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Abstract 
The likelihood function plays a central role in statistical analysis in relation to infor-
mation, from both frequentist and Bayesian perspectives. In large samples several 
new properties of the likelihood in relation to information are developed here. The 
Arrow-Pratt absolute risk aversion measure is shown to be related to the Cramer-Rao 
Information bound. The derivative of the log-likelihood function is seen to provide a 
measure of information related stability for the Bayesian posterior density. As well, 
information similar prior densities can be defined reflecting the central role of like-
lihood in the Bayes learning paradigm. 
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1. Introduction 

Research Background 
The importance of the likelihood function to statistical modeling and parametric sta-

tistical inference is well known, from both frequentist and Bayesian perspectives. From 
the frequentist perspective the likelihood function yields minimal sufficient statistics, if 
they exist, as well as providing a tool for the generating of pivotal quantities and meas-
ures of information on which to base estimation and hypothesis testing procedures [1]. 

For researchers employing a Bayesian perspective the likelihood function is mod-
ulated into a probability distribution directly on the parameter space through the use of 
a prior density and Bayes theorem [2]. The Bayesian context preserves the whole of the 
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likelihood function and allows for the use of probability calculus on the parameter 
space Ω itself. This usually takes the form of averaging out unwanted parameters in or-
der to obtain marginal distributions for parameters of interest. 

Current Research 
Research into the properties of the likelihood function has often focused on the 

properties of the maximum likelihood estimator, and likelihood ratio based testing of 
hypotheses [3]. A review can be found in [4]. As well, recent work has examined like-
lihood based properties in relation to saddlepoint approximation based limit theorem 
results [5]. The Cramer Rao bound or Fisher information continues to be of interest 
across a wide set of applied fields [6], providing a measure of overall accuracy in the 
modeling process. Information theoretic measures based on likelihood, such as the AIC 
measure [7] are commonly applied to assess relative improvement in model predictive 
properties. 

From a Bayesian perspective much recent work has focused on the application of 
Markov Chain Monte Carlo (MCMC) based approximation and methodology [8] [9]. 
The algorithms that have been developed in these settings have greatly widened the 
areas of application for the Bayesian interpretation of likelihood [10]. 

Prior density selection has often focused on robustness issues [11] where the sensi-
tivity of the posterior density to the selected prior is of interest. Some focus has also 
been given to choose priors in order to match frequentist and Bayesian inference in 
terms of choosing priors that match p-values and posterior probabilities, so-called first 
order matching [12]. Here a focus is placed on large samples and the broader concept 
of information. 

The application of utility theory in a Bayesian context reflects several possible defini-
tions and approaches [2] and some of these are discussed below. This however has been 
viewed independently of the likelihood concept with utility functions typically assumed 
in addition to the assumed prior. Here a learning perspective regarding how informa-
tion is collected and processed through the parametric model in large samples is consi-
dered with the likelihood function and the related score function playing key roles in 
the interpretation of the posterior density from several perspectives. 

Research Approach and Strategy 
In this paper several large sample properties of the likelihood and their connections 

to ideas in economics are examined. The derivative of the log-likelihood function is 
shown to define an elasticity based measures of stability for the posterior density. It is 
then argued that the log-likelihood function can itself serve as a utility function in large 
samples, connecting probability based preferences and expected utility optimization 
with statistical optimization, especially in relation to the consumption of information. 

The Bayesian perspective provides the context for this approach, yielding a probabil-
ity-likelihood pair that allows us to relate expected utility maximization with optimal 
statistical inference and large sample properties of the likelihood function. From this 
perspective the well-known Arrow-Pratt risk aversion theorem is shown to be a func-
tion of the standardized score statistic and Cramer-Rao Information bound. 
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2. Fundamental Principles 

The likelihood function can be written; 

( ) ( )
1

| |
n

i
i

L data k f xθ θ
=

= ⋅∏                      (1) 

where ( )|if x θ  is the probability density for the ith independent response and k is a 
constant emphasizing the fact that the likelihood is a function of θ  not a density for 
θ . The likelihood function is the key source of information to be drawn from a given 
model-data combination. Often the mode of the likelihood function θ̂ , the maximum 
likelihood estimator, is the basis of frequentist inference. The local curvature of the 
log-likelihood about its mode provides the basis of the Fisher Information and related 
Cramer-Rao information lower bound. 

