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Abstract 
Zernike moments (ZMs) are a set of orthogonal moments which have been success-
fully used in the fields of image processing and pattern recognition. A combination 
of edge blurring with ZMs computation was introduced. In this study, several kinds 
of artificial binary stripe images were used to investigate the effects of edge blurring 
on the absolute mean error of reconstructed image from high-order ZMs. After the 
blurring process, the reconstruction errors were increased dramatically at edge pix-
els, but decreased on non-edge pixels. The experimental results demonstrated that 
2-pixel blurring approach provided better performance for reducing reconstruction 
error. Finally, a template matching between two real images was simulated to illu-
strate the effectiveness of the proposed method.  
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1. Introduction 

Zernike moments have been extensively applied and proven successful in the various 
fields of pattern recognition due to the orthogonality of Zernike basis polynomials pro-
viding minimal redundancy [1]. Moreover, the magnitudes of ZMs are not only rota-
tion invariant but also robust to noise. These properties allow ZMs to act the role of 
shape descriptors suitably [2] [3] such as image retrieval [4]. In palm-print authentica-
tion application, computed ZMs serve as a matching utility for each palm-print image 
[5]. This matching utility uses ZMs’ Euclidean distance of query versus registered 
sub-images to create a score determining similarities. Used as global features in face 
recognition, the ZMs are extracted from a face image to reduce the influence of facial 
expressions, head rotation and image noise [6]. Selecting a maximal ZMs order is cru-
cial for the aforementioned applications due to the fact that the higher maximal order 
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used, the higher recognition rate obtained. Thus, more time is required for data 
processing. 

Since calculating ZMs has been sufficiently researched, the focus shifts to improving 
the efficiency for such calculations. Due to multiple factorial and trigonometric func-
tions associated with Zernike basis polynomials, calculating ZMs is a complex and ex-
tensive process [7]. As higher-order ZMs are calculated, the computation time increases 
drastically, and the entire ZMs become unreliable as a result of numerical error accu-
mulation. Hence, computing speed and numerical accuracy attract researchers when 
computing high-order ZMs as they emerge as two research issues. Different recurrence 
relation was proposed to compute either a single ZM or a whole set of ZMs for the 
purpose of improving calculation speed [7]. For numerical accuracy, the computation 
error of high-order ZMs based on q-recursive method was analyzed [8]. The result 
shows finite precision error being propagated and accumulated during the algorithm 
process which leads to ZMs instability. Recently, the proposed method of computing 
ZMs not only provides a fast recursive computation but also yields accurate values of 
high-order ZMs [9]. This algorithm is adopted in the paper to calculate ZMs due to 
these reasons. 

The main purpose of this paper is to explore the effectiveness of image edge blurring 
before the ZMs are computed; this issue is rarely examined in the literatures. Therefore, 
an innovative blurring method on edge pixels was created. 

2. Zernike Polynomials and Zernike Moments (ZMs) 

Zernike moments are constructed using a set of complex basis polynomials which are a 
complete orthogonal set defined on the unit disc D. For a complex number 

i iz x y re θ= + =  ( ,x y  are real numbers, ( ),r θ  represent the polar coordinates and 
1i = − ), the Zernike polynomial is given by 

( ) ( ) ( ) ( ) ( )( )cos sinim
nm nm nmV z R r e R r m i mθ θ θ= = +              (1) 

where ( )nmR r  is the Zernike radial polynomial, n  is a non-negative integer, m  is 
an integer satisfying n m− =  an even number and | |m n≤ . The radial polynomial 
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The Zernike moments nmZ  of order n with repetition m can be regarded as the in-
ner product of ( )f z  with the Zernike polynomials ( )nmV z . The Zernike moments 

nmZ  are defined as 
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where ( )nmV z∗  is the complex conjugate of ( )nmV z  and the area differential 2-form is 



C. Gwo, A. Deng 
 

81 

given by 

2
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.                    (4) 

Let A denote the image set of size N N×  and A(Z) = {(s,t) ∈ A | s, t are integers}. 
The data of the image pixels can be regarded as in a two-dimensional table Px(s,t) for 
(s,t) ∈ A(Z) and can be embedded into the unit disc D in the following way. The pixel 
(s,t) is projected via η  onto the grid centered at 

