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Abstract 
In view of the properties of mesons in hot strongly interacting matter, the properties 
of the solutions of the truncated Dyson-Schwinger equation for the quark propagator 
at finite temperatures within the rainbow-ladder approximation are analysed in some 
detail. In Euclidean space within the Matsubara imaginary time formalism, the quark 
propagator is not longer a O(4) symmetric function and possesses a discrete spec-
trum of the fourth component of the momentum. This makes the treatment of the 
Dyson-Schwinger and Bethe-Salpeter equations conceptually different from the va-
cuum and technically much more involved. The question whether the interaction 
kernel known from vacuum calculations can be applied at finite temperatures re-
mains still open. We find that, at low temperatures, the model interaction with va-
cuum parameters provides a reasonable description of the quark propagator, while at 
temperatures higher than a certain critical value cT  the interaction requires strin-
gent modifications. The general properties of the quark propagator at finite temper-
atures can be inferred from lattice QCD (LQCD) calculations. We argue that, to 
achieve a reasonable agreement of the model calculations with that from LQCD, the 
kernel is to be modified in such a way as to screen the infra-red part of the interac-
tion at temperatures larger than cT . For this, we analyse the solutions of the trun-
cated Dyson-Schwinger equation with existing interaction kernels in a large temper-
ature range with particular attention on high temperatures in order to find hints to 
an adequate temperature dependence of the interaction kernel to be further imple-
mented in the Bethe-Salpeter equation for mesons. This will allow investigating the 
possible in medium modifications of the meson properties as well as the conditions 
of quark deconfinement in hot matter.  
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Propagator, Chiral Symmetry 

 

1. Introduction 

The description of mesons as quark-antiquark bound states within the framework of 
the Bethe-Salpeter (BS) equation with momentum dependent quark mass functions, 
determined by the Dyson-Schwinger (DS) equation, is able to explain successfully many 
spectroscopic data, such as meson masses [1]-[7], electromagnetic properties of pseu-
doscalar mesons and their radial excitations [8] [9] [10] and other observables [10]- 
[17]. Contrary to purely phenomenological models, like the quark bag model, such a 
formalism maintains important features of QCD, such as dynamical chiral symmetry 
breaking, dynamical quark dressing, requirements of the renormalization group theory 
etc., cf. Ref. [18]. The main ingredients here are the full quark-gluon vertex function 
and the dressed gluon propagator, which are entirely determined by the running 
coupling and the bare quark mass parameters. In principle, if one were able to solve the 
Dyson-Schwinger equation, the approach would not depend on any additional para-
meters.  

However, due to known technical problems, one restricts oneself to calculations 
within effective models which specify the dressed vertex function µΓ  and interaction 
kernel Dµν . The rainbow-ladder approximation [2] is a model with rainbow trunca-
tion of the vertex function µ µγΓ →  in the quark DS equation and a specification of 
the dressed quark-quark interaction kernel as ( ) ( ) ( )2 2 freeg D k k D kµν µν→  . (Here, µγ  
is a Dirac gamma matrix and Dµν  stands for the gluon propagator; g is the coupling 
strength and k denotes a momentum.) 

The model is completely specified once a form is chosen for the effective coupling 

( )2k . The ultraviolet behavior is chosen to be that of the QCD running coupling 

( )2kα ; the ladder-rainbow truncation then generates the correct perturbative QCD 
structure of the DS and BS equations. Moreover, the ladder-rainbow truncation pre-
serves such an important feature of the theory as the maintenance of the Nambu- 
Goldstone theorem in the chiral limit, according to which the spontaneous chiral sym-
metry breaking results in an appearance of a (otherwise absent) scalar term in the quark 
propagator of the DS equation. As a consequence, in the BS equation a massless pseu-
doscalar bound state should appear. By using the Ward identities, it has been proven 
(see, e.g. Refs. [19] [20] [21]) that in the chiral limit the DS equation for the quark 
propagator and the BS equation for a massless pseudo-scalar in ladder approximation 
are completely equivalent. It implies that such a massless bound state (pion) can be in-
terpreted as a Goldstone boson. This results in a straightforward understanding of the 
pion as both a Goldstone boson and quark-antiquark bound state. 

Another important property of the DS and BS equations is their explicit Poincaré in-
variance. This frame-independency of the approach provides a useful tool in studying 
processes when a rest frame for mesons cannot or needs not be defined. 
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The merit of the approach is that, once the effective parameters are fixed (usually the 
effective parameters of the kernel are chosen, cf. Ref. [22] [23], to reproduce the known 
data from lattice calculations, such as the quark mass function and/or quark conden-
sate), the whole spectrum of known mesons is supposed to be described, on the same 
footing, including also excited states. The achieved amazingly good description of the 
mass spectrum with only few effective parameters encourages one to employ the same 
approximations to the truncated Dyson-Schwinger (tDS) and truncated Bethe-Salpeter 
(tBS) equations also at finite temperatures with the hope that, once an adequate de-
scription of the quark propagators at non-zero temperature (T) is accomplished, the 
corresponding solution can be implemented in to the BS equation for mesons to inves-
tigate the meson properties in hot and dense matter. 

At low temperatures the properties of hadrons in nuclear matter are expected to 
change in comparison with the vacuum ones, however the main quantum numbers, 
such as spin and orbital momenta, space and inner parities etc. are maintained. The hot 
environment may modify the hadron masses, life time (decay constant) etc. Contrarily, 
at sufficiently large temperature in hot and dense strongly interacting matter, phase 
transitions may occur, related to quark deconfinement phenomena, as e.g. dissociation 
of hadrons in to quark degrees of freedom. Therefore, these temperature regions are of 
great interest, both from a theoretical and experimental point of view. Hitherto, the 
truncated DS and BS formalism has been mostly used at large temperatures to investi-
gate the critical phenomena near and above the pseudo-critical and (phase) transition 
values predicted by lattice simulation data (cf. Refs. [24] [25] [26] [27] and and refer-
ences therein quoted). It has been found that, in order to achieve an agreement of the 
model results with lattice data, a modification of the vacuum interaction kernel is re-
quired. Namely, the infra-red term has to vanish abruptly in this region. Accordingly, it 
has been suggested [24] [25] to employ a kernel with a Heavyside step-like behaviour in 
the vicinity of the (pseudo-)critical temperature cT . Then, it becomes possible to 
achieve a rather reliable description of such quantities as the quark spectral function, 
plasmino modes, thermal masses etc., see also Ref. [28]. However, a use of such a dis-
continuously modified interaction in the BS equation in the whole temperature range 
becomes hindered. Another strategy of solving the DS equation in a larger interval of 
temperatures is to utilize directly the available LQCD results to fit, point by point, the 
interaction kernel at given temperatures. In such a way one achieves a good description 
of the quark mass function and condensate for different temperatures, including the re-
gion beyond cT  [29] [30]. The success of such approaches demonstrates that the rain-
bow approximation to the DS equation with a proper choice of the interaction kernel is 
quite adequate in understanding the properties of quarks in hot environment. Never-
theless, for systematic studies of quarks and hadrons within the BS equation, on needs a 
smooth parametrization of the kernel in the whole interval of the considered tempera-
tures. In view of still scarce LQCD data, such a direct parametrization from “experi-
mental” data is problematic. An alternative method is to solve simultaneously a (trun-
cated) set of Dyson-Schwinger equations for the quark and gluon propagators within 
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some additional approximations [31]. This approach also provides good description of 
quarks in vicinity of cT , however it becomes too cumbersome in attempts to solve the 
BS equation, since in this case one should solve a too large system of equations. It 
should also be noted that there are other investigations of the quark propagator within 
the rainbow truncated DS equation, which employ solely the vacuum parameters in 
calculations of T-dependencies of quarks [32] without further attempts to accommo-
date the kernel to LQCD results. As a result one finds that the critical behaviour of the 
propagators (e.g. chiral symmetry restoration) starts at temperatures much smaller than 
the ones expected from LQCD. 

