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Abstract 
In this paper, an alternating direction nonmonotone approximate Newton algorithm 
(ADNAN) based on nonmonotone line search is developed for solving inverse prob-
lems. It is shown that ADNAN converges to a solution of the inverse problems and 
numerical results provide the effectiveness of the proposed algorithm. 
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1. Introduction 

We consider inverse problems that can be expressed in the form 

( )21min
2

Ax b Bxφ− + ,                       (1) 

where ( ), , : ,m n m n mA R B R Rφ× ×∈ ∈ → −∞ ∞  is convex, and mb R∈ . The emphasis of 
our work is on problems where A and B have a specific structure. It can be applied to 
many applications, especially in machine learning [1] [2], image reconstruction [3] [4] 
or model reduction [5]. We assume that the functions in (1) are strictly convex, so both 
problems has an unique solution *x . 

In Hong-Chao Zhang’s paper [6], he uses the Alternating Direction Approximate 
Newton method (ADAN) based on Alternating Direction Method (ADMM) which ori-
ginaly in [7] to solve (1). He employs the BB approximation to increase the iterations. 
In many applications, the optimization problems in ADMM are either easily resolvable, 
since ADMM iterations can be performed at a low computational cost. Besides, com-
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bine different Newton-based methods with ADMM have become a trend, see [6] [8] [9], 
since those methods may achieve the high convergent speed. 

In alternating direction nonmonotone approximate Newton (ADNAN) algorithm 
developed in this paper, we adopt the nonmonotone line search to replace the tradi-
tional Armijo line search in ADAN, because the nonmonotone schemes can improve 
the likelihood of finding a global optimum and improve convergence speed in cases 
where a monotone scheme is forced to creep along the bottom of a narrow curved val-
ley in [10]. 

In the latter context, the first subproblem is to solve the unconstrained minimization 
problems with Alternating Direction Nonmonotone Approximate Newton algorithm. 
The purpose is to accelerate the speed of convergence, and then to project or the scale 
the unconstrained minimizer into the box { }:mw R l w u∈ ≤ ≤ , The second subprob-
lem is a bound-constrained optimization problem. 

The rest of the paper is organized as follows. In Section 2, we give a review of the al-
ternating direction approximate Newton method. In Section 3, we introduce the new 
algorithm ADNAN. In Section 4, we introduce the gradient-based algorithm of the 
second subproblem. A preliminary convergence analysis for ADNAN and gradient- 
based algorithm (GRAD) is given in Section 5. Numerical results presented in Section 6 
explain the effectiveness of ADNAN and GRAD. 

2. Review of Alternating Direction Approximate Newton 
Algorithm 

In this section, we briefly review the well-known Alternating Direction Approximate 
Newton (ADAN) method which has been studied in the areas of convex programming 
and image reconstruction see [4] [6] and references therein. 

We introduce a new variable w to obtain the split formulation of (1): 

( )2

,

1min s. ,  t. ,
2

n m

x w
Ax b w w Bx x R w Rφ− + = ∈ ∈             (2) 

The augmented Lagrangian function associated with (2) is 

( ) ( ) ( )2 21, ,
2 2

L x w Ax b w Bx w Bx wβλ φ λ= − + + − + −           (3) 

where 0β >  is the penalty parameter, mb R∈  is a Lagrangian multiplier associated 
with the constraint w Bx= . In ADMM, each iteration minimizes over x holding w 
fixed, minimizes over w holding x fixed, and updates an estimate for the multiplier b. 
More specifically, if kλ  is the current approximation to the multiplier, then ADMM 
[10] [11] applied to the split formulation (3) is given by the iteration: 

( )1 arg min , ,k k k

x
x L x w λ+ =                        (4) 

( )1 1arg min , ,k k k

w
w L x w λ+ +=                       (5) 

( )1k k k kw Bxλ λ β+ = + −                          (6) 

And (4) can be written as follows: 
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( )1 arg mink

x
x f x+ =  

( )
22 11

2 2
k kf x Ax b Bx wβ β λ−= − + − +                 (7) 

For any Hermitian matrix N NQ R ×∈ , we define 2 ,Qx x Qx= , if Q is a positive de-
finite matrix, then Q•  is a norm. The proximal version of (4) is 

( )1 arg mink

x
x f x+ =  

( )
22 11

2 2
k k k

Q
f x Ax b Bx w x xβ β λ−= − + − + + −            (8) 

In ADAN, the choice TQ I A Aδ= −  will cancel the 
2Ax  term in this iteration 

while 
2Bx  is retained. We replace δ  by kδ , where k Iδ  is a Barzilai-Borwein (BB) 