The Bayesian approach or perspective is based on the joint posterior density which 
can be expressed as; 

( ) ( ) ( )| |p data c p L dataθ θ θ= ⋅ ⋅                   (2) 

here ( )p θ  is the prior density, ( )|L dataθ  the likelihood function and c  the 
constant of integration. All three functions of θ  can be viewed as weighting the 
parameter space, with prior and posterior densities restricted to a probability scale. 

The posterior density ( )|p dataθ  can be viewed as an updated description of the 
researcher’s beliefs regarding potential values of the parameter θ  and is interpreted 
conditionally upon the observed data. From baseline beliefs for θ  reflected in the 
shape of the prior density ( )p θ , the likelihood function updates these beliefs in light 
of the observed model and data giving the posterior density. Once the joint posterior is 
obtained, integration is employed in the Bayesian setting to obtain marginal posterior 
densities for any given iθ . For example; 

( ) ( )1 2 3| | d d d pp data p dataθ θ θ θ θ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫                  (3) 

gives the marginal posterior for 1θ  alone. The central region of this density is a 
Bayesian credible region which can be used for estimation regarding 1θ . Both 
approaches to inference may employ approximation, typically based on larger sample 
sizes, to evaluate required tail areas or central estimation regions. With the advent of 
Markov Chain Monte Carlo (MCMC) based methods calculations in many Bayesian 
settings are possible [8]. 

Bayesian statistical analysis as an approach to the interpretation of statistical models 
has grown rapidly in application over the past several decades. This has been especially 
true in the basic sciences which, while traditionally not very open to the more 
subjective Bayesian perspective, have been open to its broader and more flexible 
modeling approach [13]. Bayesian analysis does however require an understanding of 
the analyst’s set of prior beliefs regarding the set of population characteristics or 
parameters of interest and provides a process by which they will be updated by the 
observed model-data combination. Typically these are defined in the context of a 
mathematical model and beliefs must be assumed for the entire set of potential values 
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for the population parameters, even those that may not be significant in the final 
analysis. 

The importance of the likelihood function is sometimes overlooked. It is the tool by 
which model and observed data are combined in both frequentist and Bayesian settings. 
As noted above, its properties underlie the Cramer-Rao information bound and in large 
samples it achieves a quadratic log-likelihood [1]. When viewed from a Bayesian 
perspective, the likelihood function updates initial preferences given by the prior 
density, giving new weighted preferences in the form of the posterior density. 

Utility functions are also a concept that can be employed to model individual 
preferences regarding unknown parameter values when choices are to be made from a 
set of possible values. Their properties underlie much of economic consumption theory 
in regards to the individual consumer, production choices of the firm, and broader 
social utility issues [14]. In general, if available, utility functions can be used along with 
the posterior density to obtain an expected utility function that may be used to model 
consumer preferences. 

Expected utility also has a long history in economic thought and provides a context 
for the study of preferences and related behavior [15]. It has also been viewed as a basis 
for Bayesian inference [16] [17]. In large samples it is possible to develop an expected 
utility interpretation in relation to the likelihood function itself, in relation to the 
processing and consumption of information. The effects of large samples in relation to 
expected utility have previously been examined from the perspective of laws of large 
numbers [18]. But in large samples the asymptotic shape of the log-likelihood function, 
if placed in a Bayesian setting, provides direct insight into the empirical support offered 
for specific values of population parameters. In large samples with non-informative 
priors, the log-concavity of the likelihood function yields the shape of the log-posterior 
density. 