In the present paper we are interested in a detailed investigation of the quark propa-
gator in the whole range of temperatures, from zero temperatures up to above cT , and 
find a reliable smooth parametrization of the kernel. We start with the interaction ker-
nel known at 0T =  and extend it, step by step, to larger temperatures by finding the 
prerequisites to meet the requirements of the LQCD and to be able to implement the 
kernel into the BS equation in subsequent studies of the hadron bound states at finite 
temperatures. 

In quantum field theory, a system embedded in a heat bath can be described within 
the imaginary-time formalism, known also as the Matsubara approach [33] [34] [35]. 
Due to finiteness of the heat bath temperature T the Fourier transform to Euclidean 
momentum space becomes discrete, resulting in a discrete spectrum of the energy, 
known as the Matsubara frequencies. Consequently, the interaction kernel and the DS 
solution become also discrete with respect to these frequencies. Moreover, since the 
heat bath already fixes a particular frame, the corresponding DS and BS equations are 
not longer ( )4O  symmetric. This requires a separate treatment of the transversal and 
longitudinal parts of the kernel with the need of an additional function in parametriz-
ing the quark propagators. All this makes the consideration of the DS equation differ-
ent from the vacuum case. However, here is the hope that the phenomenological inte-
raction kernel defined at 0T =  can be, to some extent, applied for finite temperatures 
as well. 

In the present paper we investigate the prerequisites to the interaction kernel of the 
DS formalism at finite temperatures to be able to investigate, in a subsequent step, dif-
ferent processes with the challenging problem of changes of meson characteristics at fi-
nite temperatures. Our goal is to determine with what extend the rainbow truncation of 
the DS equation is applicable in a large interval of temperature, starting from low val-
ues, with the effective parameters, known to accomplish an excellent description of the 
hadron properties in vacuum, towards temperatures above the critical values predicted 
by lattice calculations. We try to find a proper modification of the kernel at higher 
temperatures to be able to describe the properties of the quark propagator in the whole 
temperature range. A reliable parametrization of the T-dependence will allow to im-
plemented it directly into the BS equation in the same manner as at 0T =  and to in-
vestigate, e.g. in-medium changes of mesons in hot environment. This is crucial, e.g. in 
understanding the di-lepton yields in nucleus-nucleus collisions. Our future goal is to 
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investigate to what extend the effective parameters, known to accomplish an excellent 
description of the hadron properties in vacuum, can be utilized in the BS equation to 
investigate the hadron modifications in hot and dense matter below and above the crit-
ical or cross-over temperature. For this we consider the quark propagators from the DS 
equation in a large temperature range and investigate their properties and compare qu-
alitatively with other approaches, such as the LQCD calculations. 

Our paper is organized as follows. In Section 2, we recall the truncated BS and DS 
equations in vacuum and at finite temperatures. The rainbow approximation for the DS 
equation kernel in vacuum is introduced and the system of equations for the quark 
propagator, to be solved at finite temperature, is presented. Numerical solution for the 
chirally symmetric case is discussed in Section 3, where the chiral quark condensate and 
spectral representation for the quark propagator are introduced. It is found that, to 
achieve a reasonable behaviour of the spectral functions above the critical temperature, 
a modification of the interaction kernel is needed. In Section 4, we consider the solu-
tion of the truncated DS equation for finite bare masses. The inflection points of the 
quark condensate and the mass function are considered as a definition of the pseu-
do-critical temperature at finite quark masses. The procedure of regularization of inte-
grals in calculating the quark condensate from the solution of the DS equation is dis-
cussed in some detail. It is shown that, for finite quark masses, the inflection method 
determines the pseudo critical temperatures by ~50% smaller than the ones obtained by 
other approaches, e.g. by lattice QCD calculations. The possibility to reconcile the 
model and lattice QCD results is considered too. The impact of the infrared term in the 
interaction kernel in the vicinity and above the critical temperature is also briefly dis-
cussed. Summary and conclusions are collected in Section 6. A brief explanation of the 
meaning of the rainbow-ladder approxiamtion is presented in the Appendix.  

2. Basic Formulae  
2.1. Dyson-Schwinger and Bethe-Salpeter Equations in Vacuum 

To determine the bound-state mass of a quark-antiquark pair one needs to solve the DS 
and the homogeneous BS equations, which in the rainbow ladder approximation and in 
Euclidean space read  

( ) ( )
( )

( ) ( )
4

1 1 2
0 4

4 d ,
3 2π

kS p S p g D p k S kµν µ νγ γ− −  = + − ∫            (1) 

( )
( )

( ) ( ) ( ) ( )
4

2
1 24

4 d, , ,
3 2π

kP p S P k P k S P k g D p kµ ν µνγ η η γ  Γ = − + Γ − + − ∫    (2) 

where 1η  and 2 11η η= −  are the partitioning parameters defining the quark momen-
ta as 1,2 1,2p k Pη= ±  with P and k denoting the total and relative momenta of the 
bound system, respectively;1 ( ),P kΓ  stands for the BS vertex function being a 4 4×  
matrix, ( ) ( ) 1

0S p i p mγ −= ⋅ +  and ( ) ( ) ( )( ) 1
S p i pA p B pγ

−
= ⋅ +  are the propagators 

 

 

1Usually, for quarks of masses 1,2m  the partitioning parameters are chosen as ( )1,2 1,2 1 2m m mη = + . Howev-

er, in general the BS solution is independent of the choice of 1,2η . 
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of bare and dressed quarks, respectively with mass parameter m and the dressing func-
tions ( )A p  and ( )B p . In Euclidean space we use the Hermitian matrices  

4 0 , E Miγ γ γ γ= = −  which obey the anti-commutation relation { } ,, 2µ ν µ νγ γ δ= ; for the 
four-product one has ( ) 4

1 i iia b a b
=

⋅ = ∑ . The masses M of mesons as bound states of a 
m1-quark and m2-antiquark follow from the solution of BS equation, 2 2P M= − , in 
specific PCJ  channels, with the solution of the DS Equation (1) as input into the cal-
culations in Equation (2). The interaction between quarks in the pair is encoded in 

2g Dµν  imagined as gluon exchange. For consistency, the same interaction is to be em-
ployed in the DS Equation (1) for the inverse dressed quark propagator. 

Often, the coupled equations of the quark propagator S, the gluon propagator Dµν  
and the quark-gluon vertex function µΓ , all with full dressing (and, if needed, sup-
plemented by ghosts and their respective vertices), are considered as an integral formu-
lation being equivalent to QCD. In practice, due to numerical problems, the finding of 
the exact solution of the system of coupled equations for S Dµν µ− −Γ  can hardly be 
accomplished and therefore some approximations [5] [17] [18] are appropriate. Note 
that we must know the form of ( )D kµν  and ( ),k pµΓ , not only in the ultraviolet 
range, where perturbation theory is applicable, but also in the infra-red range, where 
perturbation theory fails and lattice simulations are to be corrected for finite-volume 
effects. ( )D kµν  and ( ),k pµΓ  satisfy DS equations. However, studies of these equa-
tions in QCD are rudimentary and are presently used only to suggest qualitatively reli-
able ansätze for these functions. That is why the quantitative studies of the quark DS 
equation to date have employed model forms of the gluon propagator and quark-gluon 
vertex. Leaving a detailed discussion of the variety of approaches in dressing of the 
gluon propagator and vertex function in DS equations (see e.g. Refs. [40] [41] and ref-
erences therein quoted) we mention only that in solving the DS equation for the quark 
propagator one usually employs truncations of the exact interactions and replaces the 
gluon propagator combined with the vertex function by an effective interaction kernel 