[8] [12] approximation to TA A . We can observe the fast convergence of BB approxi-
mation in the experiments of Raydan and Svaiter [13]. Moreover, kδ  is strictly smaller 
than the largest eigenvalue of TA A , and T

kQ I A Aδ= −  is indefinite, so the new 
convergence analysis is needed. As a result, the updated version for x given in (4) can 
be expressed as follows: 

( ) ( ) 11 T Targ mink k
kx

x f x x A A B B fβ
−+ = = − + ∇             (9) 

( ) ( )T T 1: k k k k
kf A Ax b B Bx wβ β λ−∇ = − + − +             (10) 

Here, ( ) 1. −
 is the generalized inverse, T TA A B Bβ+  is the Hessian of the objective 

f , and f∇  is the gradient of f  at kx , kg f= ∇ . The formula for 1kx +  in (2) is 
exactly the same formula that we would have gotten if we performed a single iteration 
of Newton’s method on the equation ( ) 0f x∇ =  with starting guess kx . We employ 
the BB approximation T

kA A Iδ≈ , [14] where 

( ) ( ){ }
( )

21 1
min

21

min 21

arg min :

max ,

k k k k
k

k k

k k

A x x x x

A x x

x x

δ δ δ δ

δ

− −

−

−

= − − − ≥

 − =  
− 

 

 

and min 0δ >  is a positive lower bound for kδ . Hence, the Hessian is approximated by 
T

k I B Bδ β+ . Since a Fourier transform can be inverted in ( )logO N N  flops. The in-
version of T

k I B Bδ +  can be accomplished relatively quickly. After replacing TA A  
by k Iδ , the iteration becomes 1k k

kx x d+ = +  where ( ) 1T
k k kd I B B fδ β

−
= − + ∇  

Note that by substituting T
kQ I A Aδ= −  in (2) and solving for the minimizer, we 

would get exactly the same formula for the minimizer as that given in (5). When the 
search direction is determined suitable step size kα  along this direction should be 
found to determine the next iterative point such as 1k k

k kx x dα+ = + . 
The inner product between kd  and the objective gradient at kx  is 

( )2 2,k k k k kf d d Bdδ β∇ = − + . 
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It follows that kd  is a descent direction. Since f  is a quadratic, the Taylor expan-
sion of ( )1kf x +  around kx  is as follows: 

( ) ( ) 21 1 11,
2

k k k k k k
k H

f x f x f x x x x+ + += + ∇ − + −  

where T TH A A B Bβ= +  
Algorithm 1. Nonmonotone Line search 
In this section, we adopt a nonmonotone line search method [9]. The step size kα  is 

chosen in an ordinary Armijo line search which could not admit the more faster speed 
in unconstrained problems [12]. In contrast, nonmonotone schemes can not only im-
prove the likelihood of finding a global optimum but also improve convergence speed. 

Initialization: Choose starting guess 0x , and parameters min max0 1η η≤ ≤ ≤ , 
0 1m σ ρ< < < < , and 0u > . Set ( )0 0C f x= , 0 1Q = , and 0k = . 

Convergence test: If ( )kf x  sufficiently small, then stop. 
line search update: set 1 , 0k k k k kx x d dα+ = + = ,where kα  satisfies either the (non- 

monotone) Wolfe conditions: 

( ) ( ) ,k k k k k k kf x d C m f x dα α+ ≤ + ∇                    (11) 

( ) ( )k k k k k kf x d d f x dα σ∇ + ≥ ∇                        (12) 

or the (nonmonotone) Armijo conditions: kh
kα αρ= , where 0kα >  is the trial step, 

and kh  is the largest integer such that (11) holds and kα µ≤ . 
Cost update: Choose [ ]min max,kη η η∈ , and update 

( )( )1 1 1 11,k k k k k k k k kQ Q C Q C f x Qη η+ + + += + = +               (13) 

Observe that 1kC +  is a convex combination of Ck and ( )1kf x + . Since ( )0 0C f x=  
it follows that Ck is a convex combination of the function values ( ) ( )0 , , kf x f x . The 
choice of kη  controls the degree of nonmonotonicity. If 0kη =  for each k, then the 
line search is the usual monotone Wolfe or Armijo line search. If 1kη =  for each k,  

then k kC A=  where ( )
0

1 ,
1

k

k i i i
i

A f f f x
k =

= =
+ ∑ , is the average function value. The  

scheme with k kC A=  was proposed by Yu-Hong Dai [15]. As kη  approaches 0, the 
line search closely approximates the usual monotone line search, and as kη  ap-
proaches 1, the scheme becomes more nonmonotone, treating all the previous function 
values with equal weight when we compute the average cost value kC . 

