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Abstract 
Willing to work in reliability theory in a general set up, under stochastically depen-
dence conditions, we intend to characterize a not identically spare standby redun-
dancy operation through compensator transform under a complete information lev-
el, the physic approach, that is, observing its component lifetime. We intend to op-
timize system reliability under standby redundancy allocation of its components, 
particularly, under minimal standby redundancy. To get results, we will use a cohe-
rent system representation through a signature point process. 
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1. Introduction 

In reliability theory the main application of redundancy is to allocate a redundant spare 
in a system component position in order to optimize system reliability. For instance, 
see [1]-[8], among others. 

There are two common types of redundancy used in reliability theory, namely active 
redundancy, which stochastically leads to consider maximum of random variables and 
standby redundancy, which stochastically leads to consider convolution of random va-
riables. 

For a k-out-of-n system, [1] considers likelihood ratio ordering and gives sufficient 
conditions to ensure that in a series system the allocation of a standby spare should go 
to the weakest component while in a parallel system it should go to the strongest. Ref-
erence [2] considers the same problem with another criterion of optimality and get the 
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same results. In both above papers, the component lifetimes are stochastically inde-
pendent and the observations are at system level. 

Few papers attained to the case where the components are stochastically dependent. 
Reference [7] analyzes redundancies for a k-out-of-n system of dependent components. 
Reference [6] studies active redundancy allocation for a k-out-of-n system of dependent 
components without simultaneous failures. Reference [5] works a particular form of 
standby redundancy, called minimal standby redundancy, which gives the component 
an additional lifetime as it had just before the failure. For the case of dependent com-
ponents, [5] observes the system at component level and uses the reverse rule of order 2 
(RR2) property between compensator processes to investigate the problem of where to 
allocate a spare in a k-out-of-n system. 

In this paper, we intend to analyze a not identically spare standby redundancy alloca-
tion for a coherent system of dependent components without simultaneous failures, at 
component level, under a coherent system signature point process representation and 
prove that it is optimal to perform standby redundancy on the weakest component of a 
coherent system in order to optimize system reliability. 

In Section 2 we characterize a not identically spare standby redundancy through 
compensator transform for dependent components. In Section 3 we resume mathemat-
ical details of signature point process representation of a coherent system and in Sec-
tion 4 we investigate the best standby redundancy allocation in a dependent compo-
nents coherent system in order to optimize system reliability. 

2. Not Identically Spare Standby Operation through Compensator  
Transform 

We observe that each component in standby redundancy has two phases, standby and 
operation under which they can fail. Depending on component failures characteristics 
during these phases, standby redundancy is classified into the following three types: 

1) Hot standby: Each component has the same failure rate regardless of whether it is 
in standby or in operation. Since the failure rate of one component is unique and is not 
affected by the other components, the hot standby redundancy consists of stochastically 
independent components. 

2) Warm standby: A standby component can fail, but it has smaller failure rate than 
the principal component. 

Failure characteristics of the component are affected by the other, and warm standby 
induces dependent component failures. 

3) Cold standby: Components does not fail when they are in standby. The compo-
nents have non-zero failure rates only when they are in operation. A failure of one 
principal component forces a standby component to start operation and to have a 
non-zero failure rate. Thus, failure characteristics of one component are affected by the 
others, and the cold standby redundancy results in mutually dependent component 
failures. 

In what follows, we consider to observe two lifetimes T and S, which are finite posi-
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tive random variables defined in a complete probability space ( ), , PΩ   through the 
family of sub -algebras ( ) 0t t≥

  of   where 

{ } { }{ }1 ,1 ,0t S s T s s tσ > >= ≤ ≤
 

satisfies Dellacherie’s conditions of right continuity and completeness. We assume that 
( ) 0P S T= = , that is, the lifetimes can be dependent but simultaneous failures are 

ruled out. 
In our general set up and in order to simplify the notation, in this paper we assume 

that relations such as ⫁=, ≤, <, ≠, between random variables and measurable sets, al-
ways hold with probability one, which means that the term P-a.s., is suppressed. 

