b] and write
b
(IH )IF (t)dt=1,. For brevity, we write F(t)e IH[a,b].

Definition 3.3. A interval-valued function F :[a,b]— |, is AP-Henstock integra-

bleto \yely, ifforevery &>0 there existsachoice S on [a,b] such that

d(gF(gﬁ)(vi—ui),loj<g, (3.4)

whenever P = {([ui V; ];§i )}in=1 isa S -fine division of [a,b] , We write
b
(APIH)[F =1, and F e APIH [a,b].

Theorem 3.1. If F € APIH [a,b], then the integral value is unique.

b
Proof. Let integral value is not unique and let B, =(APIH) J. F and
a

b
B, = (APIH )IF . Let £>0 be given. Then there exists a choice S on [a, b] such
a

that

d(iZ::F(é:i)(vi —Ui)aBlj<§ (3.5)
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d(gF(é)(vi_ui)’sz<g (3.6)

whenever P = {([ui AR )}in=1 isa S -fine division of [a,b].

Whence it follows from the Triangle Inequality that:
a(8.8)= o[ F (6)(0-u) 8 Jra[ TR () -u) B <SS ma ()
i=1

Since for V¢ >0, there exists a choice S on [a,b] as above so B, =B,. O
Theorem 3.2. An interval-valued function F e APIH[a,b] if and only if
F™,F" e APHJ[a,b] and

(APIH _TF {APH T (APH)TF*}. (3.8)

Proof. Let F e APIH [a,b], from Definition 3.3 there is a unique interval number

+

Iy = [ (PR ] with the property that for any & >0 there exists a choice S on [a,b]
such that

(S0, <o o9

whenever P:{([ui,vi];fi )}In_ is a S -fine division of [a,b]. Since v;—u; >0 for

1<i<n, wehave

SREm-w] -

< & whenever

J< &. (3.10)

SHSF @) -u)-10

iZil:F_(éZi)(Vi—Ui)—H 2 (E)(v —u) -1y

P= {([UI,VI] df,)}lnzl isa S -fine division of [a,b].Thus F~,F" e APH[a,b] and

Hence <ég,

(APIH T {APH [F (APH)TF*}. (3.11)

Conversely, let F~,F" € APH[a,b]. Then there exists H,,H, e R with the prop-
erty that given & >0 there exists a choice S on [a,b] such that

(&) ) ()4 -u) - H,

<&

whenever P = {([uI AR )}I | isa's -fine division of [a,b]. We define

l, =[H.,H,], thenif P:{[ui,vi],fi}in:1 isa S -fine division of [a,b], we have

2288 0‘ , Scientific Research Publishing
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d(ip(;)(vi_ui),|oj<g. (3.12)
i=1
Hence F :[a, b] — |, is AP-Henstock integrable on [a,b]. O
Theorem 3.3. If F,Ge APIH[a,b] and g,y eR. Then BF+yG e APIH[a,b]
and
b b b
(APIH)[(BF +7G) = B(APIH)[F +(APIH)G. (3.13)

Proof. If F,Ge APIH[a,b], then F7,F*,G",G" € APH[a,b] by Theorem 3.2.
Hence SF™+yG™,fF +)G*, fF* +)G", fF* +7G" < APH [a,b].

(DIf p>0 and y >0, then

(APH)T(/;F +7G) =(APH T(ﬂF-WG-)

a

:ﬂ(APH)IF’ﬂ/(APH)TG’

[ (APIH) TFJ [ A;IH jG]
B(APIH) TF+7 APIH TG _
sl s

(2)If p<0 and y <0, then

(APH)T(,BF +yG) =(APH T(ﬂF*ﬂ/G*)

a

:ﬂ(APH)ijy(APH)TG+

b \* b \*"
[APIH ij (APIH jej
) _
(ﬁ(APIH [F+x( APIH).[GJ
3)If p>0 and y<0, (or #<0 and y<0,),then

a

(APH)j(ﬂF +yG) =(APH T(,BF’+yG*)

=ﬂ(APH)J'F’+;/(APH)TG*

:ﬂ(((APIH ))EFJ +y[(APIH )j‘GJ+

=(ﬂ(APIH)‘TF +7(APIH)'TG].