Lemma 2.1 If ( ) 0k kf x d ≤  for each k, then for the iterates generated by the 
nonmonotone line search algorithm, we have k k kf C A≤ ≤  for each k. Moreover, if 

( ) 0k kf x d <  and ( )f x  is bounded from below, then there exists kα  satisfying 
either the Wolfe or Armijo conditions of the line search update. 

3. Alternating Direction Nonmonotone Approximate Newton 
Algorithm 

In Algorithm 1, we could get the x at each iteration which can be combined with Algo-
rithm 2. Then, we use the Algorithm 2 to solve the first subproblem in this paper which 
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is an unconstrained minimization problem with ADNAN, then to project or the scale 
the unconstrained minimizer into the box 

( )21min ,
2

n

l w u
Ax b Bx x Rφ

≤ ≤
− + ∈                     (14) 

the iteration is as follows: 

( )1 arg min , ,k k k

x
x L x w λ+ =                       (15) 

( )1 1arg min , ,k k k

l w u
w L x w λ+ +

≤ ≤
=                      (16) 

( )1k k k kw Bxλ λ β+ = + −                         (17) 

Later we give the existence and uniqueness result for (1). 
The solution kw  to (5) has the closed-form means 

( )arg min , ,
k

k k k k

l w u
w L x w b P Bx λ

β≤ ≤

 
= = − 

 
 

with P being the projection map onto the box [ ], .l u  
Algorithm 2. Alternating Direction Nonmonotone Approximate Newton algo-

rithm. 
Parameter: 00.5 1 , 0,0 minγ τ ρ δ δ< < < > < < , Initialize 1.k =  
Step 1: If ( )kf x  sufficiently small, then set 1

1, 0,k k k
k kx x d δ δ+

−= = = , and 
branch to Step 4. 

( ) 21

min 21
max ,

k k

k k k

A x x

x x
δ δ

−

−

 − =  
− 

 

, ( ) 1T .k k kd I B B fδ β
−

= − + ∇  

Step 2: If { }1 min 1, max ,k k k k k kδ α δ α δ δ δ− −> >  then min min .δ τδ=  
Step 3: If kα  accomplish the Wolfe conditions, then max: .kα τα=  
Step 4: Update x which generated from Algorithm 1. 

Step 5: 1 .
k

k kw P Bx λ
β

+  
= − 

 
 

Step 6: ( )1 1 1 .k k k kb b Bx wβ+ + += + −  

Step 7: If a stopping criterion is satisfied, terminate the algorithm, Otherwise k = k + 
1 and go to Step 1. 

Lemma 3.1: we show some criteria that are only satisfied a finite number of times, so 

minδ  converge to positive limits. An upper bound for minδ  is the following: 
Uniformly in k, we have { }min, max ,k k Aδ δ δ τ≤ ≤  where min,kδ  is the value of 

minδ  at the start of iteration k and min,1δ δ=  is the starting minδ  in ADAN. 
Lemma 3.2: If 0k kAd Bd= = , then kx  minimizes ( ).kf x  

4. Algorithm 3: Gradient-Based Algorithm (GRAD) 

Next, we consider the second subproblem which is about bound-constrained optimiza-
tion problem as 



Z. H. Zhang et al. 
 

2074 

( )21min ,
2

n

l x u
Ax b Bx w Rφ

≤ ≤
− + ∈                    (18) 

And the iteration is similar with (4) (5) (6) as follows: 

( )1 arg min , ,k k k

l x u
x L x w λ+

≤ ≤
=                      (19) 

( )1 1arg min , ,k k k

w
w L x w λ+ +=                     (20) 

( )1k k k kw Bxλ λ β+ = + −                        (21) 

Compute the solution kx  from (19), ( )1 1k k kx B P wλ− −= +  
Compute the solution kw  from (20), ( )T T T 1k k kA A B B w A b wβ λ−+ = + +  

Set ( )1k k k kw Bxλ λ β+ = + −  

5. Convergence Analysis 

In this section, we show the convergence of proposed algorithms. Obviously, the proofs 
of the two algorithms are almost the same, and we only prove the convergence of algo-
rithm 2. 

Lemma 3.1: Let L be the function in (3). The vector ( ) [ ]* *, ,nx w R l u∈ ×  solves (2) 
if and only if there exists * nRλ ∈  such that ( )* * *, ,x w λ  solves 

( ) ( ) ( ) ( ) [ ]* * * * * *, , , , , , , , , , .n nL x w L x w L x w x w R l u Rλ λ λ λ≤ ≤ ∀ ∈ × ×  

Lemma 3.2: Let L be the function in (3), ( )* * *, ,x w λ  be a saddle-point of L, Then 
the sequence ( ),k kx w  satisfies ( ) ( )* *lim , ,k k

k
x w x w

→∞
= . 