We recall that a positive random variable T is a t -stopping time if, for every 
0t ≥ , { } tT t≤ ∈ . The t -stopping time T is called predictable if an increasing se-

quence ( ) 0n n
T

≥ , of t -stopping time, nT T<  exists such that, nT T↑  as n ↑ ∞  
and a t  -stopping time T is totally inaccessible if ( ) 0P T S= =  for all predictable 

t -stopping time S. For a mathematical basis of stochastic processes applied to relia-
bility theory see the books of [9] and [10]. 

Generally, standby redundancy gives to the component an additional lifetime. In our 
context the standby operation of S by T is defined as the improvement of S by ( )T S +−  
and denoted by SRS , ( )SRS S T S += + −  where ( )T S T S+− = −  in the set { }T S> , 
and is equal to 0 in the set { }T S≤ . We remark that, the SRS  lifetime interpretations is 
different of a parallel system lifetime, { }max ,T S , which has a null failure rate up to time 

{ }min ,T S . The lifetime SRS  has the failure rate of S before its failure. 
Furthermore, in relation to { }{ }( )

0
1 ,0S s

t
s tσ >

≥
≤ ≤ , and using the Doob-Meyer de-

composition, we consider the predictable compensator processes ( ) 0t t
A

≥ , such that 

{ }1 tT t A≤ −  is a zero mean uniformly integral martingale. Also, in relation to  

{ }{ }( )
0

1 ,0T s
t

s tσ >
≥

≤ ≤ , we consider the predictable compensator processes ( ) 0t t
B

≥ , 
such that { }1 tS t B≤ −  is a zero mean uniformly integral martingale. 

The compensator process is expressed in terms of conditional probability, given the 
available information and generalizes the classical notion of hazard. Intuitively this 
corresponds to produce whether the failure goes to occur now, on the basis of all ob-
servations available up to, but not including, the present. 

The well known equivalence between distributions functions and compensator 
processes follows from [11] and we have ( )lntA F t T= − ∧ , ( )lntB G t S= − ∨ . 
Therefore { }| e tA

tP T t −> =  and { }| e tB
tP S t −> = . 

In the case of independent lifetimes, the survival function of the improved lifetime by 
SRS  is  

( ){ }
( ) ( )( )
( ) { }

0

|

| | e d

e e e 1 .

s

t t t t

t

t B
t t s

A B A B

P S T S t

P S t P T s t s B

+

+ −

− +

+ − >

= > + − > −

= + −

∫



 

 
Therefore the t -compensator of { }1 SRS t≤

 is  
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0

0 0

e d e dln e e 1
e e 1

e d e d .
e e 1 e e 1

sSR
t t

s s

s s

s s s s

B AtA BS s s
t t t t t A B

A B
t ts s

A B A B

B AB A B A B

A B

+ = − + − = −  + −

= +
+ −

+

+ −

+ ∫

∫ ∫
 

In this fashion and preserving the independence case interpretation, we define, for 
dependent lifetimes, the t -compensator of { }1 SRS t≤

 as the sum of the compensator 
transformations of tA , *

tA  and tB , *
tB , with  

*
0

e 1d ,
e e 1

s

s s

Bt
t s s A BA sα α −
= =

+ −∫
 

and  

*
0

e 1d ,
e e 1

s

s s

At
t s s A BB sβ β −
= =

+ −∫
 

We observe that 0 1sα< <  and 0 1sβ< <  implying *
t tA A≤  and *

t tB B≤  getting 
an improvement of the lifetimes.  

Following this thinking, as a predictable compensator is unique we are going to find 
a probability measure under which * * *

t t tC A B= +  is the a t -compensator of { }1 SRS t≤
. 

To proceed we consider the compensator transform 

*
0 0 0

e 1 e ed 1 d d
e e 1 e e 1 e e 1

s s s

s s s s s s

B A A
t t t

t s s t sA B A B A BA A A A A−
= = − = −

+ − + − + −

 
 
 

∫ ∫ ∫ . 

