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Abstract 
We study the damage probability when M weapons are used against a unitary target. 
We use the Carleton damage function to model the distribution of damage probabil-
ity caused by each weapon. The deviation of the impact point from the aimpoint is 
attributed to both the dependent error and independent errors. The dependent error 
is one random variable affecting M weapons the same way while independent errors 
are associated with individual weapons and are independent of each other. We con-
sider the case where the dependent error is significant, non-negligible relative to in-
dependent errors. We first derive an explicit exact solution for the damage probabil-
ity caused by M weapons for any M. Based on the exact solution, we find the optimal 
aimpoint distribution of M weapons to maximize the damage probability in several 
cases where the aimpoint distribution is constrained geometrically with a few free 
parameters, including uniform distributions around a circle or around an ellipse. 
Then, we perform unconstrained optimization to obtain the overall optimal aim-
point distribution and the overall maximum damage probability, which is carried out 
for different values of M, up to 20 weapons. Finally, we derive a phenomenological 
approximate expression for the damage probability vs. M, the number of weapons, 
for the parameters studied here. 
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1. Introduction 

The probability of killing or damaging a target depends heavily on how close a weapon 
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is delivered to the target. This delivery accuracy of a weapon may be affected by many 
components. In general, the errors are usually divided into two main groups: the de-
pendent error and independent errors. The dependent error is related to the aiming er-
ror that results from a miscalculation of latitude, longitude, distance, wind effect, or 
uncertainty in locating the target position. The dependent error results in the arma-
ment impacting away from the desired target point and it affects all weapons the same 
way. The independent errors refer to ballistic dispersion errors, which may result from 
variations in bullet shape, variations in gun barrels, or variations in amount of explo-
sive used inside each bullet [1]. 

Due to many uncertainties in the field of weapon effectiveness, Monte Carlo simula-
tions have been widely employed to estimate the probability of target damage [2]. Even 
though Monte Carlo simulations can provide reasonable estimates, exact solutions are 
mathematically more attractive and practically more useful. The objectives of this paper 
are: i) to derive explicit exact solution for the damage probability caused by multiple 
weapons against a single target, ii) to use the exact solution to maximize the damage 
probability with respect to the aimpoint distribution of weapons, with or without geo-
metric constraint(s) on the aimpoint distribution, and iii) to study the relation of dam-
age probability to the number of weapons when the dependent error is significant. The 
results obtained here can be applied to indirect fire artillery, or GPS/INS-guided wea-
pons. 

The remainder of this paper will progress as follows. Section 2 provides the detailed 
mathematical formulation and explicit exact solution for the kill probability. Section 3 
considers the performances of various aimpoint distributions. Finally, Section 4 
presents conclusions and future work. 

2. Mathematical Formulation 

We consider a single point target in the two dimensional space. We establish the coor-
dinate system such that the target is located at the origin point ( )target 0,0=x . We use 
M weapons with dependent and independent errors to fire on the target. Due to the 
presence of significant dependent error, if all M weapons are aimed at ( )target 0,0=x , 
the M impact points may be uniformly shifted away from the target by a significant 
distance, resulting in a small damage probability. To make the damage probability less 
susceptible to the dependent error, we aim the M weapons at M different points distri-
buted around the target. When the dependent error shifts some impact points away 
from the target, it simultaneously shifts the some other impact points toward the target. 
In this study all weapons are assumed to be perfectly reliable. Gross errors due to ano-
malies such as catastrophic weapon system failure, adverse weapon separation effects, 
and GPS jamming are neglected. 

Let  
• jr  = the aiming point of weapon j.  
• Y  = miss distance from the aimpoint due to the dependent error of M weapons, 

affecting the impact points of all M weapons uniformly.  
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• jX  = miss distance from the aimpoint due to the independent error of weapon j, 
affecting only the impact point of weapon j individually. We assume that  
{ }, 1, 2, ,j j M=X   are independent of each other and independent of random va-
riable Y .  