Theorem 3.1: Let ( ),k kx w  be the sequence of iterates produced by the algorithm 2. 
then *lim kk

x x
→∞

= , *lim kk
w w

→∞
=  and ( )* *,x w  is the optimal point for problem (14) 

Proof From Lemma 3.1, 3.2, we obtain that 
1 0, ll 0i mm ik k k kw w w x+ − = − =                 (22) 

Since we have a unique minimizer in [ ],l u , so we have *lim
k

kx x
→∞

= , Then, (22) 

gives *lim kk
w w

→∞
=  which completes the proof. 

6. Numerical Experiments 
6.1. Parameter Settings 

In Algorithm 2, the parameters β , the penalty in the augmented Lagrangian (3), are 
common to these two algorithms, ADAN and ADNAN. Besides β  has a vital impact 
on convergence speed. We choose 410β −=  based on the results from W. Hager [6]. 
The choice 1.2τ =  is a compromise between speed and stability, min 0.001δ =  is large 
enough to ensure invertibility. 

The search directions were generated by the L-BFGS method developed by No-cedal 
in [16] and Liu and Nocedal in [1]. We choose the step size kα  to satisfy the Wolfe 
conditions with m = 0.09 and σ = 0.9. In addition we employ a fixed value 0.47kη =  
which could get the reasonable results. To obtain a good estimate for the optimal objec-
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tive in (1), we ran them for 100,000 iterations. The optimal objective values for the 
three data sets were 

0.1275
0.2456
0.9627

Ψ =
Ψ =
Ψ =

 

In addition, we timed how long it took ADNAN to reduce the objective error to 
within 1% of the optimal objective value. The algorithms are coded in MATLAB, ver-
sion 2011b, and run on a Dell version 4510U with a 2.8 GHz Intel i7 processor. 

In Algorithm 3, a 256-by-256 gray-scale image was considered, which is compared to 
the experiment by J. Zhang [8]. The dimensions of the inverse problems are m = n = 
65536 and the constraints are l = −∞  and ( )T255, , 255u =  . The experiments on 
image deblurring problems show that GRAD algorithm is also effective in terms of 
quality of the image resolution. 

6.2. Experiments Results 

This section compares the performance of the ADNAN to ADAN. The main difference 
between the ADNAN algorithm and the ADAN algorithm is the computation of 1kx + . 
In ADAN 1k k

k kx x dα+ = +  where kα  is the step size. In ADNAN, x generated from 
Algorithm 1, if the convergence condition in ADAN is satisfied, then the update 

1k k
k kx x dα+ = +  could be performed. Here kδ  is the same choice for them. Hence, 

there seems to be a significant benefit from using a value for kδ  smaller than the larg-
est eigenvalue of TA A . 

The initial guess for 1x , 1w  and 1λ  was zero for two algorithms. Figures 1-3 
show the objective values and objective error as a function of CPU time. Moreover, we 
give the comparison of objective values and objective error versus CPU time/s for dif-
ferent Ψ  conditions. It is observed that ADNAN is slightly stable than ADAN al-
though ADNAN and ADAN are competitive. The ADNAN not only could get more 
smaller objective error but also get more fast convergence speed (see Figure 3). In ad-
dition, ADNAN objective value could get more smaller after a few iterations than 
ADAN. As a whole, the effect of ADNAN is superior to ADAN. 

 

  
Figure 1. 0.1275Ψ = . 
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Figure 2. 0.2456Ψ = . 
 

   
Figure 3. 0.9627Ψ = . 
 

On the other hand, the experiment results about Algorithm 3 are as follows: 
 

Original image                  blurry image                  deblurred image 

 
Figure 4. 255, 0l u= − = . 
 

Original image                  blurry image                  deblurred image 

 
Figure 5. 255, 150l u= − = . 
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Original image                    blurry image                    deblurred image 

 
Figure 6. 255, 200l u= − = . 
 

Original image                    blurry image                    deblurred image 

 
Figure 7. 255, 255l u= − = . 

7. Conclusions 

According to the Figures 1-3, we can conclude that the nonmonotone line search could 
accelerate the convergence speed, furthermore ADNAN could get the objective values 
more stable and fast during the iterations when compared to ADAN. 

On the other hand, the validness of GRAD is verified. Experiments results on image 
deblurring problems in Figures 4-7 show that difference constraints on x can also get 
effective deblurred images. 
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