To prove the main Theorem of this section we are going to use the following Lemma: 
Lemma 2.1 Under this section assumptions, the following process 

{ }
0

1 e d
e e 1e 1 e

e e 1

AstT tT sA Bs s

t T T

B A

A A BL
≤

+ −
∫ −

=  + −   
is a nonnegative t -martingale with 1

tAE L  =  . 
Proof We consider the t -stopping time defined by 

{ }inf 0 : or .n t tV t A n B n= ≥ ≥ ≥  

It is sufficient to prove that the process 
{ }

0
1 e d

e e 1e 1 e
e e 1

Ast VT t V nnT sA Bs s
n T Tt

B A

A BA
L

∧≤ ∧

+ −
∫ −

=  + −   
is a bounded t -martingale. 

Note that, for any t -stopping time nV V≤  we can write 

( )0
e d

e e 1
0

e1 e d
e e 1

Ast tsA Bs s
n t tV

AAV
t tA BA

L N A+ −
∫

= − −
+ −∫

 
where { }1t T tN ≤= . The procedure is easy: 

On the set { }V T<  we have 

0 0
e ed d

e e 1 e e 1
0

e1 e d e .
e e 1

A As st Vts sA B A Bs s s s
n t tV

AA AV
tA BA

L A+ − + −
∫ ∫

= + =
+ −∫

 
Otherwise, on the set { }V T≥  
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( )0

0

e d
e e 1

0

e d
e e 1

e1 e d
e e 1

ee 1 .
e e 1

Ast tsA Bs s
n t tV

AsT TsA Bs s

T T

AAV
t tA BA

AA

A B

L N A+ −

+ −

∫

∫

= − −
+ −

 
= − + − 

∫

 
As the integrand 

0
e d

e e 1 ee
e e 1

Ast tsA Bs s

t t

AA

A B
+ −

∫

+ −  
is a t -predictable process and t tN A−  is a t -martingale, n

tA
L  is a t -martingale 

with 1n
tA

E L  =
 

 and we get the result. 
Secondly, we consider the compensator transform  

*
0 0 0

e 1 e ed 1 d d
e e 1 e e 1 e e 1

s s s

s s s s s s

A A Bt t t
t s s t sA B A B A BB A B B B−
= = − = −

+ − + − + −
 
 
 

∫ ∫ ∫
 

and with the same argument used to prove Lemma 2.1 we can prove Lemma 2.2: 
Lemma 2.2 Under this section assumptions, the following process 

{ }
0

1 e d
e e 1e 1 e

e e 1

BstS tS sA Bs s

t S S

A B

B A BL
≤

+ −
∫ −

=  + −   
is a nonnegative t -martingale with 1

tBE L  =  . 
Now, we can write the main theorem: 
Theorem 2.3 Under this section assumptions, the following process 

( ) { } ( ) { }11 e e 1S tT t t t
t t

A B
t A B T SL L L α β ≤≤⋅  = = + −   

is a nonnegative local t -martingale with [ ] 1tE L = .  
Proof. Using Lemma 2.1, Lemma 2.2 and the Stieltjes differentiation rule we have 

0 0
1 d d .

t t s s s ss s

t t
A B A B B B A Bs tL L L L L L L L

− − ≤
− = + + ∆ ∆⋅ ∑∫ ∫  

As by assumption tA  and tB  are continuous with ( ) 0P S T= = , we have 
0

s sA Bs t L L
≤
∆ ∆ =∑ . Therefore 

t tA BL L⋅  is a nonnegative local t -martingale with 
1

t tA BE L L  = ⋅  and the theorem is proved. 
We are looking for a probability measure Q, such that, under Q, * * *

t t tC A B= +  be-
comes the a t -compensator of { }1 SRS t≤

 with respect to this modified probability 
measure. 