The impact point of weapon j is given by  

j j j= + +w r Y X  
We model the dependent error Y  as a normal random variable with zero mean:  

2
1

2
2

0 0
~ ,

0 0
N

σ
σ

   
        

Y
 

where 1σ  and 2σ  are standard deviations, respectively, in the two coordinate direc-
tions, which give an indication of the spread of the dependent error in the two direc-
tions. We model each independent error jX  as a normal random variable with zero 
mean:  

2
1

2
2

0 0
~ ,

0 0j
d

N
d

   
        

X
 

Further, we assume that the independent errors of individual weapons  
{ }, 1, 2, ,j j M=X   are independent of each other and are independent of the depen-
dent error Y . 

We use the mathematical fact that the sum of two independent normal random va-
riables is a normal random variable. Suppose ( )2~ 0,U N σ  and ( )2~ 0,V N s . We 
have  

( )2 2~ 0,Z V U N s σ≡ + +                       (1) 

The probability density functions of U and V are given by  

( )
2

22

1 exp
22π

U
uuρ
σσ

 −
=  
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In terms of the probability density functions, we write Equation (1) as  

( )

( ) ( )

2 2

2 22 2

2

2 22 2

1 1exp exp d
2 22π 2π

1 exp for any
22π

z u u u
ss

z z
ss

σσ

σσ

 − −  −       
 − =
 ++  

∫

 
Applying a change of variables newu u= − , denoting newu  still by u for simplicity and 

multiplying the equation by 22πs , we get  

( )
( )

1
2 2 2 22

2 2 2 2 2 22

1exp exp d exp for any
2 2 22π

z u u s zu z
s s sσ σ σσ

  − +    − −   =      + +      
∫  



H. Y. Wang et al. 
 

453 

We rewrite the equation above in terms of expected values:  

( )
( )

1
2 2 22

2 2 2 2 2
exp exp

2 2U

z U s zE
s s sσ σ

   − +   −    =     +  +     
           (2) 

Here the notation UE  indicates the average with respect to random variable U 
while z and 2s  are fixed, not varying with U. Equation (2) is valid for any normal 
random variable ( )2~ 0,U N σ , and for any z and 2 0s > . In the analysis below, we 
will use Equation (2) extensively. 

We use the Carleton damage function to model the probability of killing by an indi-
vidual weapon. Let ( ) ( )( )1 , 2w w=w  be the impact point of a weapon where ( )1w  
and ( )2w  describe the impact points in the range and deflection directions from the 
target. The probability of the target being killed by a weapon at impact point w  is 
modeled mathematically as  

( )
( ) ( )2 2

2 2
1 2

Pr target being killed by one weapon at impact point )

1 2
exp exp

2 2
w w

b b

   − −
   =
   
   

w

          (3) 

This is called the Carleton damage function or the diffuse Gaussian damage function 
[3]. The two parameters 1b  and 2b  in the Carleton damage function (3) represent the 
effective weapon radii in the range and deflection directions, respectively. With the 
impact points of the M weapons given by , 1, 2, ,j j j j M= + + =w r Y X  , the proba-
bility of the target located at the origin being killed by the M weapons is  
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   (4) 

We calculate the probability of the target being killed averaged over independent er-
rors { }, 1, 2, ,j j N=X   and averaged over the dependent error Y . For that purpose, 
we only need to calculate the average of each term inside the summation:  

( ) ( )1 1 2 1, , , ,k kE F j j F j j ×   . Notice that ( )1 1, , kF j j  involves only the horizon-
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tal components and ( )2 1, , kF j j  involves only the vertical components of { }jX  
and Y . Since the horizontal components and vertical components are independent of 
each other, we have  

( ) ( )
( ) ( )

1 1 2 1

1 1 2 1

, , , ,

, , , ,
k k

k k

E F j j F j j

E F j j E F j j

 × 
   = ×   

 

 

 

Since ( )1 1, , kF j j  and ( )2 1, , kF j j  have exactly the same format, we only need 
to derive the analytical expression for one. For conciseness, we denote ( )1

lj
r , ( )1Y , 

and ( )1
lj

X  simply by 
lj

r , Y , and 
lj

X  in the calculation of ( )1 1, , kE F j j   . We 
first average ( )1 1, , kF j j  over independent errors ( ){ }2

1~ 0,jX N d .  
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          (5) 

Each term in the product is an average of the form on the left hand side of (2). Ap-
plying Equation (2), we write each average as  