2g Dµν   . This leads to the truncated Dyson-Schwinger equation for the quark propa-
gator which may be referred to as the gap equation. In explorative calculations, the 
choice of the form of the effective interaction is inspired by results from calculations of 
Feynman diagrams within pQCD maintaining requirements of symmetry and asymp-
totic behaviour already implemented, cf. Refs. [5] [10] [18] [41]. The results of such 
calculations, even in the simplest case of accounting only for one-loop diagrams with 
proper regularization and renormalization procedures, are rather cumbersome for fur-
ther use in numerical calculations, e.g. in the framework of BS or Faddeev equations. 
Consequently, for practical purposes, the wanted exact results are replaced by suitable 
parametrizations of the vertex and the gluon propagator. Often, one employs an ap-
proximation which corresponds to one-loop calculations of diagrams with the full ver-
tex function νΓ , substituted by the free one, ( ),p kν νγΓ →  (we suppress the color 
structure and account cumulatively for the strong coupling later on). To emphasize the 
replacement of combined gluon propagator and vertex we use the notation 2g Dµν   , 
where an additional power of g from the second undressed vertex is included. 
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2.2. Choosing an Interaction Kernel 

Note that the nonperturbative behaviour of the kernel 2g Dµν    at small momenta, i.e. 
in the infra-red (IR) region, nowadays is not uniquely determined and, consequently, 
suitable models are needed. In principle, constraints on the infra-red form of the kernel 
can be sought from studies of the DS equations with the fully dressed gluon propagator, 

( )D kµν , and the dressed gluon-quark vertex ( ),p kνΓ . However, there is almost no 
information available from DS equation studies; the gluon propagator itself has been 
often studied via the gap equation, and from such studies one can merely qualitatively 
conclude that the gluon propagator is enhanced in the infra-red. There are several 
ansätze in the literature for the IR kernel, which can be formally classified in the two 
groups: i) the IR part is parametrized by two terms—a delta distribution at zero mo-
menta and an exponential, i.e. Gaussian term, and ii) only the Gaussian term is consi-
dered. In principle, the IR term must be supplemented by a ultraviolet (UV) one, which 
assures the correct asymptotics at large momenta. A detailed investigation [7] [42] of 
the interplay of these two terms has shown that, for bound states, the IR part is domi-
nant for light (u, d and s) quarks with a decreasing role for heavier (c and b) quark 
masses for which the UV part may be quite important in forming mesons with masses 

3 - 4 GeVqqM >  as bound states. In the vacuum, if one is interested in an analysis of 
light mesons with 3 - 4 GeVqqM ≤ , the UV term can be omitted. This is not the case 
for finite temperatures (T) where one can expect that at sufficiently large T some phase 
transition can occur and/or quark dissociation of mesons into quark degrees of free-
dom in hot matter. In such a temperature range, the IR term is expected to be screened 
[24] [25] and, consequently, the perturbative UV behaviour can become important 
even for light mesons. 

Following examples in the literature [2] [5] [9] [10] [12] [16] the interaction kernel 
in the rainbow approximation in the Landau gauge is chosen as  

( ) ( ) ( ) ( )( )2 2 2 2 2
2 ,IR UV

k k
g k k D k D k

k
µ ν

µν µνδ
 

= + − 
 


 

( ) ( ) ( )2 2
2 22 2

2 2
6 2

2

2

84π e , ,

ln 1

mk
IR UV

QCD

F kDkD k D k
k

ω
π γ

ω
τ

−= =
  
 + +   Λ  

        (3) 

where the first term originates from the effective IR part of the interaction determined 
by soft, non-perturbative effects, while the second one ensures the correct UV asymp-
totic behaviour of the QCD running coupling. In what follows we restrict ourselves to 
two models. i) The interaction consists of both the IR and UV terms: Such an interac-
tion is known as the Maris-Tandy (MT) model [2]. ii) The UV term is ignored at all: 
This interaction is known as Alkofer-Watson-Weigel [16] kernel, referred to as the 
AWW model. It should be noted that at zero temperatures these models, with only a 
few adjustable parameters—the IR strength D, the slope parameter ω  and quark mass 
parameter m in the AWW model and additionally τ , QCDΛ , mγ  and tm  in the 
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formfactor ( ) { }( )2 2 2 21 exp 4 tF k k m k = − −    in the MT model—provide a good de-
scription of the pseudoscalar, vector and tensor meson mass spectra [3] [4] [6] [7]. 
Therefore, at finite temperatures a tempting choice of the interactions is to keep them 
the same as in vacuum. 

2.3. Finite Temperatures 

The theoretical treatment of systems at non-zero temperatures differs from the case of 
zero temperatures. In this case, a preferred frame is determined by the local rest system 
of the thermal bath. This means that the ( )4O  symmetry is broken and, consequent-
ly, the dependence of the quark propagator on p  and 0p  requires a separate treat-
ment. To describe the propagator in this case a third function C is needed, besides the 
functions A and B introduced above for vacuum. Yet, the theoretical formulation of the 
field theory at finite temperatures can be performed in at least two, quite different, 
frameworks which treat fields either with ordinary time variable ( )t t−∞ < < ∞ , e.g. the 
termo-field dynamics (cf. [37]) and path-integral formalism (cf. [38] [39]), or with im-
aginary time it τ=  ( 0 1 Tτ< < ) which is known as the Matsubara formalism [33] 
[34] [35] [36]. In this paper we utilize the imaginary-time formalism within which the 
partition function is defined and all calculations are performed in Euclidean space. 
Since at 0T ≠  the (imaginary) time evolution is restricted to the interval [ ]0,1 T , the 
quark fields become anti-periodic in time with the period 1 T . In such a case the 
Fourier transform is not longer continuous and the energies 4p  of particles become 
discrete [33] [34] [35] which are known as the Matsubara frequencies, i.e.  

( )4 π 2 1np T nω= = +  for Fermions (n is an integer, running from minus to plus infin-
ity). The inverse quark propagator is now parametrized as  

( ) ( ) ( ) ( )1 2 2 2 2 2 2
4, , , , .n n n n nS i A i C Bω γ ω γ ω ω ω− = + +p p p p p           (4) 

Accordingly, the interaction kernel is decomposed in to a transversal and longitudin-
al part  

( ) ( ) ( )2 , , ,0 , , ,T T L L
mn mn mn gg D D D mµν µν µν Ω = Ω + Ω q q q           (5) 

where mn m nω ωΩ = −  and the gluon screening (Debye) mass gm  is introduced in the 

longitudinal part of the propagator, where 2 2 2 2
mn gq m= +Ω +q  enters. The scalar coef-

ficients ,L TD  are defined below. The projection operators ,L TPµν  can be written as  

2

2

0, , 4,

; , , 1, 2,3,

.

T

L T

q q

q q
P

q

α βµν
αβ

µ ν
µν µν µν

µ ν

δ µ ν α β

δ

=
=  − = =


= − −

q




                 (6) 

The gap equation has the same form as in case of 0T = , Equation (1), except that 
within the Matsubara formalism the integration over 4k  is replaced by the summation 
over the corresponding frequencies, formally  
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( ) ( )

4 3

4 3

d d .
2π 2πn

p pT
∞

=−∞

→ ∑∫ ∫                        (7) 

Then the system of equations for A, B and C to be solved reads (cf. also Ref. [29])  

( )
( )

( ) ( )

( ) ( )

( ) ( )

2 2
3 2 2

2 2 2

2

2 2 2

4 d, 1 2 1 , ,
3 2π

, 2 1 ,

2 1 , , , ,

T
n A m nm

m

mn
A m m C m

Lmn
A m nm g

A T D

q

D m
q

ω σ ω

σ ω ω σ ω

σ ω

∞

=−∞

  = + − Ω  
  

  Ω
+ + −  

 
 Ω − − Ω  

   

∑ ∫
k qk pkp k q

q p

pk pkk k
p p

qk pk k q
q p

     (8) 

( )
( )

( ) ( ) ( )2 2
3

4 d, , , 2 , ,0 , ,
3 2π

L T
n q nm g nm B m

m
B m T D m Dω σ ω

∞

=−∞

 = + Ω + Ω ∑ ∫
kp q q k  (9) 

( )
( )

( ) ( )

( ) ( )