Under certain conditions, it is possible to find Q. Indeed assume that the process tL  
is uniformly integrable. Then it follows from Girsanov Theorem, see [10], a well know 
result on point process martingales, that the desired measure Q is given by the Radon  

Nikodyn derivative 
d
d
Q L
P ∞= . The random variable L∞  is given by 

{ } { }

( )( ) ( )( )
( ) ( )

11
e 1 e 1 e e 1

e e 1 e e 1

e 1 e 1

e e 1

S tT t ST
ST

T T S S

S T S T

S T S T

AB
BA

A B A B

B A

A B

L
≤≤

∧ ∧

∧ ∧

∞

  − −  = + −    + − + −   

− −
=

+ −  
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where { }min ,S T S T∧ = . 
Remark 2.4. In reference to the first paragraph of this section, in the above setting 

we can identify the measure L∞  with warm standby in which case the component in 
standby can fail before the component in operation. 

In the case of cold standby redundancy, T does not fail before S, we can consider S < 
T and we have 

( ) ( )e 1 e 1
.

e e 1

S S

S S

B A

A BL∞

− −
=

+ −  
In the case where T and S are identically distributed, we have t tA B=  and the com-

pensator transform is given by 

*
0 0

e 1 2 2e2 d d
2e 1 2 e

s s

s s

A At t
t s sA AA A A

−

−

− −
=

− −
=∫ ∫

 

which can be used to define a standby redundancy through compensator transform 
when the standby component and the component in operation are stochastically de-
pendent but identically distributed as in [6]. 

3. Results in Signature Point Process 

Due its importance we present these results in this section which appear in [12]. In our 
general setup, we consider the vector ( )1 2, , , nT T T  of n components lifetimes which 
are finite and positive random variables defined in a complete probability space 
( ), , PΩ   with ( ) 1i jP T T≠ =  for all , ,i j i j≠  in { }1, ,C n=  , the index set of 
components. Therefore, the lifetimes can be dependent but simultaneous failures are 
ruled out. 

The evolution of components in time define a marked point process given through 
the failure times and the corresponding marks. We denote ( ) ( ) ( )1 2 nT T T< < <  the or-

dered lifetimes 1 2, , , nT T T  as they appear in time and by ( ){ }:i jiX j T T= =  the cor-

responding marks. As a convention we set ( ) ( )1 2n nT T+ += = = ∞  and 

1 2n nX X e+ += = =  where e is a fictitious mark not in C the index set of the compo-
nents. The sequence ( )( )

1
, nn n

T X
≥

 defines a marked point process. 
The mathematical description of our observations, the complete information level, is 

given by a family of sub σ algebras of, denoted by ( ) 0t t≥
 , where 

( ){ }1 , ,1 , ,0
i s

t iT
X j i n j C s tσ

>

 = = ≤ ≤ ∈ < ≤ 
 

 , 

satisfies the Dellacherie conditions of right continuity and completeness. 
Intuitively, at each time t the observer knows if the event ( ){ }, iiT t X j≤ =  have ei-

ther occurred or not and if it had, he knows exactly the value ( )iT  and the mark iX . 
We consider, conveniently, the lifetimes ( ),i jT  defined by the failure event 

( ){ }, iiT X j=  with their sub-distribution function, suitable standardized 

( ) ( ) ( )( ), , .ii j iF t P T t X j= ≤ =
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The behavior of the point process ( )| tP T t≤ ℑ , as the information flows conti-
nuously in time is given by the following theorem: 

Theorem 3.1 Let 1 2, , , nT T T  be the component lifetimes of a coherent system with 
lifetime T. Then, 

( )
( ){ } ( ){ } ( ){ } ( ){ }, ,1 1 1| 1 1 1 1 .
k j K J k k

n n n
t k j kT T T t T T T t

P T t
= = == ≤ = ≤

≤ = =∑ ∑ ∑
 

Proof. From the total probability rule we have  

( ) { } {( )
( ){ } ( ){ }1 1

| | 1 |1
k k

n n
t k t tk k T T T t

P T t P T t T T E
= = = ≤

 = ≤ ℑ = ≤ = ℑ = ℑ  
∑ ∑

 
As T and ( )kT  are t -stopping time and it is well known that the event  

( ){ } ( )kTkT T= ∈  where  

( ) ( ){ }{ }: , 0
kT tkA A T t t∞= ∈ℑ ≤ ∈ℑ ∀ ≥ , 

we conclude that ( ){ } ( ){ }k kT T T t= ≤  is tℑ - measurable. Therefore  

( )
( ){ } ( ){ } ( ){ } ( ){ }1 1

| 1 1|1 1
k k k k

n n
tk kT T T t T T T t

P T t E
= == ≤ = ≤

 ≤ ℑ = ℑ =  
∑ ∑ . 