( ) ( )
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Substituting this result into Equation (5), we obtain  
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Next we average over the dependent error ( )2
1~ 0,Y N σ . Again, the average is of the 

form on the left hand side of (2). Applying Equation (2), we arrive at  
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Thus, the overall average of ( )1 1, , kF j j  has the expression  

( )
( )

( )

( ) ( )

( )
( )

( )( )

1
2 2 22 2 1 11

1 1 2 2 2 2 2
1 1 1 1 1

2 2
2

1 1 1
2 2 2 2 2

1 1 1 1 1

, ,

1 1 1
exp

2 2

l l l

k

k

k k k

j j j
l l l

b d kbE F j j
b d b d k

r k r k r k

b d k b d k

σ

σ
= = =

 +     =     + + +   
    −    
    × − + + +  

 

∑ ∑ ∑



 (6) 

Similarly, the overall average of ( )2 1, , kF j j  has the expression  
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 (7) 

The probability of target being killed, averaged over independent errors and depen-
dent error, is called kill probability, and is denoted by ( )kill weaponsp M . It has the 
expression  

( ) ( )
( )

( ) ( )
1

kill 1 1 2 1
1 , ,

weapons 1 , , , ,
k

M k
k k

k j j
p M E F j j E F j j

=

   = − −    ∑ ∑


      (8) 

where ( )1 1, , kE F j j    and ( )2 1, , kE F j j    are given in (6) and (7) above. To-
gether, Equations (6)-(8), give us an explicit analytical expression for calculating the kill 
probability. 

After the completion of the above derivation, we discovered that similar approaches 
had been taken separately by von Neumann [4] and by Washburn [5]. 

3. Performances of Various Aimpoint Distributions  
of Multiple Weapons against a Single Target 

Now we apply the exact solution to examine the kill probability corresponding to vari-
ous distributions of the aimpoints of M weapons. 

Let LA  denote the weapon lethal area or the fragmentation mean area of the effec-
tiveness. It describes the effect of a warhead against a target and includes the effects of 
direct hit, blast, and fragmentation. We can calculate LA  from the Carleton damage 
function (3) as  
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2 2

1 22 2
1 2

exp d d 2π
2 2L
x yA x y b b
b b

∞ ∞

−∞ −∞

 
= − − = 

 
∫ ∫                 (9) 

The aspect ratio of the weapon radii of the Carleton damage function 1

2

ba
b

=  is de-

scribed by the empirical formula:  

( )max 1 0.8cos ,0.3a θ= −                       (10) 

where θ  is the impact angle. 
Once the lethal area LA  and the aspect ratio a are given, one can calculate the wea-

pon radii for the Carleton damage function (3) as follows:  

1 2π
La Ab ×

=                            (11) 

1
2

bb
a

=                              (12) 

For all the cases considered in this paper, we choose 22270 ftLA = , 65θ =  . This 
yields 1 15.4640 ftb =  and 2 23.3628 ftb = . Furthermore, we choose 1 2 30σ σ= =  
for the dependent error and 1 2 5d d= =  for the independent errors. 

We first consider the case of M weapons with aimpoints uniformly distributed on a 
circle as formulated below  

( ) ( )2π 1 2π 1
cos , sinj

j j
r r

M M
θ θ

 − −   
= + +         

r
 

where r is the radius and θ  the phase off-set angle of the distribution. These are pa-
rameters that we can tune to maximize the kill probability. 

For each value of M, we maximize the kill probability with respect to ( ),r θ . This 
unconstrained nonlinear optimization can be achieved by using MATLAB built-in 
function fminsearch which is based on a direct search method of Lagarias et al. [6]. The 
results are listed in Table 1. 

Note that the Carleton damage function we use is not isotropic. It has different effec-
tive radii in the range and deflection directions. To accommodate this anisotropic 
property of the Carleton damage function, we consider the case of M weapons with 
aimpoints distributed on an ellipse as formulated below  

( ) ( )2π 1 2π 1
cos , sinj

j jqq
M M

η φ φ
η

 − −   
= + +         

r
 

where η  is the aspect ratio of the ellipse. In the formulation above, we elongate one 
axis by η  and simultaneously shrink the other axis by the same factor. In this way, 
the area of the ellipse is maintained at 2πq , independent of the aspect ratio η . Para-
meter q  has the meaning  

( ) ( )area of ellipse major axis minor axis
π

q = = ×
 

From q  and η , we can determine the major axis and the minor axis as  
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Table 1. The optimal distribution for M aimpoints when they are uniformly distributed around a 
circle and the corresponding probability of kill. Here r is the radius and θ is the phase off-set an-
gle.  