2 2
3

2

2 2

4 d, 1 2 , , ,0
3 2π

1 2 , 2 , , ,

Tm
n C m nm

m n

Lmn m nm
C m A nm g

n n

C T D

D m
q q

ω
ω σ ω

ω

ω
σ ω σ

ω ω

∞

=−∞


= + Ω



  Ω Ω + − − + Ω   
     

∑ ∫
kp k q

qkk q

 (10) 

where = −q p k  and the propagator functions ( ),F F mσ σ ω= k  are defined by  

( ) ( )
( ) ( ) ( )2 2 2 2 2

,
,

, , ,
m

F m
m m m m

F
A C B

ω
σ ω

ω ω ω ω
=

+ +

k
k

k k k k
          (11) 

for ,F A B=  and C . The form of the interaction kernel is taken the same as at 
0T = , i.e. both the transversal and longitudinal parts consisting of two terms—the in-

fra-red and ultraviolet ones. The information on these kernels is even more sparse than 
in the case of 0T = . While the effective parameters of the kernel in vacuum can be 
adjusted to some known experimental data, e.g. the meson mass spectrum from the BS 
equation, at finite temperature one can rely on results of QCD calculations, e.g. by us-
ing results of the nonperturbative lattice calculations. There are some indications, cf. 
[43], that at low temperatures the gluon propagator is insensitive to the temperature 
impact, and the interaction can be chosen as at 0T =  with T LD D=  [24]. However, 
in a hot and/or dense medium the gluon is also subject to medium effects and thereby 
becomes effectively massive with finite transversal (known also as the Meissner mass) 
and longitudinal (Debye or electric) masses. Generally, these masses appear as inde-
pendent parameters with contributions depending on the considered process [44]. The 
role of the Meissner masses in the tDS equation at zero chemical potential is not yet 
well established and requires separate investigations. This is beyond the goal of the 
present paper where only the Debye mass, gm , is considered. It should be noted that, 
independently of the value of the chemical potential, in most approaches based on the 
tDS equation within the rainbow approximation it is also common practice to ignore 
the effects of Meissner masses. This is inspired by the results of a tDS equation analysis 
in the high temperature and density region [45] which report that the Meissner mass is 
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of no importance in tDS equation. At this level the Debye mass is the only T depending 
part of the kernel. The Debye mass is well defined in the weak-coupling regime. In [30] 
[46] [47] [48] it was found that the T-dependence of the Debye mass is in leading order  

2 2π 2 ,
3g s c fm N N Tα  = +                        (12) 

where cN  and fN  denote the number of active color and flavor degrees of freedom, 
respectively; the running coupling sα  in the one-loop approximation is  

( ) ( ) ( )
2 12π
4π 11 2s

c f

g E
E f E

N N
α ≡ =

−
                 (13) 

with E being the energy scale. For the temperature range considered in the present pa-
per we adopt ( ) 2f E → , which often employed [30] [46] [47] [48] choice for the 
Debye mass in the tDS equation. It should be noted, however, that such a choice of 
( )f E  is not unique. It may vary in some interval, in dependence on the employed 

method of infra-red regularization [34] [47]. Since the Debye mass enters as an addi-
tional energy parameter in 2 2 2 2

mn gq m= +Ω +q , which determines the Gaussian form of 
the IR part of the interaction (3), an increase of 2

gm  results in a shift of the tDS solu-
tion towards lower temperatures leaving, at the same time, the shape of the solution 
practically unchanged. Accordingly, smaller values of 2

gm  shift the solution towards 
larger temperatures. Our numerical calculations show that a decrease of 2

gm  by a fac-
tor of 2 results in a ~15% shift of the solution to larger temperatures. The transversal 
and longitudinal parts of the interaction kernel (5) can be cast in the form  

( ) ( ) ( )2 2 2 2, ,0 ,T
mn IR mn UV mnD D DΩ = +Ω + +Ωq q q             (14) 

( ) ( ) ( )2 2 2 2 2 2, , .L
mn g IR mn g UV mn gD m D m D mΩ = +Ω + + +Ω +q q q        (15) 

In the present paper we use several sets of parameters for the interaction kernel (3): 
1) 0.5 GeVω = , 21 GeVD = , 5 MeVum = , 115 MeVsm = ; results with these pa-

rameters are denoted as AWW (IR term only) [16] and MT1 (IR+UV terms) [2]. 
2) 0.4 GeVω =  and 20.93 GeVD = , 5 MeVum = , 115 MeVsm = ; MT2 [2]. 
3) AWW, MT1 and MT2 with a modified parameter D making it dependent on 

temperature; at low T it remains constant, equal to the values used in the AWW, MT1 
and MT2 sets, while at large temperatures, where the IR contribution is expected to be 
screened, the parameter D becomes a decreasing function of T. In this case, since the IR 
term vanishes, the AWW model is not applicable. It should be noted that all these 
models provide values for the vacuum quark condensate in a narrow corridor,  

( ) 3
0 0.0145 - 0.0159 GeVqq− = , and the correct π  and ρ  meson masses as quark- 

antiquark bound states [7]. 

3. Solutions of the tDS Equation in the Chiral Limit 
3.1. Order Parameters 

As seen from Equation (9) in the chiral limit, i.e. at 0qm = , the trivial solution  
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( ), 0nB ω =p  is possible, known as the Wigner-Weyl mode. It is of separate interest 
since this is the case where the dynamical chiral symmetry breaking is completely dis-
abled. In the present paper, however, we are interested in solutions with finite dynami-
cal quark masses given by the ratio B A , which enter the BS equation and determine 
accordingly the hadron bound states in a heat bath. Therefore, we will not consider the 
Wigner-Weyl mode solution and focus instead on 0B ≠  (Nambu-Goldstone mode). 
It should be also noted that even for 0B ≠  the sign of B is not defined. Equation (9) is 
invariant under B B→ − . The sign of the solution can be fixed only by fixing the sign 
of the initial conditions for B. Here we consider positive values of B. 

We solve numerically the system of Equations (8)-(10) by an iteration procedure. 
Since the UV term in the MT1 and MT2 models is logarithmically divergent, a regula-
rization of the integral over the internal momentum and summation over nω  is re-
quired. Usually, at 0T =  one employs an ( )4O  invariant cutoff Λ . The depen-
dence of the solution on Λ  is removed by choosing a subtraction scheme defined at a 
renormalization point µ ≤ Λ  such that ( ) ( )2 2 2 2 2 2, 1; ,A p B p mµ µ= Λ = = Λ = . In 
an analogous way one performs the renormalization procedure at finite temperature T 
[26] [29]. The only difference is that the internal momentum k  is restricted by the 
condition 2 2 2

nω+ ≤ Λk . At each iteration step this requires an interpolation of the 
previous solution to define the new Gaussian mesh for 2 2

max nω= Λ −k . In our calcu-
lations we employ a cubic spline interpolation procedure and a mapping  

0
1
1

xk k
x

+
=

−
                            (16) 

for the Gaussian integration with 0 0.85k =  for a mesh of 64 nodes. This provides a 
rather large cutoff 3

max 10 GeV cΛ = k  . The summation over nω  is truncated at a 
large value of maxn N= , where in our calculations max ~ 320N  for low temperatures 
and max ~ 250N  at temperatures 80 -100 MeVT >  are utilized. In Figure 1 and 
Figure 2 we exhibit the solution of the system (8)-(10) for the lowest Matsubara fre-
quency 0 πTω =  in dependence on the momentum p  at low temperature  
( 5 MeVT = , Figure 1) and higher temperature ( 100 MeVT = , Figure 2). A compari-
son with the vacuum solution [49] shows that qualitatively there is no difference of the 
solutions at finite T. To emphasize the dependence on the effective parameters D and 
ω , in Figure 1 and Figure 2 we present results of calculations for the two different sets. 
In Figure 1, left panel, the solutions ( )0,A ωp  are represented by solid and dashed 
curves, while the solutions ( )0,C ωp  by dotted and dash-dotted curves for MT1 and 
MT2 sets, respectively. The solutions ( )0,B ωp , left panel, are for MT1 (solid curve) 
and NT2 (dashed curve). The dependence on the values of the effective parameters is 
seen only at low momenta. In this region, the dependence is mainly determined by the 
slope parameter ω , cf. Equation (3), which is quite different for the two employed pa-
rameter sets. At larger momenta (cf. Figure 2), the common asymptotics is approached 
already at 10 GeV c>p .  