Similarly, for four cases above we have
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(APH)T(ﬁF +7G) :(ﬁ(AMH)TF +y(APIH)TGj+. (3.14)
Hence by Theorem 3.2 fF +7G < APIH [a,b] and

(APIH)T(,BF +;/G)=,B(APIH)TF +7(APIH)TG. (3.15)

O

Theorem 3.4. If F € APIH [a,c] and F e APIH [c,b], then F e APIH[a,b] and

(APIH)Jb'F :(APIH)I'F +(APIH)JD'F. (3.16)

a

Proof. If F € APIH [a,c] and F € APIH [C,b] , then by Theorem 3.2
F",F eAPH[ac] and F",F" € APH[c,b]. Hence F",F" € APH[a,b] and

(APH)[F~ = (APH)[F + (APH)TF-

[(APIH j +(APIH ?F]

b b \*
Similarly, (APH)[F* [(APlH [F+(APIH) J'Fj . Hence by Theorem 3.2

a

F e APIH[a,b] and

(APIH)TF :(APIH)TF +(APIH)TF. (3.17)

O
Theorem 3.5. If F <G nearly everywhere on [a, b] and F,G e APIH [a,b], then

b b
(APIH)[F <(APIH) G. (3.18)

Proof. Let F <G nearly everywhere on [a,b] and F,Ge APIH[a,b] Then

F,F",G",G"eAPH[a,b] and F <G, F"<G" nearly everywhere on [a,b]
b
By Theorem 2.1 (APH)[F~ <(APH jG and (APH) _[F* APH jG+ Hence

a

o

(APIH)[F g(APlH)jG, (3.19)
by Theorem 3.2. O
Theorem 3.6. Let F,Ge APIH[a,b] and d(F,G) is Lebesgue integrable on
[a,b]. Then
b b b
d((APlH)jF,(AMH)jGJs(L)jd(F,G). (3.20)

Proof. By definition of distance,

2290 0 Sclentlflc Research Publishing
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d((APIH j (APIH) _TG]
[APIH ?FJ (APIH TG]
(APH)E(F‘—G‘)‘,(APH)_E(F*—G*)
I

)

= max

( (APIH EFI —[(APIH )j).Gj+

j (3.12)

= max

< max (L)_E|F‘—G‘|,(L

max(|F’—

O

4. The AP-Henstock Integral of Fuzzy-Number-Valued Functions

This section introduces the concept of the AP-Henstock integral of fuzzy-number-
valued functions and investigates some of their properties.

Definition 4.1. [6] [7] [8] Let Ae F(R) be a fuzzy subset on R. If for any
A e[O,l], A, =[A;,A;] and A #¢$, where A, ={t : A(t)z /1}, then A is called
a fuzzy number. If A is convex, normal, upper semi-continuous and has the compact
support, we say that A is a compact fuzzy number.

Let R denote the set of all fuzzy numbers.

Definition 4.2. [6] Let A BeR, we define A<B iff A, <B, forall 1¢(01],
A+B=C iff A,+B,=C, for any 1<(01], A-B=D iff A,-B,=D, for any
Ae (0,1].

For A BeRC, D(/:\ )— sup d(Ai,B ) is called the distance between A and
2€[0,1]

B.
Lemma 4.1. [9] If a mapping H:[O,l]—)IR, l—)H(/I)z[mi,nl], satisfies
[m/h’n/h]j[mﬂz'nﬂzJ when A, <A,, then

A= |J AH(2)eR (4.1)
2€(0.1]
and
A =(H (4). (4.2)

where A, =|1- ! A.
(n+1)

Definition 4.3. [1] Let F :[a,b] — R. Ifthe interval-valued function
F.(t)= [F{ (t),F, (t)] is Henstock integrable on [a,b]| for any 2€(0,1], then we
say that F(t) is Henstock integrable on [a,b] and the integral value is defined by
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b

(FH)TIf(t)dt = J A(IH)[F, (t)dt

2e(0] a

= l{(H [Fdt,( )TF;dt :

2€(0,1]
For brevity, we write F (t)e FH[a,b].
Definition 4.4. Let F: [a,b] — R . If the interval-valued function
F.(t)= [F{ (t),FS (t))] is AP-Henstock integrable on [a,b] for any 1e(0,],

then F ('[) is called AP-Henstock integrable on [a,b]| and the integral value is de-
fined by

b b
(APFH) [F (t A(APIH)[F, (t)dt

ﬁe(o,l] a

- U /{(APH):[FA.dt,(APH).:[F;dt}.