M optr
 optθ

 killp
 

1 0 *** 0.27597 

2 16.246 0 0.43690 

3 22.960 π
6  

0.53834 

4 26.948 0 0.62291 

5 29.192 π
10  

0.68212 

6 31.086 π
6  

0.72869 

7 32.529 π
14  

0.76474 

8 33.731 0 0.79360 

9 34.747 π
18

 0.81702 

10 35.63 π
10  

0.83635 

11 36.409 π
22  

0.85251 

12 37.105 0 0.86617 

The asterisks reflect that when r = 0, θ is not meaningful, meaning that θ is arbitrary and irrelevant. 
 

major axis q η=  

minor axis q
η

=
 

We should point out that parameter φ  is not the polar angle of the aimpoint of 
weapon 1. φ  is the angular value used in the parametric equation of the ellipse to cal-
culate the aimpoint of weapon 1. φ  is the phase angle before the major axis is elon-
gated and before the minor axis is shrunk. 

For each value of M, we maximize the kill probability with respect to ( ), ,q φ η . We 
obtain the results in Table 2. 

In the above, we calculated the performance of placing the aimpoints of M weapons 
along a circle or an ellipse. We now examine the case of aiming one weapon at the cen-
ter and aiming the rest ( )1M −  weapons at positions distributed on an ellipse. The 
aimpoints of M weapons are distributed as formulated below.  

( ) ( )2π 1 2π 1
cos , sin , 1, 2, , 1

1 1j
j jqq j M

M M
η φ φ

η

 − −   
= + + = −     − −    

r 

 
( )0,0M =r  

For each value of M, we maximize the kill probability with respect to ( ), ,q φ η . The 
optimal results are reported in Table 3. 

Next, we fully optimize the distribution of M aimpoints without constraining them 
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Table 2. The optimal distribution for M aimpoints when they are uniformly distributed around 
an ellipse and the corresponding probability of kill. Here φ  is the off-set value in the parametric 
equation of the ellipse. The cases of 1M =  and 2M =  are not affected by aspect ratio. 

M (major axis)opt (minor axis)opt optφ
 killp

 
1 0 0 *** 0.27597 
2 16.246 16.246 0 0.43690 

3 25.637 17.639 π
6  

0.53989 

4 29.621 23.068 0 0.62477 

5 30.411 27.235 π
10  

0.68264 

6 32.859 28.548 π
6  

0.72958 

7 34.292 30.095 π
14  

0.76560 

8 35.848 30.967 0 0.79469 

9 37.135 31.75 π
18  

0.81829 

10 38.342 32.349 π
10  

0.83784 

11 39.436 32.861 π
22  

0.85420 

12 40.457 33.29 0 0.86806 

The asterisks reflect that when r = 0, θ is not meaningful, meaning that θ is arbitrary and irrelevant. 
 

Table 3. The optimal distribution for M aimpoints when one of them is aimed at the origin while 
the rest of aimpoints are uniformly distributed around an ellipse, and the corresponding proba-
bility of kill. Here φ  is the off-set value in the parametric equation of the ellipse. For the cases of 

5M ≤ , the kill probability is not improved by moving one of the M aimpoints to the center. 

M (major axis)opt (minor axis)opt optφ
 killp

 
1 *** *** *** 0.27597 
2 22.161 22.161 0 0.40957 
3 25.412 25.412 0 0.53737 

4 32.918 23.814 π
6  

0.60947 

5 34.369 30.581 0.1407π  0.67798 

6 36.213 33.451 π
10  

0.73052 

7 38.374 34.765 0 0.77123 

8 39.45 36.17 π
14  

0.80221 

9 40.859 36.86 π
8  

0.8274 

10 41.814 37.655 π
18  

0.84766 

11 42.838 38.163 0 0.86449 

12 43.709 38.648 π
22  

0.87853 

When M = 1, there is only one aim-point at the center. The ellipse does not exist in this case. So the asterisks simply 
indicate that the values are irrelevant. 
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on a circle or an ellipse. We represent the M aimpoints in polar coordinates.  