The dependence of the solution on the temperature is of particular interest. It is 
known that in dense and hot matter there may occur different kind of phase transitions.  
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Figure 1. (color online) Solutions of Equations (8)-(10) for the lowest Matsubara frequency 0ω  

at 5 MeVT =  in the chiral limit, 0qm = . The solution for 0.5 GeVω =  and 21 GeVD =  is 

labeled as MT1, while for the parameters 0.4 GeVω =  and 20.93 GeVD =  as MT2. Both sets 
of parameters include the IR and UV terms. In the left panel the solution for ( )0,A ωp  is de-

picted by solid (MT1) and dashed (MT2) curves, and ( )0,C ωp  by dotted and dash-dotted 

curves, respectively, while the right panel exhibits the function B for MT1 (solid) and MT2 
(dashed) kernels.  

 

 
Figure 2. (color online) Solutions of Equations (8)-(10) in the chiral limit, 0qm = , for the lowest 

Matsubara frequency 0 πTω =  at 100 MeVT =  for ( )0,A ωp  (left panel) and ( )0,C ωp  

(right panel). Solid (dashed) curves are for MT1 (MT2). Since the quantity B becomes negligibly 
small, 1010B −< , at 100 MeVT ≥  it is not exhibited in this figure. 

 
In SU(3) gauge theory, the deconfinement transition is of first order at  

( )270 MeVcT =  related to the center symmetry, while in 2 + 1 flavor QCD with 
physical quark masses it is a cross-over at ( )150 MeVcT = , see [50] [51] [52]. At 
non-zero baryon density, the liquid-gas phase transition at ( )20 MeVcT =  matters, 
and a critical end point of an additional first-order phase transition curve is still hypo-
thetical. According to the Columbia plot [53], two-flavor QCD in the chiral limit dis-
plays a first-order deconfinement and chiral restoration transition. The corresponding 
quantity which characterises such transitions is known as order parameter of the con-
sidered media. Natural candidates to be considered as order parameters or elements 
thereof are the mass function ( ), nB ωp  and the quark condensate qq , being an 
integral characteristics of the mass ( ), nB ωp  too. Order parameters determine the 
so-called critical temperature cT  or the cross-over region which will serve as an indi-
cator for a possible (phase) transition. 
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At high enough temperatures one expects a chiral restoration. This means that at a 
certain high value of the temperature the mass function B should vanish, indicating a 
possible phase transition in the hot matter. The lowest temperature at which 0B =  
holds is called the critical temperature cT , i.e. for the mass function ( ), nB ωp  the 
critical temperature can be defined as that value of T at which the solution ( ), nB ωp  
vanishes. Analogously, for the chiral condensate, cT  can be determined also as the 
temperature above which qq  vanishes. In principle, these two critical temperatures 
can be slightly different. 

The chiral condensate is defined by  

( )
( )

( )
( )

( ) ( ) ( )

3

3 2 2 2 2 2

d4 ,
2π

,d4 ,
, , ,2π

c n
n

n
c

n n n n n

qq N T Tr S

B
N T

A C B

ω

ω
ω ω ω ω

∞

=−∞

∞

=−∞

 = −  

= −
+ +

∑ ∫

∑ ∫

p p

pp
p p p p

     (17) 

where the trace is performed in spinor space. In Figure 3 we present results of calcula-
tions of the T-dependence of the mass solution B (left panel), and the normalized chiral 
condensate qq  (right panel) in the chiral limit 0qm = .  

One infers from this figure that in a large range of T the solution ( )00,B ω  is a 
smoothly decreasing function of T, except for a narrow interval where ( )00,B ω  
sharply decreases towards zero, as seen in Figure 4 where, for the sake of better deter-
mination of T for which ( )00, 0B ω → , the solution is presented in a log-scale. It 
should be stressed that for very small values of B ( 2010B −≤ ) the convergence of the 
iteration procedure for Equation (9) becomes rather poor. One needs to increase essen-
tially the number of iterations in order to achieve the same accuracy in the whole range 
of considered temperatures. In addition, the actual accurate calculations in the neigh-
bourhood of cT  are restricted by numerical manipulations with quantities close to the 
machine zero. These numerical effects hinder a precise determination of cT  in the 
chiral limit, 0m = . In our calculations, we analyse the values of B below 10−60 to de-
termine the interval for cT . An inspection of the numerical results shows that, for the 
MT1 model, the critical temperature is about 130 MeV, while for the MT2 model one 
has about 110 MeV. An analogous determination of cT  from the chiral condensate 
provides slightly different values, e.g. 128 MeVcT =  for MT1 and 105 MeVcT =  for 
the MT2 model. The AWW set provides values close to the MT1 model. The obtained 
values are by 20% smaller than that obtained from QCD calculations [54], which report 
a cross-over temperature cT  in the range [ ]~ 145,170 MeVcT  which is now nar-
rowed to (154 ± 9) MeV [55], however, for 2 + 1 flavor QCD with physical masses. It 
should be also noted that the general feature of the quark condensate, as a function of 
the temperature below the chiral transition limit, is established in a model independent 
way [56] [57] by the low-temperature expansion ( )2 2 4

0 1 8 ,qq qq T f Tπ
 = − −   

where fπ  is the pion decay constant in the chiral limit ( 93 MeVfπ ≈ ). Our results in 
Figure 3 are in a qualitative agreement with that. It should be emphasized that the 
above quoted values for cT  stem from the inspection of the numerical results of B and  
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Figure 3. (color online) Solutions ( )0,B ωp  from (9) in the chiral limit, 0qm = , for the lowest 

Matsubara frequency (left panel) and the chiral condensate (17) normalized at low T (right pan-
el) as functions of T. The dashed and solid curves are for the same effective parameters as in Fig-
ure 1. 

 

 
Figure 4. (color online) Solution ( )0,B ωp  from Equation (9), depicted in a log-scale, in the 

chiral limit, 0qm = , for the lowest Matsubara frequency. The solid, dashed and dot-dashed 

curves are for the MT1, MT2 and AWW models, respectively. The left panel exhibits the sharp 
dropping of ( )0,B ωp  in the vicinity of ~ 100 -105 MeVcT  which continues when extending 

the scale to even smaller values, as illustrated in the right panel. From the right panel one would 
infer that 110 MeVcT ≈  for the MT2 model and 130 MeVcT ≈  for the MT1 model. 

 
qq  at small values. On the linear scale in Figure 3 however, one infer instead values 

of about 120 MeV or even less. 

3.2. Spectral Representation above Tc 

Another important quantity characterizing the hot matter is the spectral representation 
of the retarded quark propagator. The Euclidean propagator can be transferred to Min- 
kowski space by an analytical continuation of the solution of the gap equation to real 
energies,  

( ) ( ), , .
n

M
n i i

S S i
ω ω η

ω ω
→ +

=p p                     (18) 

In Minkowski space, the dispersion relation for the quark propagator determines the 
spectral representation ( ),ρ ωp  which is directly related to the imaginary part of the 
propagator, ( ) ( ), 2 ,MSρ ω ω= − ℑp p . It means that in Euclidean space the same spec-
tral density ( ),ρ ωp  can be associated to the retarded quark propagator  
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( ) ( ),1, d .
2πn

n

S i
i
ρ ω

ω ω
ω ω

′
′=

′−∫
p

p                     (19) 

From this the importance of studying ρ  can be inferred. Note that, since the spec-
tral density characterises the propagation of a particle, the dispersion relations in our 
case are meaningful only in the (deconfinement) region cT T> , where quarks can be 
treated to some extent as quasi-particles. Recall that in Minkowski space the propagator 
of a free particle can be written as  

( ) 0 0 ,S p S S
E E

γ γ
ω ω

+ −
+ −

Λ Λ
= + = +

− +p p

                (20) 

where 2 2E m= +p p  is the energy of the particle and [ ]0 2E m Eγ γ±Λ = ± +p pp  
are the projection operators on positive and negative energy solutions, respectively, 
obeying , 1, 0± ± ± + − + −Λ Λ = Λ Λ +Λ = Λ Λ = . Therefore, for a free quark  

