
Journal of Applied Mathematics and Physics, 2016, 4, 1989-1997 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2016.411199  November 10, 2016 

 
 
 

Interaction Energy between an Atomic Force 
Microscope Tip and a Charged Particle in 
Electrolyte 

Wai-Ting Lam, Fredy R. Zypman 

Yeshiva University, New York, NY, USA 

 
 
 

Abstract 
A variational principle to the nonlinear Poisson-Boltzmann equation (PB) in three 
dimensions is used to first obtain solutions to the electrostatic potential surrounding 
a pair of spherical colloidal particles, one of them modeling the tip of an Atomic 
Force Microscope. Specifically, we consider the PB action integral for the electrostat-
ic potential produced by charged colloidal particles and propose an analytical ansatz 
solution. This solution introduces the density and its corresponding electrostatic po-
tential parametrically. The PB action is then minimized with respect to the parame-
ter. Polynomial-exponential approximations for the parameters as functions of tip- 
particle separation and boundary electrostatic potential are obtained. With that in-
formation, tip-particle energy-separation curves are computed as well. Finally, based 
on the shape of the energy-separation curves, we study the stability properties pre-
dicted by this theory. 
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1. Introduction 

An open problem of current scientific and technological interest is the theoretical pre-
diction of the force between an Atomic Force Microscope (AFM) probe and a charged 
particle, in particular when both are immersed in an electrolytic environment [1]. The 
main interest of this problem comes from the need to understand the electrostatics of 
biological matter, a problem in which water is inherently present [2]. In addition, AFM 
has become the de facto metrological tool to probe organic and inorganic matter from 
the micron down to the nanometer length scales [3]. The tip comprises the sensing 
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element of the AFM and, at its apex ranges in size from microns to nanometers, thus 
the ability of the AFM to probe those length-scales. When the AFM tip is immersed in 
an electrolyte, it can gain surface charge due to pH, and also can develop a diffuse 
charge layer due to the presence of ions in solution [4]. Thus we see a natural concep-
tual connection between AFM measurements in liquid and colloidal science, whereby 
the interest is in the interaction between colloidal particles and their corresponding 
stability. Therefore, although our interest is in AFM in liquid, the results obtained here 
are readily usable in colloidal systems. We focus here in a liquid system in which 1- 
1000 nm particles are submerged in an ionic solution. Colloidal systems comprise one 
of the primary types of mixtures in chemistry. One of the central problems in colloids is 
their stability [5], that is, under known conditions, such as concentration; will the sys-
tem coagulate or remain indefinitely stable? 

The stability of colloids is indeed known to depend on the presence of charge at their 
surfaces [6]; the electrical double layer controls electrostatic stabilization. When par-
ticles approach each other, the interaction leads to the rearrangement of charges in the 
ambient liquid, outside of the colloidal particles. For instance, these interactions could 
be determined by the surface charge on the particles and electrolyte concentration. The 
stability of colloidal systems is interesting conceptually, and critical for industrial appli- 
cations. In chemistry, there are different types of colloidal systems such as solid-liquid 
dispersions (suspensions), liquid-liquid dispersions (emulsions) and gas-liquid disper-
sions (foams). Paints, milk, proteins as well as fog are some of the daily examples of 
colloids [7] [8]. 

Mathematically, the stability depends on the details of the pair-wise energy as a func-
tion of separation of colloidal particles [9]. The valleys of such function determine the 
separations of the possible equilibrium. One approach to obtain that energy is to first 
solve the Poisson-Boltzmann (PB) equation, whose solution gives the charge density 
and electrostatic potential in the liquid surrounding the colloidal particles [10]. In gen-
eral, PB equation provides the distribution of the electric potential in solution with 
charged ions present. This distribution, in turn, provides information to determine how 
the electrostatic interactions will affect colloidal forces. PB is a nonlinear second-order 
partial differential equation which has an exact known solution only in one dimension. 
In higher dimensions, PB equation is commonly solved by numerical analysis. Alterna-
tively, if the colloidal particle charge or voltage is not high, the PB equation can be li-
nearized, in which case solutions for spherical [11] and cylindrical [12] geometries have 
also been obtained. For the particular geometry of sphere-plane, useful to study charge 
transfer in scanning tunneling microscopy and forces in atomic force microscopy, there 
have been analytical and numerical approaches to the nonlinear PB equation in three 
dimensions [13] [14] [15] [16]. Here, we present a method to tackle the full nonlinear 
PB equation in three-dimensions for interacting particles. The method is analytical, 
based on the choice of a parametric trial family of functions. While the method is ap-
proximate, its analytical nature should provide conceptual insight into the problem. 