( ), , 1, 2, ,j jr j Mθ = 

 
The optimal solutions for 1M = , 2M = , 3M =  and 4M =  are listed in Table 

4. 
Figure 1 shows the optimal distributions of aimpoints for 1M =  (yellow circles) 

and 2M =  (blue squares) while the optimal distributions for the cases of 3M =  
(yellow circles) and 4M =  (blue squares) are displayed in Figure 2. 

The optimal solutions for 5M = , 6M = , 7M =  and 8M =  are given in Table 
5. 

Figure 3 illustrates the optimal distributions of aimpoints for 5M =  (yellow cir-
cles) and 6M =  (blue squares); Figure 4 shows the optimal distributions of aimpoints 
for 7M =  (yellow circles) and 8M =  (blue squares). 

 
Table 4. Optimal distributions of aimpoints and the corresponding probabilities of kill for 

1M = , 2M = , 3M =  and 4M = . 

 1M =  2M =  3M =  4M =  

 kill 0.27597p =
 kill 0.4369p =

 kill 0.53989p =
 kill 0.62477p =

 
j  jr

 jθ  jr
 jθ  jr

 jθ  jr
 jθ  

1 0  16.246 0 23.975 0.12211π  29.621 0 

2   16.246 π  23.975 0.87789π  23.068 0.5π  

3     17.411 1.5π  29.621 π  

4       23.068 2π  
 

 
Figure 1. Optimal distributions of aimpoints for 1M =  (yellow circles) and 2M =  (blue 
squares).  
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Figure 2. Optimal distributions of aimpoints for 3M =  (yellow circles) and 4M =  (blue 
squares).  

 
Table 5. Optimal distributions of aimpoints and the corresponding probabilities of kill for 

5M = , 6M = , 7M =  and 8M = . 

 5M =  6M =  7M =  8M =  

 kill 0.68505p =
 kill 0.73391p =

 kill 0.77218p =
 kill 0.80341p =

 
j  jr

 jθ  jr
 jθ  jr

 jθ  jr
 jθ  

1 33.839 0.08879π  38.334 0 40.69 0 43.43 0 

2 24.734 0.5π  27.589 0.33554π  34.456 0.32695π  36.016 0.28566π  

3 33.839 0.91121π  27.589 0.66446π  34.456 0.67305π  34.191 0.5809π  

4 26.353 1.3057π  38.334 π  40.69 π  40.507 0.85228π  

5 26.353 1.6943π  27.589 1.3355π  34.456 1.327π  40.507 1.1477π  

6   27.589 1.6645π  34.456 1.673π  34.191 1.4191π  

7     0  36.016 1.7143π  

8       0.6587 0 

 
The optimal solutions for 9M = , 10M = , 11M =  and 12M =  are listed in Ta-

ble 6. 
Figure 5 displays the optimal distributions of aimpoints for 9M =  (yellow circles) 

and 10M =  (blue squares); the optimal distributions for 11M =  (yellow circles) and 
12M =  (blue squares) are plotted in Figure 6. 

As M (the number of weapons) increases, the optimal distribution of aimpoints has 
more layers, covering a larger area with a more uniform distribution over the area. In 
Figure 7, we plot the optimal distributions of aimpoints for 15M =  (yellow circles) 
and 18M =  (blue squares). 
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Next, we study the optimal kill probability as a function of M. Let ( )killp M  denote 
the kill probability corresponding to the optimal distribution of aimpoints for the case 
of M weapons. As M increases, the survival probability of the target, ( )( )kill1 p M− , 
decreases. In the absence of dependent error and when the aimpoints are all fixed at 
one point, the outcome of each weapon affected by its independent error is statistically 
independent of the outcome of other weapons affected by their own independent errors. 
In this situation, the probability of surviving M weapons is simply the M-th power of the 
probability of surviving one weapon: ( ) ( )( )kill kill1 1 1

M
p M p− = − . In other words, in the 

absence of dependent error, the log survival probability is a linear function of M.  
 

 
Figure 3. Optimal distributions of aimpoints for 5M =  (yellow circles) and 6M =  (blue 
squares). 

 

 
Figure 4. Optimal distributions of aimpoints for 7M =  (yellow circles) and 8M =  (blue squares).  
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Table 6. Optimal distributions of aimpoints and the corresponding probabilities of kill for 9M = , 10M = , 11M =  
and 12M = . 