( ) ( ) 2 1 2 1, , ,
2 2s t

s N t Nx y s t
N N

η  − + − += =  
 

.               (5) 

This results in the corresponding image function ( ) ( ),f z f x y=  over ' ( )A A Dη= ⊆  
for which ( ) ( )( ) ( ), , ,f x y f s t Px s tη= = . The discrete form of the Zernike moments 
in Equation (3) is approximated by 
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With the Zernike moments of an image ( )f z , this image can be reconstructed by 
the following formula. 
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Then the reconstructed image for a non-negative integer order M can be expressed as 

( ) ( )ˆ , ,nm nm
n M m

f x y Z V x y
≤

= ∑ ∑                    (8) 

In comparison, the difference between these two images can be measured by the 
mean absolute error (MAE) expressed in Equation (9) 

( ) ( )ˆ, ,
D

f x y f x y dxdy
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                (9) 

A stable and fast computation of high-order Zernike moments using a recursive me-
thod was proposed in [10]. Such method is applied to calculate Zernike moments in 
this paper. 

3. Reconstruction Error Distribution 
3.1. Artificial Image for Analysis 

Two pattern types of images ( ),f x y  are created with the use of Equation (10) and 
(11) 

( )
 0 127,    

,
 128 255,    

l if x for all y
f x y

h if x for all y
≤ ≤

=  ≤ ≤
            (10) 
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( )
 0 84,    

,  85 170,    
 171 255,    

l if x for all y
f x y h if x for all y

l if x for all y

≤ ≤
= ≤ ≤
 ≤ ≤

           (11) 

where l = 0 and h = 255. Two testing images of N × N pixels, as shown in Figure 1 (N = 
256), are used to demonstrate the error distribution between reconstructed image and 
original image. 

By using Sobel edge detector, the edges of 3-stripe image can be identified at (84, y), 
(85, y) (170, y) and (171, y) for all y. 

3.2. Reconstruction Error Analysis 

Table 1 shows the reconstructed images and the corresponding normalized error image 
of the 3-stripe image with different maximal orders. The mean and the standard deviation 
 

    
(a)                                       (b) 

Figure 1. Testing images. 
 

Table 1. The constructed image and error image with different orders. 

Order 10 50 100 200 300 
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L: (8.598, 27.520) 

M: (−20.420, 51.565) 
R: ( 8.598, 27.520) 

 
L: (2.380, 15.399) 

M: (−4.953, 26.448) 
R: (2.380, 15.399) 

 
L: (1.318, 11.403) 

M: (−2.300, 17.935) 
R: (1.318, 11.403) 

 
L: (0.776, 8.072) 

M: (−0.913, 12.028) 
R: (0.776, 8.072) 

 
L: (0.559, 5.811) 

M: (−0.352, 9.111) 
R: (0.559, 5.811) 
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of the reconstruction error for each stripe are calculated and displayed at the bottom of 
the second row in the table. L, R and M represent left, right and middle stripe of the 
image respectively, and thetwo values in a parenthesesrepresent the mean and standard 
deviation of the corresponding error. These values diminish when the maximal order 
enlarges. One can observe that the error on edges is more pronounced than other areas 
at different order in the error image. 

As the maximal order = 300, the reconstruction errors of two type images are col-
lected at y = 128 and illustrated in Figure 2. From the figure, the value of error increas-
es when the value of x approaches the edge. The same phenomenon occurs for the error 
on the right edge of the two-stripe image. This phenomenon is the result of the intensi-
ty value being 255 for the left stripe on the two-stripe image. That is a kind of white and 
black boundary. Hence, only the odd number of stripes in an image is used to demon-
strate in the rest of this paper. 

In the case of 3-stripe image, the reconstruction errors evaluated at Y = 128 are illu-
strated with different orders in Figure 3. The largest errors occurred on edges where 
the magnitudes of the image gradient are maximum. It shows the same phenomena in 
all different ZMs orders. It is worth noting that the reconstruction error dwindles  
 

 
Figure 2. A comparison of reconstruction error for 2-stripe and 3-stripe images. 

 

 
Figure 3. The reconstruction error with different orders for y = 128. 
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and the oscillation increases in frequency when the error location approximates the 
edge with increasing maximal order of ZMs. 