( ) ( )1 ,
2

Eρ ω δ ω± = p                        (21) 

i.e. the spectral functions ( )ρ ω±  characterize the propagation of quasi-particles with 
positive (normal) and negative (abnormal) energies. This can serve as a hint in para-
metrizing the spectral density ( ),ρ ωp  in Euclidean space. Owing to parity and rota-
tion symmetries, the Dirac structure of the quark spectral function at finite temperature 
is in general decomposed as  

( ) ( ) ( )( ) ( )4 4, , , , .v sρ ω ρ ω γ ρ ω γ ρ ω= + +p p p p p             (22) 

In the present paper we focus to two particular cases.  
i) Chiral limit, where the scalar, or “mass”, part ( ),sρ ωp  vanishes. In this case, the 

spectral function at negative energies describes the so-called plasmino mode [28]. In 
the chiral limit the projection operators ±Λ  are of a particularly simple form and the 
spectral density can be written as  

( ) ( ) ( ) ( ) ( )4 4ˆ ˆ1 1
, ,

2 2
i iγ γ γ γ

ρ ω ρ ω ρ ω+ −

+ −
= +

p p
p             (23) 

where ˆ ≡p p p .  

ii) Zero momenta: The projection operators are 41
2
γ

±
±

Λ =  and  

( ) ( ) ( )4 41 1
, 0 .

2 2
γ γ

ρ ω ρ ω ρ ω+ −
+ −

= = +p                (24) 

Note that at zero momenta the energy E of the quark can be associated to a mass Tm  
which in literature is referred to as the thermal mass, a subject of many investigations 
within lattice QCD, cf. [28]. Results of such calculations are often considered as “expe-
rimental” data for the corresponding quantity. This is an important issue, since the 
model calculations of Tm  can be related to “experimental” data and to serve as a guide 
in fixing the phenomenological parameters and to estimate the applicability of the 
model which is based directly on parametrisations and scale settings by vacuum meson 
physics. It can be shown that the quark propagator can be written in the same form 
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(23). So, in the chiral limit one can note  

( ) ( ) ( ) ( ) ( )4 4
4 4

ˆ ˆ1 1
, , , ,

2 2n n n

i i
S S S

γ γ γ γ
ω ω γ ω γ+ −

+ −
= +

p p
p p p        (25) 

where  

( ) ( ) ( )
( ) ( )2 2 2 2

, ,
, .

, ,
n n n

n
n n n

i C A
S

C A
ω ω ω

ω
ω ω ω±

±
= −

+

p p p
p

p p p
               (26) 

If one writes the dispersion relations for the model propagators (26)  

( ) ( ),1, d ,
2πn

n

S
i
ρ ω

ω ω
ω ω± =

−∫
p

p                     (27) 

then by inverting (27) one can obtain the (model) spectral density ( ),ρ ωp . Note that 
in model calculations the problem of inverting expressions like (27) is ill posed. Never-
theless, instead of inverting the equation (27), one can suggest a reliable parametriza-
tion for ( ),ρ ωp  which allows an analytical calculation of the integral over ω  and 
then to minimize the quantity  

( ) ( ) 2
,1 1, d ,

2 1 2π

N

N
n N n

S
N i

ρ ω
ω ω

ω ω
±

±
=−

∆ = −
+ −∑ ∫

p
p              (28) 

where the integral in Equation (28) must be preliminarily carried out analytically to 
leave the dependence only on nω  and effective parameters. In such a way one can find 
the effective parameters and estimate the behaviour of ( ),ρ ωp . 

The simplest parametrization for the spectral function at finite T is suggested by the 
case of a free quark propagator (21), i.e. one can expect that ( ),ρ ωp  exhibits two 
maxima. For the two-pole parametrization the spectral function reads  

( ) ( ) ( ) ( ) ( )1 1 2 2, .Z E Z Eρ ω δ ω δ ω+ = − + +p p p             (29) 

With such a parametrization the spectral function ( ),ρ ωp  describes the propaga-
tion of quasi-particles with the positive energy 1E  and aniti-particles with negative 
energy 2E ; the second term in (29) is known also as the plasmino mode [28]. The 
weights ( )1,2Z p  of the normal and plasmino modes play an important role in esti-
mating the phase transitions in hot matter. At zero momenta, one has 1 2E E=  and 

( ) ( )1 20 0 1 2Z Z= = = =p p . In this case the energy parameters determine the ther-
mal masses, 1,2 TE m= , which are predicted [28] in lattice QCD to be an increasing 
function of T and at 2cT T ≥  to be ~ 0.9Tm T . This important “experimental” result 
may be used in choosing the model kernels of the tDS equation. As the momentum p  
increases one expects that the plasmino mode vanishes and ( )1 1Z →p . 

In our calculations we use the Levenberg-Marquardt algorithm for minimization of 

N∆  in Equation (28). Results of calculations are exhibited in Figure 5.  
It can be seen that both, MT1 and MT2 models (solid and dashed curves in Figure 

5), provide increasing functions of T. However, the absolute values at 2 cT T≥  are far 
from that predicted by QCD [54]. It implies that, while at low temperatures the two 
models with vacuum parameters, maintain a satisfactory description of the quark  
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Figure 5. (color online) The scaled thermal masses as function of cT T  in the chiral limit. The 
dashed and solid curves are obtained with two different sets of the effective parameters, MT1 and 
MT2. The dot-dashed curve is obtained by the modified, T-dependent kernel of Equation (30). 

 
propagators at cT T> , the interaction kernel requires modifications, cf. Ref. [24] [25]. 
Such modifications are inspired by the fact that, at sufficiently large temperatures, 
thermodynamics should be describable in terms of a weakly interacting quark-gluon 
gas, and at asymptotically large temperatures all thermodynamic quantities should 
converge to the ideal gas limit (for a discussion of the lattice QCD approaching to the 
perturbative limit see, e.g. Ref. [50]). It means that, at large temperatures, the IR term in 
the interaction kernel must diminish or even vanish. A first attempt to modify the inte-
raction kernel was done in Ref. [24], where the weight D of the IR term above cT  is 
abruptly (via a step function) replaced by a phenomenological, T-dependent decreasing 
function. In the present paper we suggest another modification of the IR term which 
smoothly decreases at large T and, at the same time, does not affect the IR term at low 
T. To do so, we introduce a suppression function ( )1f T  which has a Heavyside 
step-like behavior at temperatures ~ cT T ,  

( ) ( )1
1 1 tanh ,
2

pT T
D D T Df T D

β
 −  

→ = = + −  
   

            (30) 

where the additional adjustable parameters are ~p cT T  and β  as some diffuseness of 
the IR interaction. With such a parametrization, at pT T  the weight D of the IR part 
is as in the vacuum, ( )D T D= , and at cT T , ( ) 0D T → . In our calculations we 
adopt 130 -140 MeVpT =  and 30 MeVβ = , which assures for both, MT1 and MT2 
models, a reasonable behaviour of the thermal masses ~Tm T  at 2 cT T≥ , see Figure 
5 (cf. also Ref. [54]). 

Another important characteristic is the behaviour of the plasmino mode as a func-
tion of the momentum p . We find, cf. also [24], that, while the energy of the normal 
mode monotonously increases with p  (as it should be), the plasmino mode decreas-
es up to a minimum value, than sharply increases approaching the normal mode at 
large p , see Figure 6-left panel. This does not mean at all that the role of plasmino 
mode is increasing too and becomes of the same importance as the normal one. In-
stead, the weight ( )2Z p  sharply decreases with increasing p , vanishing at large 
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p , cf. Figure 6-right panel. The local minimum of the plasmino mode is related to the 
Van Hove singularity.  