 9M =  10M =  11M =  12M =  

 kill 0.82935p =
 kill 0.85158p =

 kill 0.86957p =
 kill 0.88499p =

 
j jr

 jθ  jr
 jθ  jr

 jθ  jr
 jθ  

1 46.336 0 48.534 0 50.078 0.05606π  49.091 0.18972π  

2 36.994 0.24837π  42.116 0.25814π  42.093 0.28098π  41.676 0.40044π  

3 35.587 0.5π  38.162 0.5π  38.939 0.5π  41.675 0.59952π  

4 36.994 0.75163π  42.116 0.74186π  42.093 0.71902π  49.089 0.81023π  

5 46.336 π  48.534 π  50.078 0.94394π  52.524 1.062π  

6 36.994 1.2484π  42.116 1.2581π  45.328 1.1852π  45.409 1.296π  

7 35.587 1.5π  38.162 1.5π  38.882 1.395π  40.554 1.5π  

8 36.994 1.7516π  42.116 1.7419π  38.882 1.605π  45.407 1.9379π  

9 0  12.452 0 45.328 1.8148π  52.523 1.7578π  
10   12.452 π  12.535 0.02372π  21.097 1.9977π  
11     12.535 0.97628π  0.44808 1.5002π  
12       21.097 1.0023π  

 

 
Figure 5. Optimal distributions of aimpoints for 9M =  (yellow circles) and 10M =  (blue squares).  

 

( )( ) ( )( )kill killlog 1 log 1 1p M M p− = −
 

In the presence of dependent error, however, the situation is completely different. 
The same dependent error affects all M weapons. The outcomes of individual weapons 
are no longer independent of each other. As a matter of fact, when the M weapons are 
all aimed at the same position, the outcomes of individual weapons are highly corre-
lated with each other. As an example, we examine the case of aiming all M weapons at 
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the origin. The averages of ( )1 1, , kF j j  and ( )2 1, , kF j j  are calculated from Equ-
ations (6) and (7) as  

( ) ( )
( )

1
2 2 22 2 1 11

1 1 2 2 2 2 2
1 1 1 1 1

, ,

k

k

b d kbE F j j
b d b d k σ

 +     =     + + +   


 

( ) ( )
( )

1
2 2 22 2 2 22

2 1 2 2 2 2 2
2 2 2 2 2

, ,

k

k

b d kbE F j j
b d b d k σ

 +     =     + + +   


 
The kill probability is  

 

 
Figure 6. Optimal distributions of aimpoints for 11M =  (yellow circles) and 12M =  (blue squares).  

 

 
Figure 7. Optimal distributions of aimpoints for 15M =  (yellow circles) and 18M =  (blue squares).  
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( ) ( )
( )

( ) ( )

( )
( ) ( )

1

kill 1 1 2 1
1 , ,

2 2 2 2
1 2 1 1 2 2

2 2 2 2 2 22 2 2 21 1 1 1 2 2 21 1 2 2

1 , , , ,

1

k

M k
k k

k j j

k

M k

k

p M E F j j E F j j

M b b b d b d
k b d k b d kb d b d σ σ

=

=

   = − −    

 
  + + = − −    + + + +  + + 

∑ ∑

∑



 

 
In the absence of dependent error, we have 1 2 0σ σ= = , and the kill probability is  

( )
( ) ( )

1 2
kill 2 2 2 2

1 1 2 2

1 1

M

b bp M
b d b d

 
 − = −  + +   

In the presence of dependent error, to simplify the analysis, we assume that the in-

dependent errors are zero ( )1 2 0d d= =  and assume that 
2 2

21 2
2 2

1 2b b
σ σ

ω= ≡ . The kill 

probability becomes  

( ) ( )kill 2
1

11 1 1
1

M k

k

M
p M

k kω=

 
− = + −   + 

∑
 

For the first few values of M, we obtain  

( )
2

kill 21 1
1

p ω
ω

− =
+  

( )
2 2

kill 2 2
21 2

1 1 2
p ω ω

ω ω
  

− =   + +    

( )
2 2 2

kill 2 2 2
2 31 3

1 1 2 1 3
p ω ω ω

ω ω ω
   

− =    + + +     
Using mathematical induction, we can prove that  

( )
2

kill 2
1

1
1

M

k

kp M
k
ω
ω=

 
− =  + 

∏
 

Clearly, when all M weapons are aimed at the same positon, ( )kill1 p M−  decays less 
than geometrically with M. 