This behavior is similar to an approximated square wave which is represented by a 
summation of orthogonal basis polynomials. The approximation of the function by a 
finite number of basis polynomials can exhibit overshoot, undershoot and ringing. By 
using more terms in the approximated function, less distinct errors are produced in 
said function. The overshoot at a jump discontinuity does not fade out as more poly-
nomial terms are added to the sum, also known as the Gibbs phenomenon [10]. 

As stated in previous section, Zernike moments have been widely applied in the field 
of pattern recognition. For shape matching or identification, Zernike moments are used 
as invariant descriptors. In the following, we propose our method to raise the effective-
ness of using Zernike moments as shape descriptor. Using the 3-stripe image as an ex-
ample, the blurring procedure is taken first by replacing the intensities of pixels at x = 
84, x = 85, x = 170 and x = 171 by some values different from 0 and 255 with the as-
sumption that the original intensity of pixels on (84, y) and (85, y) for all y are l and h 
respectively. After the blurring process, corresponding new intensities of pixels are re-
placed by (h − l)/3+l and (h − l) × 2/3 + l. A similar procedure is applied to pixels on 
(170, y) and (171, y) for all y. Two and four consecutive pixels blurring methods are 
shown in Figure 4. 

The comparison between absolute reconstruction error at maximal order = 300 of 
two-pixel blurred image and blurless image is presented in Figure 5. This result shows 
that errors are increased at x = 84, 85, 170 and 171 but decreased in other places. 

Let ADi, as shown in Equation (12), be the improvement of the mean absolute error 
of the image which is blurred by the proposed method. 
 

 
Figure 4. Two approaches to blur the boundary. 
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Figure 5. The comparison of absolute reconstruction errors for 2-pixel blurred and blurless images for the case of (0, 255, 0). 

 

100%
i
b

i
MAE MAEAD

MAE
−

= ×                   (12) 

where i
bMAE  is the mean absolute error of the i-pixel blurred image. In the paper, 

2-pixel and 4-pixel blurring approaches are simulated. 

3.3. Performance of ADi 

In this section, two experiments are implemented to evaluate the performance of ADi. 
The difference of intensities on two adjacent stripes is investigated in the first experi-
ment. The second experiment examines the influence of different number of stripes in 
an image on ADi. 

3.3.1. ADi vs. Different Intensity in Stripes 
The intensity difference on two adjacent stripes abates in the succession of images as 
shown in Figure 6. The 3-tuple within parentheses denotes the gray intensity of each 
stripe in the image. 

The reconstruction errors of these images by the proposed edge blurring methods 
with different maximal order are calculated. The ADi results are displayed in Figure 7. 
In the legend, (0, 255)-2 denotes that the 2-pixel blurring method is applied in the 3- 
stripe image whose intensities are 0 and 255 in the adjacent stripes, whereas (0, 255)-4 
denotes that the 4-pixel blurring method is applied in the 3-stripe image whose intensi-
ties are 0 and 255 in the adjacent stripes. 

With the maximal order of 300, the value of ADi is superior to other orders when the 
image is 2-pixel blurred. The value of ADi acquired become less prominent with smaller 
differences in intensities on adjacent stripes. 

3.3.2. ADi vs. Different Number Stripes 
In order to better understand the effect of image stripe numbers on ADi, a series of im-
ages which have different number of equal width stripes are created as shown in Figure 
8. The width of a stripe, distance between two edges, is denoted as Di with i being the  
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Figure 6. Different intensities in stripes. 
 

 
Figure 7. The comparison of ADi for blurred and blurless images with different orders. 
 

 
Figure 8. A series of images with a different number of stripes. 
 

number of stripes in the image. For reference, D3 is about 85 pixels and D31, the largest 
number of stripes in the examination, about 8 pixels. 

The 2-pixel blurring method with the maximal order greater than 50 is applied to 
images as shown in Figure 8. The graph of AD2 with respect to Di is depicted in Figure 
10. When Di is larger than 15, AD2 has the most improvement with applying maximal 
order = 300. However, this is not the case when Di is small. 
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By further analyzing the error of experiment in Figure 9, the pixels are partitioned 
into two groups which are edge pixel group and non-edge pixel group. The MAE is 
calculated with maximal order = 300 for each group separately. The results are shown 
in Figure 10. 