This can initially be seen in relation to central limit theorems. Subject to regularity 
conditions [1] the following result holds as n →∞ , 

( )( )1ˆ ~ ,N Iθ θ θ−                            (4) 

a sampling theory result from the frequentist perspective where ( )I θ  is the Fisher 
information and ( )1I θ−  the well known Cramer-Rao bound. 

It is also true that, conditional on the data x, as n →∞ ; 

( )( )1ˆ| ~ ,x N Jθ θ θ−                          (5) 

from the Bayesian perspective with ( )J θ  the observed Fisher information. Note in 
large samples that ( ) ( )1 1J Iθ θ− −→  in probability. 

The Bayesian perspective on statistics can be viewed as providing models for learning 
based behavior. The “prior” density ( )p θ  serves as an initial baseline for the analyst’s 
beliefs regarding potential values of θ . The prior is then updated as observed data is 
processed. The information is collected via the likelihood function and processed 
through the prior-likelihood pair to give the posterior density. The result is a reweighting 
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of belief regarding θ . 

3. Likelihood Related Stability in the Posterior Density 

The learning aspect of Bayesian methods is based on the likelihood function. The 
information-theoretic aspects of the likelihood function summarize and provide 
information to update beliefs regarding θ . There are various approaches to assessing 
the rate and stability with which the posterior modifies or “learns”. The inferential 
stability of the posterior density can be seen as a function of its rate of change and (on a 
logarithmic scale) depends directly on the additive rates of change in the prior density 
and log-likelihood. 

Assuming a scalar θ  we have;  

( ) ( ) ( )

( ) ( )

ln | data ln ln ln | data

ln ln | data

p c p L

p L

θ θ θ
θ θ θ θ

θ θ
θ θ

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
∂ ∂

= +
∂ ∂

          (6) 

Note that Bayesian inference, by employing the likelihood function, inherits many 
optimal properties of the frequentist-likelihood approach to inference. This includes 
the score function, which is at the heart of frequentist-likelihood inference [3] and can 
be written;  

( ) ( )ln | dataS Lθ θ
θ
∂

=
∂

                        (7) 

and is also a component of the posterior rate of change. The only difference between 
the rate of change of the log posterior and the score function is the rate of change in the 
log prior, which is zero if the prior is non-informative or constant. 

( ) ( ) ( )ln | ln | datap data p Sθ θ θ
θ θ
∂ ∂

= +
∂ ∂

                   (8) 

In these settings, the score function provides information regarding the percent rate 
of change in the posterior as a function of θ . In effect the elasticity of the Bayesian 
posterior density. 

In large samples the derivative of the log-likelihood is also useful in describing the 
stability of probability preferences. Given a non-informative or constant prior and large 
sample it follows that;  

( ) ( )lim ln | data lim | data
n n

p Sθ θ
θ→∞ →∞

∂
=

∂
                  (9) 

In other words the relative changes in the log-posterior will reflect directly the 
asymptotic behavior of the Score function. 

Taking a frequentist perspective on the data, the asymptotic distribution of the score 
function can be applied to provide large sample bounds for the standardized rate of 
change in the log posterior in relation to the log prior baseline. Giving the result; 

( ) ( ) ( )| data ~ 0,S J N Iθ θ                     (10) 

where I is the identity matrix here. In case of a scalar θ  it follows that; 
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( ) ( ) ( ) ( )2 ln |data ln 2J p p Jθ θ θ θ
θ θ
∂ ∂

− ≤ − ≤
∂ ∂

              (11) 

Thus on a logarithmic scale the difference in rates of change or elasticity in the 
posterior versus prior is bounded by the observed Fisher information ( );J xθ . Thus 
the information provided by the likelihood function is key in assessing bounds on a 
measure of change from prior to posterior. Note that a similar result can be expressed 
more generally in terms of the Kullback-Liebler distance measure [19]. 

In multivariate parameter settings the effect of integrating out unwanted or nuisance 
parameters may affect the nominal accuracy of the resulting marginal posterior. Thus 
the similarity between the results that as n →∞ , ( )( )1ˆ ~ ,j j jN Iθ θ θ−  or  

( )( )1ˆ| ~ ,j j jx N Jθ θ θ−  may not be as direct on a marginal scale. 