4. Solution of the tDS Equation at Finite Bare Masses 

At finite quark masses the solution of the tDS equation differs from the chiral limit in at 
least two aspects. First, the Wigner-Weyl mode is not longer a solution. Second, the in-
tegrals over p  are logarithmically divergent in the UV region. This means that a re-
gularization and renormalization procedure is required. To make the results finite one 
usually uses the Feynman method by introducing a cut-off parameter Λ  for the inte-
grals, followed by a subsequent reliable subtraction procedure [1] [29] [58]. In ap-
proximate models after performing the necessary regularizations and renormalizations 
have been performed, the effective phenomenological parameters are fixed in such a 
way that a bulk of the effects is already included. Numerically it implies that by choosing 
a large enough cutoff Λ  there is no need for further normalizations to solve the tDS eq-
uation. In our calculations, the integral over p  is performed up to 3

max ~ 10 GeV cp  
which assures an asymptotic behaviour of the solution ( ), 1nA ω →p , ( ), n qB mω →p  
and ( ), 1nC ω →p  with an accuracy better than ~0.1%. However, in further calcula-
tions involving , ,A B C  one shall bear in mind that additional divergences may be-
come apparent for another kind of calculations, and regularization procedures may be 
still required, as e.g. in calculations of the chiral condensate. At finite quark masses the 
chiral condensate is in fact quadratically divergent, cf. Equation (17). This is manifestly 
seen if one considers the quark condensate at 0T =  but 0qm ≠ ,  

( )
( )

( )
( ) ( )

3 24

44 20 2 2 2 2 2

d 1, d ,
8π2π

B

p B ppqq p p
p A p B p

σ= − = −
+∫ ∫p

 



  

        (31) 

where 2 2 2
4p p= +p . At large values of the momenta the asymptotic solution of the tDS 

equation becomes ( )2 1A p → , ( )2
qB p m→  and the integral (31) is quadratically di-

vergent. On can regularize it by subtracting at large momenta the asymptotic quark 
mass qm . Denote qB B m= + , where at large enough momenta maxp  the quantity  

 

 
Figure 6. (color online) Left panel: Energy of the normal (solid curve) and plasmino mode 
(dashed curve) as a function of the scaled momentum computed with the T-dependent interac-
tion (30). Right panel: The corresponding weights of the normal (solid curve), and plasmino 
modes (dashed curve) at 2.5cT T = . 
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( )maxB p  goes to zero which implies that at maxp p>   the dynamical chiral symmetry 
breaking vanishes, i.e. the mass function receives its asymptotic value ( )2

max qB p m
 . 

Now, if the cut off parameter is chosen large enough, maxpΛ >  , then  
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           (32) 

where 
2

2
2 ~ 0qm

ε =
Λ

, and the regularized condensate 
.renqq  does not depend on Λ .  

In obtaining (32) we put ~ 1A  and ~ qB m  in the second integral. Equation (32) il-
lustrates the quadratic divergence of the integral and, at the same time, hints to how the 
subtraction procedure is to be chosen to eliminate this divergence. With this in mind, 
one can define a renormalized (subtracted) quark condensate as  

0 0 . . ,
l h l hl l

ren ren
h h

m m
qq qq qq qq

m m
− = −                 (33) 

where lm  and hm  denote the mass of light, e.g. u, and heavy, e.g. s, quarks, respec-

tively. At 1l

h

m
m
 , Equation (33) determines the required renormalized, cut-off inde- 

pendent light-quark condensate. Exactly the same procedure is applied to determine 
the quark condensate at finite T, see also Ref. [30]. The remaining multiplicative diver-
gences can be removed by normalizing to quark condensate at zero temperature. 

In Figure 7 we present the dependence of the mass function ( )0,B ω0  and the chir-
al condensate qq  on the temperature at finite bare masses, 5 MeVlm =  and 

115 MeVhm = . From the figure one infers that, since ( )0,B ω0  and the chiral con-
densate qq  do not exactly vanish at large T, their asymptotic values cannot serve for 
a clear-cut definition of the critical temperature. Instead, one can use the method of the 
maximum of the chiral susceptibility, i.e. the maxima of the derivatives of B and/or 

qq  with respect to the quark bar mass, as well as the inflection point of the mass 
function or of the condensate, i.e. the maxima of the corresponding derivatives with 
respect to the temperature [30]:  

( ) ( ) ( )
2 2

0
2 2

d 0, d
; .

d dB qq

B qq
T T

T T
ω

χ χ= =                 (34) 

The (pseudo-)critical temperature cT  is fixed by the condition ( ) 0
c

B T T
Tχ

=
=  

and/or ( ) 0
c

qq T T
Tχ

=
= .  
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Figure 7. (color online) The solutions ( )00,B ω=p  of the tDS equation for the light-quark 

mass 5 MeVlm =  for the lowest Matsubara frequency (left panel) and quark condensate (17) 
(right panel) as a function of T. For MT1 (solid) and AWW (dashed) interaction kernels.  

 

 
Figure 8. (color online) The inflection points (second derivative with respect to temperature) for 
the mass function ( )00,B ω=p  (left panel) and for the normalized quark condensate, Equation 

(33) (right panel), as exhibited in Figure 7.  
 

Figure 7 and Figure 8 clearly demonstrate that the inflection points at finite quark 
bare masses provide much smaller (pseudo-)critical temperatures cT ; for all T-inde- 
pendent interactions one has ~ 100 MeVT , cf. also Ref. [32]. With the modified in-
teraction, Equation (30), for which the IR term is screened at large temperatures,  

200 MeVT > , the positions of the inflection points, which occur below  
( )140 MeVcT = , remain the same. This implies, for a better agreement with the lat-

tice QCD [29] [54], the interaction kernel, for finite bare quark masses, must acquire an 
appropriate dependence on the temperature also below cT . Another important issue of 
our analysis of the T-dependence of the IR term is that, starting from a relatively large 
temperature of ~ 100 MeVT , the dependence of the IR term is basically governed by 
the Debye mass which suppresses ( ), nB ωp  at large T. This is a hint that in the consi-
dered models the Debye mass has to be included only in the perturbative part of the in-
teraction, i.e. in the UV term only. 

5. Impact of the IR term 

Analysing the relative contributions of the IR and UV terms in the interaction we find 
that, while at 0T =  the UV term can be ignored in considering the hadron ground 
states [3], at finite temperatures the ultraviolet behavior can become important. 

In Figure 9, left panel, we present the separate contributions of the IR (dashed curve) 
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and UV (dash-dot-dot curve) terms to the tDS solution ( )00,B ω=p . It is clearly seen 
that the absolute contribution of the UV term becomes sizeably only at large tempera-
tures. However, in the full kernel (solid curve, with both UV and IR term), the influ-
ence of UV part is visible already at low T. This is because of interference effects and 
effects of higher Matsubara frequencies in the tDS Equation (1). Nevertheless, the over-
all shape of ( )00,B ω=p  and, consequently the inflection point, is entirely governed 
by the IR interaction term. As mentioned above, all the considered interactions provide 
a critical temperature significantly lower than the one in lattice QCD calculations. Ob-
viously, modifications of the kernel in the region above cT  similar to Equation (30) do 
not affect the behaviour of ( )0,B ω0  and qq  below such temperatures. Thus, a 
modification of the IR term in the whole range of T is required. A possible modification 
of the kernel is as follows: (i) in the IR term the Debye mass is omitted, (ii) the parame-
ter D receives a T-dependence similar to Equation (30), and (iii) the UV term, being 
inspired by perturbative QCD calculations, remains unchanged, i.e.  