The ratio of MAE for edge pixel group to MAE for non-edge group is drawn in Fig-
ure 11. The figure has a clear indication that 2-pixel blurring method provides a much 
more centralized edge reconstruction error and error reduction in different places than 
4-pixel approach for all Di. 

 

 
Figure 9. The influence of Di on AD2. 

 

 
Figure 10. Di vs. MAE for edge pixel and non-edge pixel groups. 

 

 
Figure 11. Di vs. the ratio of the MAE of edge pixels to the MAE of non-edge pixels. 
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As presented in previous sections, Zernike moments are widely used as the shape 
descriptors in many image applications. Intuitively, the contour information of a shape 
is the most valuable feature. To extract this valuable information, the proposed method 
blurs edge pixels and calculates Zernike moments. Using these results, the characteristic 
of emphasizing information on edges and deemphasizing non edges are obtained thus 
providing the contour information of a shape. 

4. Template Matching 

The purpose of this experiment is to demonstrate the effectiveness of template match-
ing via our purposed method. Two real scene images were taken with camera rotation 
through different position. Different scale images were constructed to detect local ex-
tremea [11] for these two images. These local extrema, depicted by red dots in Figure 
12, are considered as keypoints. Then, the ZMs is calculated around each keypoint to 
represent its own local feature. 

4.1. Feature Extraction 

The local circular image, with a radius of 20 pixels, surrounding a keypoint is extracted. 
Then, ZMs with order = 25 are calculated for all circular images. Due to the rotation 
invariant, the magnitudes of the computed ZMs are taken to serve the feature of a key-
point. In this study, blurring on the edges of an image is considered before taking ZMs. 
For that purpose, Sobel operator is applied to locate the possible edges on these two 
images. The corresponding resultant gradient images are shown in Figure 13. 

The top 10% greatest gradient magnitudes of pixels in a circular image are treated as  
 

  
60 detected keypoints                             71 detected keypoints 

Figure 12. Two images taken with a rotation of the camera, detected keypoints in red. 
 

  
Figure 13. Two gradient images of images in Figure 12. 
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edge pixels. In blurring edge process, the intensity value of edge pixel is replaced by the 
average intensity value of its 8-connected pixels. The comparison of two images, with 
and without blurring edge pixel, is shown in Figure 14. 

4.2. Keypoint Matching 

The Euclidean distance is used to measure the similarity between keypoints on two im-
ages. In order to eliminate unreliable matching pair, the keypoint matching must 
comply with the following criterion: 
 For a certain keypoint, the distance of the second most similar keypoint (D1) di-

vided by the distance of the most similar keypoint (D2) must be less than the given 
threshold. 

Given different thresholds, the number of matched keypoint pairs between two im-
ages are shown in Table 2. The matched pairs for threshold = 0.6 are drawn in Figure 
15. 
 

   
(a)                            (b)                            (c) 

Figure 14. (a) The circular image around a keypoint; (b) Edge points in red color; (c) The circu-
lar image after edge pixels blurred. 
 

  
(a)                                         (b)  

Figure 15. The comparison of matched pairs between blurless image and blurred image. (a) 29 
matched pairs; (b) 29 matched pairs.  
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Table 2. The number of matched keypoint pairs at different thresholds, the number in paren- 
theses for the case of ∞ denoting wrong matched pairs. 

6 Threshold 

D1/D2< 0.4 0.5 0.6 0.7 0.8 0.9 ∞ 

Blurless 1 14 29 46 48 51 51(4) 

Blurred 2 14 34 46 49 51 51(4) 

 
In Figure 15(b), six more keypoint pairs in purple line are matched and one pair in 

green line fail to match when the edge pixels were blurred. From the results, the blur-
ring edge procedure enhances the ZMs for template matching even when the order of 
ZMs is 25. 

5. Conclusion 

This study presents a novel image edge blurring process before evaluating the Zernike 
moments. The experimental results indicate that Zernike moments with the edge blur-
ring of image can perform better than blurless images. In order to make prominent 
characteristic of the blurring edge with high-order ZMs, we will further investigate the 
proposed method on popular image databases in future work, especially in the issue of 
shape identification. 
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