4. Utility Functions 

Utility theory has a long history and can be found in its most developed form in 
economic theory. Utility functions themselves define a preference relation. The work of 
Von Neumann [20] and Samuelson [21] and Arrow [22] provided axioms for the 
definition and application of utility functions in relation to expected utility. If the 
axioms are satisfied, the individual is said to be rational and preferences can be 
represented by a utility function. 

The Von Neumann-Morgenstern utility representation theorem [14] has four possible 
axioms, though the independence axiom is sometimes dropped and is so here where a 
simple scalar parameter setting is examined. Where the large sample log-likelihood 
( ) ( )| datal lθ θ=  is concave (quadratic) and continuous, the axioms can be seen to 

apply directly with the ranking A B≥  defined by ( ) ( )l A l B≥ , and A, B and C 
values for θ  in the support of the log-likelihood function; 

1) Completeness: The individual either prefers A to B, or is indifferent between A 
and B, or prefers B to A. The concave and continuous weighting provided by the large 
sample shape of the log-likelihood function satisfies this condition. 

2) Transitivity: For every A, B and C with A B≥  and B C≥  we must have A C≥ . 
This follows directly from the continuous, quadratic concave shape of the large sample 
log-likelihood function. 

3) Continuity: Let A, B and C be such that A B C≥ ≥ ; then there exists a probability 
weighting p such that B is equally good as ( )1pA p C+ − . This holds for the con- 
tinuous, quadratic concave shape of the large sample log-likelihood when weighted by 
an appropriately chosen prior density ( )p p θ= . 

This formality is useful when incorporating probability in relation to utility or 
expected utility. That said, it is often the case in large samples that central limit 
theorems, the weak law of large numbers and strong law of large numbers apply and 
modify the determination of probability based preferences and related values of 
expected utility. This is discussed in [18] from a non-likelihood based large sample 
frequentist perspective. 

In large samples the log-likelihood (or likelihood) provides a pseudo-utility function 
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that satisfies the above axioms of utility in relation to preferred values for the parameter 
θ . The likelihood and prior density can be interpreted as a conceptual pair and the 
resulting posterior or log-posterior an expected utility providing a preference related 
weighting of the parameter space. 

The log-likelihood converges to a quadratic form across a wide set of assumed 
probability models for the observed data. These typically comprise the exponential 
family of probability densities. The associated regularity conditions can be found in [1]. 

The log-concavity of the large sample likelihood can be expressed; 

( )
2

2 ln | 0L yθ
θ
∂

<
∂

                         (12) 

While initially most likelihood functions may not have the properties necessary to be 
viewed as utility functions, in large samples many likelihoods do have these properties, 
subject to regularity conditions, and are log-concave, continuous and differentiable. 

In the scalar θ  case the result; 

( )( )1ˆ ~ ,N Iθ θ θ−                          (13) 

can be interpreted as the likelihood function having a large sample bell curve shape. 
The related log-likelihood function is quadratic, an acceptable form for consideration 
as a utility function and the required conditions above are met. 

5. Interpreting Risk Aversion in Large Samples 

As the large sample pairing of prior probability and likelihood allows for an expected 
utility perspective on the resulting posterior density function, work by Jeffrey [23] can 
be applied. This emphasizes taking probability and utility functions as pairs in relation 
to developing optimal probability based preferences. Here the (prior, likelihood) pair, 
processed through Bayes Theorem, provides a large sample expected utility function; 
the posterior or log-posterior distribution, for ranking preferences regarding θ . 

If the collection and interpretation of data in relation to an assumed parametric 
model is viewed as a process of consuming information, and incorporating probability 
based preferences based on likelihood functions to update existing belief, then measures 
of risk aversion related to expected utility can be applied in a general information 
context. 

