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Abstract 
This work is dedicated to the promotion of the results C. Muntz obtained modifying 
zeta functions. The properties of zeta functions are studied; these properties lead to 
new regularities of zeta functions. The choice of a special type of modified zeta func-
tions allows estimating the Riemann’s zeta function and solving Riemann Problem- 
Millennium Prize Problem. 
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1. Introduction 

In this work we are studying the properties of modified zeta functions. Riemann’s zeta 
function is defined by the Dirichlet’s distribution 
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absolutely and uniformly converging in any finite region of the complex z-plane, for 
which 1 , 0.σ δ δ≥ + >  If 1σ >  the function is represented by the following Euler 
product formula 
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where p is all prime numbers. ( )zς  was firstly introduced by Euler [1] in 1737, who 
decomposed it to the Euler product formula (2). Chebyshev [2], studying the law of 
prime numbers distribution, had considered this function. However, the most pro-
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found properties of the function ( )zς  had only been discovered later, when the func-
tion had been considered as a function of a complex variable. In 1876 Riemann [3] was 
the first who showed that: 

( )zς  allows analytical continuation on the whole z-plane in the following form 

( ) ( ) ( )( ) ( )( ) ( )1 22 2
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where ( )zΓ —gamma function. 

( ) ( )2
1exp πnx n xθ ∞

=
= −∑ . 

( )zς  is a regular function for all values of z, except z = 1, where it has a simple pole 
with a deduction equal to 1, and satisfies the following functional equation 

( ) ( ) ( ) ( )( ) ( )1 22π 2 π 1 2 1sz z z z zς ς− −− Γ = Γ − −                (4) 

This equation is called the Riemann’s functional equation. 
The Riemann’s zeta function is the most important subject of study and has a plenty 

of interesting generalizations. The role of zeta functions in the Number Theory is very 
significant, and is connected to various fundamental functions in the Number Theory 
as Mobius function, Liouville function, the function of quantity of number divisors, and 
the function of quantity of prime number divisors. The detailed theory of zeta functions 
is showed in [4]. The zeta function spreads to various disciplines and now the function 
is mostly applied in quantum statistical mechanics and quantum theory of pole [5] [6] 
[7]. Riemann’s zeta function is often introduced in the formulas of quantum statistics. 
A well-known example is the Stefan-Boltzman law of a black body’s radiation. The giv-
en aspects of the zeta function reveal global necessity of its further investigation. 

The most significant contribution to the study of zeta functions is found in the re-
sults obtained by Muntz [8]. 

Muntz generalized all the results from the studies of zeta functions’ analytical prop-
erties. He noticed that all the properties can be integrated in one theory, which is called 
the Muntz theorem for zeta functions. 

Our goal is to use this theorem on the analogs of zeta functions. We are interested in 
the analytical properties of the following generalizations of zeta functions: 
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( ) ( ) ( )m m
p z z P zς ς= −                      (8) 

where p are prime numbers. The forms of the given function (5)-(8) allow assuming 
that they possess the same properties as the zeta function (1), but it is not quite obvious, 
considering 
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we see the necessity of analyzing (5)-(8) functions for a deeper understanding of the 
properties of zeta functions. 

2. Results 

These are the well-known results obtained by Muntz for the zeta function. 
Theorem 1. Let the function ( )F x  be limited on every finite interval and have an 

order , 1,x α α− >  ( )F x  is continuous and limited on every finite interval and has an 
order , 1,x β β− >  then this equation holds 
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Let N be the set of all natural numbers and mNP —the set of all prime numbers 
greater than m, \m

p mN N NP= —the set of all natural numbers without the prime 
numbers greater than m. 

Below we will always let m > 3, this limitation is introduced only to simplify the cal-
culations. Considering all the information above let us rewrite 
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For the function ( ) ( ) ( )m m
p z z P zς ς= − , let us apply the results obtained by Muntz 

for the zeta function representation. With the help of the given definitions we formu-
late the analog of Muntz theorem. 

Theorem 2. Let the function F(x) be limited on every finite interval and have an or-
der , 1,x α α− >  

( )F x  is continuous and limited on every finite interval and has an order 
, 1x β β− > , ( ) 0F ≥ , then the following equation holds for the function ( )m

p zς  
Muntz formula is true. 