The above decomposition allows us to define the signature process at component 
level. 

Definition 3.2 The vector 
( ){ },

1 ,1 ,
k jT T

k j n
=

 ≤ ≤ 
 

 is defined as the marked point 

signature process of the system 𝛷𝛷. 
Remark 3.3 We note that the above representation can be set in two way. We would 

prefer the one which preserves the component index because, by example, we could talk 
about the reliability importance of component j for the system reliability at the k-th 
failure. 

Also, as ( ) 0i jP T T= =  for all ,i j , the collection ( ){ }{ }, ,1 ,1k jT T k n j n= ≤ ≤ ≤ ≤  
form a partition of Ω and 

( ){ },11 1.
k j

n
k T T= =

=∑  Therefore 

( )
( ){ } ( ){ } ( ){ }

( ){ } ( ){ }

( ){ } ( ){ }

, , ,

, ,

, ,

1 1 1 1

1 1

1 1

| 1 1 1

1 1 1

1 1

k j k j K J

k j K J

k j K J

t T T T T T t

T T

n n n n
k j k j

n n
k j

n

T t

T

n
k T T tj

P T t
= = = ≤

= ≤

=

= = =

= =

= >=

=

> = −

 −  

=

∑ ∑ ∑ ∑

∑ ∑

∑ ∑



 
Remark 3.4 Using Remark 3.3 we can calculate the system reliability as 

( ) ( )
( ){ } ( ){ }

( ){ } ( ){ }( )
, ,1

1 1 ,

1

,

| 1 1
k j K J

n n
k j

n

t T T T

n
k j

t

k j K J

P T t E P T t E

P T T T t

= =

= =

= >

  > = > =    

= = >

∑ ∑

∑ ∑ 



 
If the component lifetimes are continuous, independent and identically distributed 

we have, 

( ) ( )( ) ( )( )
1

,
n

k k
k

P T t P T T P T t
=

> = = >∑  
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recovering the classical result as in [13]. 
Remark 3.5 The marked ( )( )

( ){ },
, 1

ii
t T t X j

N i j
≤ =

=  is a t  -sub-martingale, that is, 

( ),i jT  is t  -measurable, integrable, and ( )( ){ } ( )( ), | ,t s sE N i j N i j≥  for all 
0 s t≤ ≤ .  

Follows that, from Doob-Meyer decomposition, there exists an unique t  predictable 
process, ( )( )( )

0
,t t

A i j
≥

, ( )( )0 , 0A i j = , called the t -compensator of ( )( ),tN i j , such 
that ( )( ) ( )( ) ( )( ), , ,t t tM i j N i j A i j= −  is a zero mean uniformly integrable t
-martingale. We assume that ( )( )( )

0
,t t

A i j
≥

 are absolutely continuous t -compensators 
processes and that ( ),i jT  are totally inaccessible t -stopping times. 

The t -compensator of { }1 T t≤  where T is the system lifetime is set in the following 
theorem: 

Theorem 3.6 Let 1 2, , , nT T T , be the component lifetimes of a coherent system with 
lifetime T. Then, under the above hypothesis and notation, the t  -sub-martingale 
( )| tP T t≤  , has the t -compensator 

( ){ } ( )( )
,0

1 1
1 d , .

k j

n n t
sT T

k j
A k j

=
= =
∑∑∫

 
Proof. We consider the process 

( ){ } ( )
( ){ } ( )

, ,
1 , 1 .