The Arrow-Pratt absolute risk aversion (ARA) measure [14] is defined generally as;  

( ) ( )
( )

u w
ARA w

u w
′′

= −
′

                       (14) 

where ( )u w  is an expected utility function. It is often used as a standardized measure 
of risk aversion in regard to expected utility. In a large sample where we take a 
relatively flat prior density, the ARA measure is simply the inverse of the standardized 
score function and thus a standardized rate of preference modification with regard to 
the posterior density function and the parameter θ . 

Writing ( ) ( )ln |u p dataθ θ=  as the log posterior density and assuming a first order  
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condition on the prior density ( )ln 0p θ
θ
∂

=
∂

, we can express the ARA measure in  

terms of; 

( ) ( )
( )

( )

( )

( ) ( )

( ) ( )

( )
( )

( )
( )

1
2

2

2 2

2 2

ln | data

ln | data

ln ln | data

ln ln | data

| data | data
.

| data

pu
ARA

u p

c p l

c p l

l S
l J

θθ θθ
θ θ

θ

θ θ
θ θ

θ θ
θ θ
θ θ
θ θ

−

∂
′ ∂= =
′′− ∂

−
∂

∂ ∂ ′+ +
∂ ∂=
∂ ∂ ′′− − −
∂ ∂
′

= =
′′−

             (15) 

This interpretation also allows for a central limit theorem related argument regarding 
ARA−1 in large samples which bounds the ARA measure of risk aversion in relation to 
the Cramer Rao information bound; 

Theorem 1 The function ( ) ( )
( )

1 | dataS
ARA

J
θ

θ
θ

− =  has a large sample ( )( )10,N I θ −   

distribution for large n. 
Proof. Taking limits and assuming standard likelihood related regularity conditions 

hold, the central limit theorem for the score function, the strong law of large numbers 
and Slutsky’s theorem can be applied giving; 

( )
( ) ( )

( )
( )

( )( )11 | data 1 10,1 ~ 0, .
S

ARA N N I
J J I

θ
θ

θ θ θ
−− = ⋅ → ⋅          (16) 

This is a simple restatement of the large sample or asymptotic efficiency of the score 
function and optimality of the Cramer-Rao lower bound [1], but in relation to the 
consumption of information and related risk aversion. This provides an asymptotic 
variance for ARA−1 when appropriate. It can also be argued that the ARA−1 measure is 
efficient in the processing of information as its variation attains the Cramer-Rao 
information bound in large samples. 

While not practical, a large sample 95% confidence related bound on ARA−1 or ARA 
can be defined in relation to statistical information;  

( ) ( )
( ) ( ) ( ) ( )

12 1 2 1

1 2 1 2

I ARA I

I ARA I

θ θ

θ θ

−− ≤ ≤

≤ ≤ −
                 (17) 

It is interesting to note that the Likelihood Principle is implicitly relevant to this 
result. As noted earlier, this principle states that inference from two proportional 
likelihood functions, ( ) ( )1 2| |L x c L xθ θ= ⋅ , should be the same. This is equivalent to 
saying that the derivative of the log-likelihoods or Score functions are equivalent 

( ) ( )1 2| data | dataS Sθ θ=  and thus the rate of learning is equivalent if the priors in 
question are non-informative. 

In terms of utility, this implies that two proportional log-likelihood functions in large 
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samples can be viewed as having identical large sample ARA−1 values in relation to the 
information content of the respective model-data combinations. Thus proportional 
likelihoods yield similar levels of risk aversion in large samples. 

Note that the likelihood function is log-concave generally when we have the con- 
dition;  

( )( ) ( ) ( ) ( )1 2 1 2log 1 | log | 1 log | .L t t y t L y t L yθ θ θ θ+ − > + −           (18) 

This may hold in some small sample settings with non-informative prior densities. 
The simplest approach to ensuring a log-concave likelihood in small samples is to work 
with log-concave densities [24]. This reflects the basic property that If X and Y have 
log-concave densities, so does X Y+ . The Normal, Poisson and Binomial distributions 
for example have this property, Note that the Cauchy, Pareto and log-Normal distri- 
butions are not log concave densities. Mixtures of the normal and other distributions 
may or may not have this property. 