( ) ( ) ( ) ( ) ( )1 1

0 0 0

01d d d
m
p

m z z
p

n N

z x F x x x F nx F v v x
x x

µ
ς

+∞ +∞ +∞
− −

∈

 
=  − + 

  
∑∫ ∫ ∫        (11) 

( )
( )

( )

( )
1

1

1 d
2

x p

p m x p

x F v vµ
+

> −

= ∑ ∫                                         (12) 

PROOF: According to the theorem conditions we have 
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After the substitution of variables nx = y we can rewrite 
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The last steps are true and result from the theorem conditions and Weierstrass theo-
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rem of uniform convergence of improper integrals. Let us introduce the functions 
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According to the theorem conditions we have 
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Applying the theorem conditions we have 
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Substituting the variablles of the last part 
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Calculating we obtain the following 
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According to the result above we obtain 
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Using the properties of defined integrals and subintegral function positivity, we have 
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From the result above it follows that 
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According to the Muntz theorem, we have 
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Finally, after the substitution of variables we have 
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From the last equation we obtain the Muntz formula. From which we have the regu-
larity of the function ( )m

p zς  as z satisfied ( )1 2 Re 1.z< <  
Theorem 3. The Riemann’s function has nontrivial zeros only on the line 
( )Re 1 2z = ; 
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Applying the Muntz formula from the theorem 2 
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estimating by the module 

( )( ) ( ) ( ) ( ) ( )ln 2 .m
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Estimating the zeta function, potentiating, we obtain 

( )( ( )) ( )) ( ) ( )exp 2m
p mz z z R z P zς ς ς ≥ − − − −               (31) 

According to the theorem 1 ( )zς  limited for z from the following multitude 

( ), , 1 , 0z z R z δ δ< > + >                       (32) 

similarly, applying the theorem 2 for ( ))m
p zς  we obtain its limitation in the same 

multitude. For the function ( )2R z  we have a limitation for all z, belonging to the 
half-plane ( )Re 1 2 1z R> + . Similarly, applying the theorem 2 for ( )m

p zς  we obtain 
its limitation in the same multitude and finally we obtain: 

( ) [ ] ( )exp , Re 1 2 1 , , 1 , 0Rz C z R z R zς δ δ≥ − > + < > + >        (33) 

These estimations for ( ) ( ) ( ), 2 , mP z R z P z  prove that zate function does not have 
zeros on the half-plane ( )Re 1 2 1z R> +  due to the integral representation (3) these 
results are projected on the half-plane ( )Re 1 2z <  for the case of nontrivial zeros. 
The Riemann’s hypothesis is proved. 

3. Conclusion 

In this work we obtained the estimation of the Riemann’s zeta function logarithm out-
side of the line ( )Re 1 2z =  and outside of the pole z = 1. This work accomplishes all 
the works of the greatest mathematicians, applying their immense achievements in this 
field. Without their effort we could not even attempt to solve the problem. 

Acknowledgements 

The author thanks S.N. Baibekov for introducing the prime numbers to the proble- 
matics in the collective article [9]. Without this the work would be impossible. 



A. A. Durmagambetov 
 

920 

References 
[1] Euler, L. (1988) Introduction to Analysis of the Infinite. Springer-Verlag, Berlin.  

https:/doi.org/10.1007/978-1-4612-1021-4 

[2] Chebyshev, P.L. (1946) Selected Mathematical Works. Gostekhizdat, Moscow. [In Russian]  

[3] Riemann, G.F.B. (1972) On the Number of Prime Numbers Less than a Given Quantity. 
Chelsea, New York. 

[4] Titchmarsh, E.C. (1986) The Theory of the Riemann Zeta Function. 2nd Revised (Heath- 
Brown) Edition, Oxford University Press, Oxford.  

[5] Ray, D. and Singer, I.M. (1971) R-Torsion and the Laplacian on Riemannian Manifolds. 
Advances in Mathematics, 7, 145-210. https:/doi.org/10.1016/0001-8708(71)90045-4 

[6] Bost, J.-B. (1987) Fibres determinants, determinants regularises et measures sur les espaces 
de modules des courbes complexes. Séminaire Bourbaki, 152-153, 113-149. 

[7] Kawagoe, K., Wakayama, M. and Yamasaki, Y. (2008) The q-Analogues of the Riemann 
zeta, Dirichlet L-Functions, and a Crystal Zeta-Function. Forum Mathematicum, 20, 126.  
https:/doi.org/10.1515/FORUM.2008.001 

[8] Müntz, Ch.H. (1992) Beziehungen der Riemannschen ζ-Funktion zu willkurlichen reellen 
Funktionen. Matematisk Tidsskrift. B, 39-47. 

[9] Baibekov, S.N. and Durmagambetov. A.A. (2016) Infinitely Many Twin Primes.  
arXiv:1609.04646 [math.GM] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service 
for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact apm@scirp.org 

https://doi.org/10.1007/978-1-4612-1021-4
https://doi.org/10.1016/0001-8708(71)90045-4
https://doi.org/10.1515/FORUM.2008.001
http://papersubmission.scirp.org/
mailto:apm@scirp.org

	The Riemann Hypothesis-Millennium Prize Problem
	Abstract
	Keywords
	1. Introduction
	2. Results
	3. Conclusion
	Acknowledgements
	References