The exact PB nonlinear equation in 3D is not amenable to analytical solutions even 
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for a single colloidal particle in the electrolyte. We here consider the problem of two 
interacting particles by introducing an ansatz for the charge density function and cor-
responding electrostatic potential parametrically; the variational method is then used to 
minimize the PB functional with respect to the parameters. 

2. Electrostatics Potential Produced by a Pair of Colloids 

Figure 1 shows schematics of the system of interest. Two charged spherical colloidal 
particles of unit diameter are separated by a distance d. 

The PB equation is typically obtained by combining Poisson’s equation [17] and the 
Boltzmann factor [18] for the distribution of electrostatic energies at a given tempera-
ture. Thus Poisson’s equation gives the relationship between the electrical potential 
( )Φ R  and the charge density ( )ρ R  at location R , 

( ) ( ) ( )2 4π ρ∇ Φ = −R R                     (1) 

with   is the dielectric constant of the surrounding fluid. On introducing the Boltz- 
mann distribution of ions, the non-linear PB equation is obtained, 

( ) ( ) ( )( )2 8π sinh Bne e k T∇ Φ = − ΦR R               (2) 

where n is the ion bulk concentration of electrolyte, T is the absolute temperature, e the 
ion charge magnitude of anions and cations, and kB is Boltzmann’s constant. 

Equation (2) is converted into dimensionless form [2] by defining the dimensionless 

electrostatic potential ( ) ( )Φ
B

e
k T

ϕ =r R  and the dimensionless position vector 

28π

B

ne
k T

=r R


, 

 

 
Figure 1. Two colloidal particles (large, blue) separated by a distance d. The unit of length 
throughout the paper is the particles diameter, or the AFM tip diameter. The small red particles 
represent the ions dissolved in water and are treated as a continuum in the Poisson-Boltzmann 
approach. These ions could be different, we show them here with the same color for graphical 
simplicity. 

d

a = 1
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2 sinhϕ ϕ∇ = −                             (3) 

where ϕ  now represents the dimensionless electrostatic potential, and the Laplacian 
in Equation (3) is with respect to r . Since n has unites of inverse volume, and   is 

the absolute dielectric constant, 
28π

B

ne
k T

 has units of inverse area. 

Equation (3) can be derived from a variational principle, by applying Euler-Lagrange 
to the action 

( )21 cosh 1 d
2Space

I Vϕ ϕ = ∇ + −  ∫                   (4) 

where V is volume. The minimum of I occurs for the function φ that satisfies the Eu-
ler-Lagrange equation, which gives rise Equation (3). 

Taking z as the axis that joins the centers of the two colloidal particles, and due to the 
axial symmetry of the problem, we rewrite the action in cylindrical coordinates as 

( )2

0 0

14π cosh 1 d d
2

zϕ ϕ η η
∞ ∞  ∇ + −  ∫ ∫                   (5) 

where η is the radial polar coordinate in the xy plane, while the angular polar integra-
tion is readily performed and gives 2π. The additional factor of 2 comes from integrat-
ing z in half space and multiplying by 2 due to mirror symmetry. To make progress, we 
propose the following ansatz for the density and corresponding electrostatic potential 
which depends on the parameter k, 

( )
2 2

2 2
0

1 1, exp
2 2 2 2 2
k d dz z zϕ η ϕ η η

           = − − + − + + −               
       (6) 

where 0ϕ  is the Dirichlet boundary condition, d is the center-to-center separation 
between the two spherical colloids and k is a constant that can be interpreted as an in-
verse Debye length times the radius of the interacting particles. The intuitive justifica-
tions for the functional form are 1) its exponential decay typical of ionic screening, 2) 
that proper boundary conditions ( ) 0, zϕ η ϕ=  are achieved at the surface of the collo-
ids, and 3) that as d →∞ , the electrostatic potential between the two colloids tends to 
zero. Figure 2 shows a contour plot of the potential around the colloidal particles for a 
choice of k. 

To emphasize, this choice of potential is dictated first by the fact that the potential 
must rapidly approach its bulk value away from the spheres, and second by the fact that 
the electrostatic potential must have a constant value at the surface of the colloidal par-
ticles (Dirichlet boundary conditions). 