6. Prior Selection: Enabling Likelihood Based Learning 

As noted above, Bayesian methods obtain their accuracy and informative nature by 
depending heavily on the likelihood function. In emphasizing a learning model 
perspective, and imposing the requirement that we learn from the likelihood function, 
the technical link between posterior and likelihood allows for consideration of the 
likelihood in relation to choosing a prior. In particular, this can be examined from the 
perspective of statistical information and linking aspects of the log-likelihood with 
posterior stability, matching the curvature of the log-likelihood function, the observed 
Fisher Information, to the curvature of the posterior density. This gives rise to 
conditions that help guide the selection of prior densities. 

The Bayesian perspective reflects a learning process in regard to the parameter θ . 
This learning process should not be a function of pre-existing belief which in a sense 
sets the baseline of existing knowledge. Rather it should reflect the properties and 
information of the model-data combination in the form of the likelihood function. 
Here we suggest an approach to prior selection which focuses on matching the 
information properties of the likelihood and posterior densities and gives a family of 
prior densities from which to choose. 

Define the concept of posterior information as the local curvature of the log- 
posterior about its mode; 

( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

2

2

ln | data
ln ln ln | data

ln ln | data

ln

p
c p L

p L

p J

θ
θ θ

θ θ

θ θ
θ θ

θ θ
θ

∂ ∂
− = − + +  ∂ ∂

∂ ∂
= − −

∂ ∂
∂

= − +
∂

          (19) 

where ( )J θ  is the observed Fisher information ( ) ( )
2

2 ln | dataJ Lθ θ
θ
∂

= −
∂

. 
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Given the selection of a prior which is to be non-informative at the level of 
information processing, and assuming that standard regularity conditions apply to the 
likelihood function [1], we set the following second order condition on the prior 
density;  

( )
2

2 ln 0p θ
θ
∂

=
∂

                           (20) 

or more reasonably; 

( )
2

2 ln p kθ
θ
∂

=
∂

                           (21) 

where k is a constant. This implies that, up to a multiplicative constant, the likelihood 
based Fisher Information in the model-data combination is the basis of all Bayes 
posterior information. Researchers learn from the likelihood, not from the prior. 

The family of information similar priors chosen in this manner are non-informative 
to the second order and are of the form;  

( ) 2ln p a b dθ θ θ= + +                         (22) 

where , ,a b d  are constants. Note that this implies an exponential family related class 
of prior distributions from which to choose, which may or may not be conjugate to the 
posterior density. A reasonable restriction on the constants , ,a b d  is to require the 
prior to be well defined. The normal, binomial and Poisson distributions satisfy this 
restriction as do most standard choices for priors. Technically so do flat or highly 
non-informative priors. Distributions with third or higher order polynomials are ruled 
out. 

Some examples of priors that are not acceptable in this setting include;  

( ) ( )
( ) ( )
( ) ( )( )( )

3exp

exp , 3

exp sin

m

p

p m

p g

θ θ

θ θ

θ θ

∝

∝ >

∝

                      (23) 

Note that while focusing here on learning from likelihood, the effect of integration or 
shrinkage may imply some prior effect in the multivariate setting when integrating to 
obtain marginal posteriors. The use of hyperparameters in hierarchical or empirical 
Bayesian settings raise related issues. These are examined in detail elsewhere. 

The Jeffreys prior [25] in large samples achieves such an information similar effect. 
Considering the Bayesian asymptotic result ( )( )1ˆ~ , ,N Jθ θ θ−  the Jeffreys prior can 
be taken as the inverse of the observed variance or Cramer-Rao bound ( )( ) 11J θ

−− . 
This is essentially the inverse of the local curvature of the log likelihood function and 
will behave locally as the inverse of asymptotic variation; it will be relatively flat where 
the likelihood is pronounced. This will be approximately non-informative in the sense 
defined here; it focuses on preserving the local shape of the likelihood about its mode as 
a key element of the shape of the posterior density. 
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Example 

Consider the case of nonlinear regression with Normal error.  