With the optimal distribution of aimpoints for M weapons, we may expect that 
( )kill1 p M−  decays faster than in the case of aiming all M weapons at the same posi-

tion. Indeed, as demonstrated in the left panel of Figure 8, when the M weapons are 
aimed according to the optimal distribution of aimpoints, ( )kill1 p M−  decays much 
faster than in the case of aiming all M weapons at ( )0,0 . The right panel of Figure 8 
shows the enhancement in the decay of survival probability ( )( )kill1 p M−  attributed 
to the optimal distribution of aimpoints. Specifically, in the right panel of Figure 8, we 
plot the quantity below as a function of M  

( ){ }

{ }

all aimed at 0,0
kill

optimal aim positions
kill

1
1

p
p
−
−  

Even with the optimal distribution of aimpoints, however, the log survival probabili-
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ty, ( )( )killlog 1 p M− , does not decrease linearly with respect to M in the presence of 
dependent error. In the left panel of Figure 9, we plot ( )killlog 1 p−  vs. M. It is clear 
that in the presence of dependent error, the survival probability decreases slower than 
the geometric decay. 

After excluding the geometric decay, we explore the possibility of a power law decay 
for the survival probability. Specifically we examine whether or not the survival proba-
bility obeys the power law ( )kill1 p M M βα −− = . If the survival probability follows this 
power law relation, then the plot of ( )killlog 1 p−  vs. ( )log M  would be a linear func-
tion  

( ) ( ) ( )killlog 1 log logp Mα β− = −  

In the right panel of Figure 9, we plot ( )killlog 1 p−  vs. ( )log M . The plot demon- 
 

 

Figure 8. Left panel: Comparison in the decay of survival probability ( )kill1 p− , of the case of aiming all M weapons at ( )0,0  vs. the 

case of using optimal distribution of aimpoints. Right panel: Enhancement in the decay of survival probability ( )kill1 p−  attributed to 

optimizing the distribution of M aimpoints.  
 

 

Figure 9. Left panel: plot of ( )killlog 1 p−  vs. M. Right panel: plot of ( )killlog 1 p−  vs. ( )log M . 
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Figure 10. Left panel: plot of ( )killlog log 1 p− −    vs. ( )log M . Right panel: plot of killp  vs. M. 

 
strates clearly that the survival probability does not follow a power law decay. 

To find a phenomenological fitting to the decay of survival probability as a function 
of M, we consider the form of ( ) ( )kill1 expp M M βα− = − . If the survival probability 
approximately satisfies this relation, then the plot of ( )killlog log 1 p− −    vs. ( )log M  
would approximately follow a straight line.  

( ) ( ) ( )killlog log 1 log logp Mα β− − = +    

In the left panel of Figure 10, we plot ( )killlog log 1 p− −    vs. ( )log M . The plot is 
very close to a straight line. In the right panel of Figure 10, we plot killp  vs. M and the 
fitting function ( )0.731 exp 0.35M− − . For the set of parameter values used, phenome-
nologically we have the approximation:  

( )0.73
kill 1 exp 0.35p M≈ − −

 

4. Conclusion 

We have considered the damage probability caused by multiple weapons against a sin-
gle target. Explicit exact solution was derived for the damage probability in the case of 
M weapons with both dependent error and independent errors. Then we applied the 
explicit exact solution to maximize the damage probability and find the corresponding 
optimal distribution of aimpoints. We observed that in the presence of significant de-
pendent error, the decay of the survival probability corresponding to the optimal aim-
points distribution (i.e., 1 - optimal damage probability) is slower than the exponential 
decay with respect to M, the number of weapons. This observation demonstrates that 
increasing M is much less effective in overcoming the dependent error than in over-
coming independent errors. We find that phenomenologically the survival probability 
decays exponentially with respect to a fractional power of M. Presumably, the fraction 
power varies with the parameter values of the problem. The mathematics behind this 
phenomenological expression and the dependence of the fraction power on the para-
meter values will be investigated in future studies. 
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