k j k jT T T T
w s w

= =
=

 
It is left continuous and t  -predictable. Therefore  

( ){ } ( ) ( )( )
,0

1 d ,
k j

t
sT T

s M k j
=∫

 
is a t -martingale. As a finite sum of t -martingales is a t -martingale 

( ){ } ( )( )

( ){ } ( )( )
( ){ } ( )( )

,

, ,

0
1 1

0 0
1 1 1 1

1 d ,

1 d , 1 d , .

k j

k j k j

n n t
sT T

k j

n n n nt t
s sT T T T

k j k j

M k j

N k j A k j

=
= =

= =
= = = =

= −

∑∑∫

∑∑ ∑∑∫ ∫
 

is a t -martingale. As the compensator is unique we get the result. 

4. Standby Redundancy in a Coherent System of Dependent  
Components 

We are concerned with the problem of where to allocate a spare component using 
standby redundancy in a coherent system in order to optimize system reliability im-
provement. We let ( )T = Φ T  be the lifetime of a coherent system with component 
lifetimes ( )1 2, , , nT T T=T  , ( ) 0i jP T T= = , for all ,1 ,i j i j n≠ ≤ ≤  under the hypo-
thesis and notation of Section 3. Furthermore, let ( )1 1 1, , , , , ,i

i i i nT T T T S T T− += Φ +   
be the systems lifetime resulting from an standby redundancy operation of component i 
through a spare with lifetime S, not identically distributed as iT . In particular we count 
this system failure through { }1 i

i
t T t

N
≤

=  a counting process with t -compensator 
,1i

tA i n≤ ≤ . To compare the systems lifetime resulting from redundancy operations we 
are going to compare the component point processes compensators through cumula-
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tive hazard order as in [14] 
Definition 4.1 Consider two point processes, TN  corresponding to the component 

lifetimes vector T defined in a complete probability space ( ), , TPΩ   and SN , in re-
lation to the component lifetimes vector S possibly defined on a different probability 
space, with corresponding continuous compensator processes 

( ) [ [
0 1 1| , , , 1o ;,n

nt t t t t n nA n A T T
− −=

  

( ) [ [
0 1 1| , , , 1o ;,n

mt t s s s m mB m B S S
− −=

  

which are, TP  almost surely, continuous in t. If for all { }1 1max ,n mt t s− −≥  and 
( ) ( ), t tn m A n B m≤ ≤  for all 0 1 1 0 1 10 ,0n ns s s t t t− −= < < < = < < <   and  

,0 1i is t i n≤ ≤ ≤ − , we say that S is smaller than T in the cumulative hazard order, de-
noted by ch≤S T . 

Also, we are going to use the following result from [15]. 
Theorem 4.2 Consider two point processes, TN  corresponding to the component 

lifetimes vector T defined in a complete probability space ( ), , TPΩ   and SN , cor-
responding to the component lifetimes vector S possibly defined on a different proba-
bility space. If S is smaller than T in cumulative hazard order, ch≤S T , then 

( ) ( )
T TP T P SE N E Nψ ψ ≤      

for all decreasing real and right continuous function with left hand limits 𝜓𝜓, which im-
plies st

T SN N≤ . 

4.1. Minimal Standby Redundancy in a Coherent System of Dependent  
Components 

In this first subsection we resume the results from [5] intending to present a generaliza-
tion of the main theorem from a k-out-of-n system to coherent systems. Intuitively, a 
minimal standby redundancy gives to the component an additional lifetime as it had 
just before the failure. 

In a random environment where the component 𝑖𝑖 is affected by the behavior of 
other components, [5] find a compensator approach for minimal standby redundancy 
considering the Girsanov’s theorem argument where the component compensators 
process ( )tA i  of ( )tN i  is transformed through 

( ) ( ) ( )
0

d ,
t

t s sB i i A iα= ∫  

with ( ) ( )
( )1

s
s

s

A i
i

A i
α =

+
 and ( ) 1s jα =  for j i≠ . 

The result is: under the measure Q defined by the Radon Nikodin derivative 

( )d
d iT
Q A i
P
= , ( )tB i  is the component compensator transform of ( ) ,1tN i i n≤ ≤ . 