( );i i iy xη β ε= +                           (24) 

where the x are fixed, the ε  are ( )2. . . 0,i i d N σ  and ( )η ⋅  represents the nonlinear 
regression surface. Let β  be a scalar parameter. The Jeffreys prior for this was 
suggested in [26] and is given by;  

( ) ( ) ( )
2

; ;F x F x
p

β β
β

σ

′
=                      (25) 

where ( )F ⋅  is the first order derivative of ( );ixη β  with regard to β , where σ  is 
assumed known or estimated by the MSE. This is acceptable in terms of information 
similarity if it has the property;  

( ) ( )2

2 2

; ;
ln

F x F x
k

β β
β σ

  ′∂    =
  ∂

  

                 (26) 

This implies that nonlinear regression surfaces should not be too complex as a 
function of β  if they enter into the related processing of likelihood based information. 

Multiparameter Settings 
In multiparameter settings, where ( )1, , pθ θ θ=  , this approach provides guidance 

in selecting priors if information matching is applied. The resulting conditions are 
given by; 

( )

( )

( )

2

12
1
2

22
2

2

2

ln

ln

ln .p
p

p k

p k

p k

θ
θ

θ
θ

θ
θ

∂
=

∂

∂
=

∂

∂
=

∂



                         (27) 

where ik  are constants. If symmetry or independence is useful, ( ) ( )1
p

j ijp pθ θ
=

=∏  
can be assumed. With cross derivatives set equal to zero, multiparameter priors can be 
taken with the general form;  

( ) 2ln i i i i ip a b dθ θ θ= + +∑ ∑ ∑                   (28) 

This rules out multivariate prior distributions with factors of θ  that are higher 
order polynomials of θ  or transcendental functions such as  

( ) ( ) ( )( )1ln sin , , sin pp θ θ θ∝                     (29) 

or  

( ) ( )( ) ( )( )( )1exp exp , , exp exp .pp θ θ θ∝               (30) 

This approach to prior selection can be seen as imposing the log-concavity of the 
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likelihood function, which yields a log-concave joint posterior density and risk averse 
behavior as the amount of information increases. Note that the approach given by 
reference priors [2], also reflect the idea of selecting priors to maximize the amount 
learned, but typically averaged over the sample space. A formal Bayesian conditional 
perspective reflecting the observed data is maintained here. 

7. Discussion 

This paper reviews and develops links between several concepts; large sample 
likelihood, expected utility, risk aversion, posterior stability and aspects of prior 
selection. These are broadly defined concepts providing templates for the organization 
and study of behavior and how such behavior is modified in the light of information. In 
relation to the utility and expected utility aspect, it is information itself that is the 
consumed good of interest. In the context of a particular large sample model-data 
combination the Fisher Information and Cramer-Rao information bound are directly 
related to measures of expected utility based risk aversion. 

In large samples the concavity of the log-likelihood of the asymptotic normal density 
allows for use of the likelihood function in relation to the concept of utility and 
expected utility. The Cramer Rao information bound is seen to have a large sample 
relationship in providing bounds on the elasticity of the posterior density and the 
Arrow-Pratt measure of risk aversion. The imposition of information similarity on the 
likelihood-posterior relationship provides direct application of the Fisher Information 
from a learning model perspective. It provides a class of information similar prior 
densities that emphasize likelihood as the source of model-data related information. 

To summarize, the likelihood function is a key element in the processing of infor- 
mation through defined model-data constructs. This is true from various perspectives. 
The possible use of the large sample likelihood function as a utility function itself allows 
for the linking of concepts of risk aversion, as expressed by the Arrow-Pratt measure, 
with statistical information. As well, the implicit learning oriented focus of the Bayesian 
perspective, if focused on the properties of the large sample likelihood, leads to 
restrictions on the type of priors available when information from both Bayesian and 
frequentist perspectives directly reflect the Fisher information. 
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