To find the sought solution to the original PB equation (Equation (3)), we minimize 
the PB action functional with respect to the parameter k. For fixed potential φ0 and 
fixed separations d, we find the constant k (i.e. minimum point k = k(φ0, d)) for the 
proposed φ(x, y) that minimizes the action. 

As Figure 3 shows, for small separations, the data suggests that there is an approx-
imately linear relationship between the best constant kbest, and the separation d for each  
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Figure 2. Contour plot of ( ), zϕ η . The potential is constant 0ϕ  at the surfaces of the particles, 

becomes spherical far away while decaying to zero. 
 

 
Figure 3. Graphs of kbest as a function of small separation d, as 0ϕ  is changed. It shows an ap-
proximately linear relationship between kbest and small separation d for each 0ϕ . The black line 
is drawn to show the average trend between kbest and 0ϕ . 

−4 −2 0 2 4
Z (in units of a)

−4

−2

0

2

4

η 
(in

 u
ni

ts
 o

f a
)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

K
be

st

d

Best k vs small separation d



W.-T. Lam, F. R. Zypman 
 

1994 

boundary condition φ0. It leads us to further investigate the relationship between the 
linear relationship and the boundary condition φ0. 

We obtain polynomial approximations for the functions that relate the linear para-
meters (that are the slopes and η-intercepts) and the boundary conditions (as shown in 
Figure 4(a) and Figure 4(b)). 

Moreover, for large separations between the colloidal particles, the best constant k 
converges to 0.1 for all of the boundary conditions φ0. This should be a universal fea-
ture regardless of the model used since at large separations we should obtain a simple 
superposition the potential around single spheres. 

The functional forms for the kbest allow us to write a simple function as follows 
(Figure 5). 

( )( )
( )

( ) 0.10.1 e 0.1
B

d
A

bestk A
ϕ

ϕϕ −= − +                       (7) 

where A(φ) is the polynomial approximation between the linear parameter-η-intercepts 
and φ0, B(φ) is the polynomial approximation between the other linear parameter-slope 
and φ0, and d is the center-to-center separation between the colloids. 

3. Colloid Interaction Energy  

Since the charge is distributed in the whole space that surrounds the colloidal particles, 
we have the energy as a function of separation d [13] 

( ) ( ) ( )1 d
2 space

E d d V dϕ ϕ ϕρ= ∫ r                   (8) 

where to recall ρ is density and φ is voltage, which are now known from the previous 
section. For each boundary condition, the integral in (8) is performed for the corres-
ponding optimal value of k. 
 

   
(a)                                        (b) 

Figure 4. (a) Polynomial approximation between the linear parameter-slope and the boundary 
conditions 0ϕ . This is the slope of kbest vs d (Figure 3). (b) Polynomial approximation between 
the η-intercept and the boundary condition 0ϕ .This is the η-intercept of kbest vs d (Figure 3). 
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Figure 5. With Equation (7), curves of bestk  as functions of separation d for 
different boundary condition 0ϕ  are sketched. While in Figure 3, we show 

bestk  vs d only for small d, here we show the whole range of d values, from 
small to large. 

 
Equation (8) then provides the sought sphere-sphere energy-separation curves. The 

computed results are shown in Figure 6. Based on the shape of the curves, we now can 
draw conclusions regarding the stability properties predicted by this theory. 

4. Conclusions 

Figure 6 is the main quantitative result of this work and it shows that for all boundary 
conditions φ0 the particles attract each other at small separations. This is consistent 
with all the published experimental literature [19]. In addition, our results show that for 
large φ0 the energy decreases monotonically giving rise to repulsion at large separations. 
While, for small φ0 there are plateaus that suggest the existence of secondary minima. 
[15] For all values of φ0 there are local minima at distances larger than 30, but they 
cannot be expected to represent experimental behavior since they correspond to dis-
tance too large compared to the size of the particles. We also notice that the peak posi-
tions of the energy curves shift to larger distances as φ0 increases, as expected. Finally 
the behavior of the screening parameter as shown in Figure 5 shows a strong depen-
dence with distance and reducing its value by more than 50%. This has been observed 
in experimental measurements [15]. 

For the AFM community, these results are useful in comparing experimental forces 
with the derivative of the curves in Figure 6. Although the results presented here are 
limited to particles of the same size, it is clear that the extension of two different radii 
amounts to adding a second parameter to Equation (6). With that modification, and by 
choosing the proper theoretical curve, one can infer the charge of the particle interact-
ing with the AFM tip. 
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Figure 6. The energy-separation curves for φ0 from 1 to 8. 
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