Observe that 

( ) ( )
( ) ( ) ( ) ( )( )

0
d ln 1 ,

1
t s

t s t t
s

A i
B i A i A i A i

A i
= = − +

+∫
 



V. da Costa Bueno 
 

498 

and, in the absolutely continuous case, where ( ) ( )ln |t i tA i P T t= − >  , [11], we can 
recover, in the independence case, the classical expression 

( ) ( ) ( ) ( )ln .i i i iP T S t F t F t F t+ > = − ⋅  
Recovering our setting, let ( )1 1 1, , , , , ,i

i i i nT T T T S T T− += Φ +  , the system lifetime 
resulting from an minimal standby redundancy operation of the lifetime iT , of com-
ponent i. We count this system failure through { }1 i

i
t T t

N
≤

=  a counting process with 

t -compensator ,1i
tA i n≤ ≤ . 

Theorem 4.1.1 Let be let ( )T = Φ T  be the lifetime of a coherent system with com-
ponent lifetimes ( )1 2, , , nT T T=T  , ( ) 0i jP T T= = , for all ,1 ,i j i j n≠ ≤ ≤ . Under a 
minimal standby redundancy operation, the hypothesis and notation of Section 3, if 

( ) ( ) ,1t tA i A j i j n≥ ≤ < ≤ , then ,1i st j
t tN N i j n≤ ≤ < ≤ . 

Proof From Theorem 3.6 we have to compare system’s compensators expectation 
values on the form 

( ){ } ( )( )
( ){ } ( )( )

( ){ } ( )( )
, , ,

1

1 1 1 1 1
1 , 1 , 1 , .

k j k i k j

n i n n n
i
t t t tT T T T T T

k j k k j i
A A k j A k i A k j

−

= = =
= = = = = +

= + +∑∑ ∑ ∑∑
 

for 1 i n≤ ≤  where the notation ( )( ),tA k j  means the restriction of ( )tA j , to the 
interval ] ]1,k kT T− . Clearly, it is sufficient to prove for 1i =  and 2j = . 

( ){ } ( )( ) ( )( )( )
( ){ } ( )( )

( ){ } ( )( )
( ){ } ( )( ) ( )( )( )

( ){ } ( )( )

( )( )( ) ( )( )( ) ( )( ) ( )( )

,1 ,

,1 ,2

,

1

1 1 2

1 1

2

1 3

1 ,1 ln 1 ,1 1 ,

1 ,1 1 , 2 ln 1 , 2

1 ,

ln 1 ,1 ln 1 , 2 ,1 , 2 .

k k j

k k

k j

n n n

t t t tT T T T
k k j

n n

t t tT T T T
k k

n n

t tT T
k j

t t t t

A A k A k A k j

A k A k A k

A k j A

A k A k A k A k

= =
= = =

= =
= =

=
= =

 = − + + 

  ≤ + − +   

+ =

↔ − + ≤ − + ↔ ≥

∑ ∑∑

∑ ∑

∑∑

 

The final result follows from Theorem 4.2 

4.2. Standby Redundancy in a Coherent System of Dependent  
Components 

In what follows we consider an unique spare with lifetime S, as in Section 2, with com-
pensator processes ( ) 0t t

B
≥ , such that { }1 tS t B≤ −  is a zero mean uniformly integral 

martingale, to be allocated between the components, in order to optimize system relia-
bility: 

Theorem 4.2.1 Let be let ( )T = Φ T  be the lifetime of a coherent system with 
component lifetimes ( )1 2, , , nT T T=T  , ( ) 0i jP T T= = , for all ,1 ,i j i j n≠ ≤ ≤ . Un-
der standby redundancy and the hypothesis and notation of Section 3, if  

( ) ( ) , 1t tA i A j i j n≥ ≤ < ≤ , then ,1i st j
t tN N i j n≤ ≤ < ≤ . 