4e(0]

We write F (t) e APFH [a,b]. N
Theorem 4.1. F € APFH[a,b], then (APFH)[F(t)dteR and

(APFH T ] ﬁ APIH ) jF (4.3)

n=1
1
where 4 =|1-——|A.
{ (n+1)}

Proof. Let H :(0,1] — I, be defined by
H(4)= {APH)J'F t)dt,(APH) jF }

Since F; ( ) and F; ( ) are increasing and decreasing on A respectively, there-
fore, when 0<4 <4,<1 we have F, (1)< F, (1), F. (t)=> F. (t), on [ab].
From Theorem 3.5 we have

{APH [F, (t)dt,(APH) jF (1) dt} {APH)TFAQ (t)dt,(APH)TFjZ (t)dt}. (4.4)

From Theorem 3.2 and Lemma 4.1 we have

b b b
(APFH)jF~ (tydt= U ﬂ{(APH)IFidt,(APH).[F;dt}e R (4.5)
2e(0,1] a
b o b
and forall 1 (0,1], {APFH [F(t } =((APIH)[F, (t)dt, where
a n=1 a
1
Jy=[1- A O
-]
Theorem 4.2. If F,G € APFH [a,b] and B,y eR. Then pF +yG e APFH [a,b]
and
b B b b
(APFH) [(BF +yG)dt = B(APFH) [F (t)dt+y (APFH ) [G (t)dt. (4.6)

Proof. If lf,é e APFH [a,b] , then the interval-valued function

2292 0 Sclentlflc Research Publishing
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F, ()= [F{ (t),F; (t)] and G, (t)= [G; (t).G; (t)] are AP-Henstock integrable on

b
[a,b] forany Ae(0,1] and (APFH)[F(t A(APIH) J'F t)dt and
2 /"»E(O,l]
b b
APFH f APIH ),[Gx (t)dt . From Theorem 3.3 we have
a ie 01] a

BF, +;/G € APIH[a,b] and
(APIH)J'(ﬂF +7G, )dt = B(APIH jF dt+y(APIH) jG dt forany Ae(0,1].

a

Hence AF +yG e APFH [a,b] and

(BF+7G)dt=|J A(APIH T,BF +7G,)

2e(0] a

(APFH)

D — T

A€(0,1

b
Uz[ APIH)J'FAdt+;/(APIH)_fGAdtJ
b
=4 U A(APIH) jF dt+y (J 4 APIH)_[Gﬂdt
2€(0,1] A€(0.1]

= B(APFH) ()dt+}/(APFH ji

m'—.c-

Theorem 4.3. I F € APFH[a,c] and F € APFH[c,b], then F € APFH [a,b] and

(APFH) j =(APFH)[F
a

m!—.n

t)dt+(APFH) j (4.7)

Proof. If F e APFH [a,c] and F e APFH [C,b] , then the interval-valued function
F.(t)= [F{ (t),F; (t)} is AP-Henstock integrable on [a,c] and [c,b] forany
4€(0,1] and (APFH) J'F t)dt= [ J A(APIH) fF t)dt and

Aeg( 01

b
APFH J. dt = U /1 APIH )I (t)dt . From Theorem 3.4 we have
C Cc

2¢(0,1]

b c b
F, € APIH[a,b] and (APIH)[F,dt=(APIH)[Fdt+(APIH)[F,dt forany

A €(0,1]. Hence F € APFH [a b] and
b
(APFH j t)dt=|J A(APIH)[F, (t)dt

).E(O l] a

- U ﬂ((APIH).C[FA (t)dt+(APIH).TFi(t)dtJ
2€(01] 2

c

c b
= (J 2(APIH)[F, (t)dt+ [J A(APIH)[F,(t)
2¢(01] a 16(01] c

(APFH) j t)dt+(APFH) jF
a
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Theorem 4.4. If F(t)<G(t) nearly everywhere on [a,b] and
F.G e APFH [a,b], then

(APFH)

D ey, T

b
F(t)dt <(APFH)[G(t (4.8)

Proof. If F(t)< é(t) nearly everywhere on [a,b] and F,G e APFH [a,b], then
F,(t)<G,(t) nearly everywhere on [a,b] forany 1e(0,1] and F,(t) and

G, (t) are AP-Henstock integrable on [a,b] forany A€(0,1] and

(APFH) J'F t)dt= U z APIH) jF t)dt and

b b
(APFH) f A(APIH) '[G/1 t)dt . From Theorem 3.5 we have
a 01] a
b b
(APIH) J.Fi AP|H)IG1 (t)dt forany Ae(0,1].Hence
b b
(APFH)[F(t)dt= [ A(APIH)[F, (t)dt
a 2e(01] 2
b
< [J 2(APIH)[G, (t)dt
2€(0,] 2

:(APFH)T~

5. Conclusion

In this paper, we have a tendency to introduce the concept of the AP-Henstock inte-
grals of interval-valued functions and fuzzy number-valued functions and investigate

some properties of those integrals.
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