Proof. Follows, from Section 2, that the standby redundancy through compensator 
transform of the component i by a spare with compensator tB  is 

0

e d e d ln e e 1 .
e e 1

sSR
t t

s s

B At A BS s s
t t t t tA B

B AB A B A B+  = − = − += −+ −
+ ∫
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Clearly, it is sufficient to prove for 1i =  and 2j = . 

( ){ } ( )( ) ( )( )( )
( ){ } ( )( )

( ){ } ( )( )
( ){ } ( )( ) ( )( )( )

( ){ } ( )( )

,1 ,

,1 ,2

,

,11

1 1 2

,2

1 1

2

1 3

1 ,1 ln e e 1 1 ,

1 ,1 1 , 2 ln e e 1

1 ,

t t

k k j

t t

k k

k j

n n n
A k B

t t t tT T T T
k k j

n n
A k B

t t tT T T T
k k

n n

t tT T
k j

A A k B A k j

A k A k B

A k j A

= =
= = =

= =
= =

=
= =

 = + − + − +  

  ≤ + + − + −    

+ =

∑ ∑∑

∑ ∑

∑∑
 

( )( )( ) ( )( )( ) ( )( ) ( )( )ln 1 ,1 ln 1 , 2 ,1 , 2 .t t t tA k A k A k A k↔ − + ≤ − + ↔ ≥
 

The final result follows from Theorem 4.2. 
As by hypothesis, ( ) ( ) ,1t tA i A j i j n≥ ≤ < ≤  we are considering component i 

weaker than component j in the sense that the hazard process for failure of component 
i is larger than the hazard process for failure of component j, its also implies that iT  is 
stochastically less than jT . Therefore, under Theorem 4.2.1 we understand that, at 
component level, it is optimal to perform active redundancy allocation on the weakest 
component of a coherent system of continuous dependent components with no simul-
taneous failures. 

We can, also consider two spares with lifetimes 1S  and 2S , { }1
1 S t≤  with t

-compensator ( )1tB  and { }2
1 S t≤  with t -compensator ( )2tB , to be allocated be-

tween the components, in order to optimize system reliability. The following corollary 
can be easily proved using the same argument of Theorem 4.2.1. 

Corollary 4.2. Let be let ( )T = Φ T  be the lifetime of a coherent system with com-
ponent lifetimes ( )1 2, , , nT T T=T  , ( ) 0i jP T T= = , for all ,1 ,i j i j n≠ ≤ ≤ . Under 
standby redundancy and the hypothesis and notation of Section 3, if  

( ) ( ) ,1t tA i A j i j n≥ ≤ < ≤  and ( ) ( )1 2t tB B≥ , then ,1i st j
t tN N i j n≤ ≤ < ≤ , where 

( )1 1 1, , , , , , .i
i i i nT T T T S T T− += Φ +   

5. Conclusions 

An efficient method to optimize the reliability of a coherent system is to add redun-
dancy components to the system. Therefore it is very significant to know about the al-
location which best optimizes system reliability. 

In the last decade, many researchers devoted themselves to this topic, in general ana-
lyzing k-out-of-n systems and following a natural and classical approach: considering 
that the components lifetimes were stochastically independent and to observing the 
system at its level through 

{ }{ }1 0t T s s tσ >= ≤ ≤
 

Few papers attempt to the case where the components are stochastically dependent 
without simultaneous failures. [5] and [6] consider stochastically dependent compo-
nents lifetime and observe the complete information at components’ level 

{ }{ }1 ,0 ,1
it T s s t i nσ >= ≤ ≤ ≤ ≤
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getting results for k-out-of-n systems. 
With recent results in signature theory and its extension to a signature point process, 

we generalize results from k-out-of-n to coherent systems, particularly for minimal 
standby redundancy and standby redundancy. 

It is also important to note the characterization of standby operation results with not 
identically spare. The discussion about this new approach and the classical one can be 
set comparing results of ( )| tP T t>   with ( )| tP T t>  . We conclude that, at 
component level, it is optimal to perform active redundancy allocation on the weakest 
component of a coherent system of continuous dependent components with no simul-
taneous failures when using the hazard rate ordering between the components life-
times. 
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