( ) ( ) ( )2 2 2 2, , ,L
mn g IR mn UV mn gD m D D mΩ = +Ω + +Ω +q q q          (35) 

( ) ( ) ( ) ( )2 2
2 2 22 2

2 2 2
6 22 2

2

8π4π
e , .

ln 1

m gk
IR UV g

g

QCD

F k mD T k
D k D k m

k m
ω

γ

ω
τ

−
+

= + =
  + + +   Λ    

The new effective parameters of the modified kernel should smoothly approach their 
vacuum values as T approaches zero and must provide a suppression of the IR interac-
tion term above the (pseudo-)critical temperature. As in the previous case above, a 
simple expression simulating such a behaviour may be written by utilizing two sup-
pression functions with a Heavyside step function-like behaviour, one acting below cT  
and, the second one acting above cT , for example 

( ) 2 21 tanh 1 tanh exp ,p pT T T T
D T D a b Tα

β β

  −   −         = + − + − − −         ′           
  (36) 

 

 
Figure 9. (color online) Relative contributions of IR and UV terms to the solution ( )00,B ω=p  

of the tDS Equation (1) (left panel) and the quark condensate qq  (right panel) with IR term 

only (dashed curve), IR+UV terms (solid curve) (right panel). In the left panel, the dashed and 
dash-dot-dot curves represent the separate contributions of IR and UV terms, respectively. The 
solid curve is the total contribution of the IR+UV terms. Effective parameters of the kernel are 
for the MT1 model. 
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where , , , ,pT a b α β  and β ′  are new adjustable parameters. In Figure 10 we present 
an illustration of the change, according to Equation (36), of the IR parameter D, com-
puted with a particular choice of the effective parameters, 0.514a = , 0.25 GeVpT = , 

0.04 GeVβ = , 5b = , 0.06 GeVβ ′ = , and 110 GeVα −= . At low temperatures, D is 
practically equal to its vacuum value, smoothly increases with temperature (making the 
interference with the UV term more pronounced), up to a maximum value (~6%) 
around the critical temperature, then it is screened at larger temperatures, see also [24] 
[25]. 

The resulting solution ( )00,B ω=p , as well as the quark condensate qq  for the 
modified interaction are exhibited in Figure 11, where the solid and dashed curves are 
for the T-dependent solution for the MT1 and AWW models, respectively. It is clearly 
seen that the inflection points are shifted towards larger values of temperature, provid-
ing critical temperatures ~ 135 GeVcT  for AWW and ~ 140 GeVcT  for MT1, which 
now are better compatible with the above quoted lattice values. This persuades us that  

 

 
Figure 10. (color online) A possible dependence of the strength D of the IR term in the MT1 and 
AWW models on the temperature T (solid curve) in comparison with the case of constD =  
(dashed line). The solution ( )00,B ω=p  and the quark condensate qq  with such a modified 

interaction are exhibited in Figure 11. 
 

 
Figure 11. (color online) The tDS solution ( )00,B ω=p  (left panel) and the quark condensate 

qq  (right panel) obtained with the modified interaction, Equation (36). The solid and dashed 

curves represent results for the MT1 and AWW models, respectively. The dot-dashed curve is for 
the AWW solution with constD = .  
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the MT1 and AWW models with proper modifications of the interaction kernel can 
provide a reasonable description of the quark propagators and quark condensate at fi-
nite temperatures. Such a modified interaction can be used then in the BS equation to 
analyse the behaviour of mesons embedded in a hot environment. 

Obviously, the effective parameters in Equation (36) can be tuned further to obtain 
an improved agreement with lattice calculations. This is not the goal of the present pa-
per. We reiterate that we are interested in choosing an effective interaction suitable for 
solving the BS equation at finite temperature in a large interval of T, which can allow 
for performing qualitative analyses of the behaviour of mesons in hot (and dense) mat-
ter as well as to infer from this the relevant order parameters and other conditions for a 
possible phase transition at large temperature. 

6. Summary 

We have investigated the impact of various choices of the effective quark-gluon interac-
tion within the truncated rainbow approximations on the solution of the truncated Dy- 
son-Schwinger (tDS) equation at finite temperature. The ultimate goal is to establish a 
reliable interaction kernel adequate in a large range of temperatures which, being used 
in the Bethe-Salpeter equation, allows for an analysis of the behaviour of hadrons in hot 
matter, including possible phase transitions and dissociation effects. For this we inves-
tigate to what extent the models, which provide an excellent description of mesons at 
zero temperatures, can be applied to the truncated tDS equation at finite temperatures. 
We find that in the chiral limit at temperatures below a critical value cT  both models, 
with and without the ultraviolet term, describe fairly well the quark propagators. The 
critical temperature obtained from the condition of a zero of the mass function B 
and/or of the quark condensate is in agreement with calculations within the lattice or 
unquenched QCD. However, at temperatures above cT  the considered models with 
vacuum parameters fail to describe such important characteristics of the quark propa-
gators as the quark spectral functions, thermal masses, plasmino mode etc. To achieve 
agreement of the model calculations with QCD lattice results, a modification of the in-
teraction kernels is required. A simple change of the interaction is to suppress the con-
tribution of the IR term at large temperatures, thus making the interaction dependent 
on the temperature. At finite quark masses, the considered models seems to provide too 
small values for the (pseudo-) critical temperature which are by ( )50%  smaller than 
the ones found in lattice QCD. Modifications of the interaction in the same manner as 
for the chiral case, i.e. suppressing the IR term above cT , do not affect the values of the 
(pseudo-)critical temperatures defined by the maximum of the susceptibility of the 
function B or as the inflection point for the quark condensate. To obtain a larger value 
of the critical temperature the interaction kernel has to be modified also for smaller 
temperatures, even below ~ 100 MeVT . The Debye mass gm  plays a crucial role in 
parametrizing the IR term. An inclusion of gm  as a Gaussian exponential, cf. Equa-
tion (3), results in an essential suppression of the solution of the tDS equation at 

100 MeVT > , making problematic the attempts of obtaining larger cT , close to the lat-
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tice values. It seems that the Debye mass ought to be included only in the perturbative 
part of the interaction. The T-dependence of the IR term must be re-parametrized. The 
results of lattice calculations for the T-dependence of the quark condensate suggest that 
the T-dependence has to be chosen in such a way that at small temperatures the IR 
term approaches its vacuum value remaining constant or smoothly changing up to 

~ 140 -150 MeVT ; then it must be completely screened at larger temperatures. 
A more detailed parametrization of the IR term requires a separate and meticulous 

analysis of the tDS equation at finite T and will be done elsewhere. 
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Appendix 
Rainbow Truncation 

The gap equation can be written as [2]  

( )
( )

( ) ( ) ( )
4

1 2
2 4 1 4

d , ,
2 22π
a a

bare
qS p Z i p Z m Z g D p q S q q pµν µ ν

λ λ
γ γ

Λ− = + + − Γ∫  (37) 

where Dµν  is the dressed gluon propagator; νΓ , the quark-gluon vertex; 
Λ

∫  
represents a Poincaré invariant regularization of the four-dimensional integral, with Λ  
the regularization mass-scale; ( )barem Λ  denotes the current-quark bare massand 

( )2 2,iZ µ Λ  stand for the corresponding renormalisation constants, with µ  the re-
normalisation point, and aλ  is a GellMann matrix acting in color space. The solution 
of Equation (37) has the general form ( ) ( ) ( )1 2 2 2 2, ,S p i pA p B pγ µ µ− = ⋅ +  and is 
renormalized according to ( ) ( )1S p i p mγ µ− = ⋅ +  at a sufficiently large value of 2µ , 
with ( )m µ  the renormalized quark mass at the scale µ . Since the behaviour at high 
momenta 2 22 GeVp >  is fixed by perturbation theory and the renormalisation flow, 
in concrete calculations on needs specify the gap equation at low momenta, i.e. in the 
infra-red region. As mentioned above, in studies of the quark DS equation one has to 
employ reliable model forms of the gluon propagator and quark-gluon vertex, suitable 
for the whole range of momentum squared 2p . In rainbow-ladder truncation, which is 
leading-order in the most widely used scheme, cf. [5] [16] [19], this is achieved by 
adopting the requirements 2 1Z = , 4 bareZ m m= , where m is a phenomenological mass 
parameter, ( ),q pν νγΓ =  and  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 24π ,free

IR QCD

k k
Z g D k k D k D k k

k
µ ν

µν µν µνα δ
  = = + −    

    (38) 

where ( )2
QCD kα  is a smooth continuation of the perturbative-QCD running coupling 

to all values of spacelike-k2 fulfilling the constraint of being finite at the origin. The in-
fra-red term ( )2

IRD k  is constrained by the condition of the consistency with Ward 
identities for the tDS and tBS equations and to be negligibly small in the perturbative 
region, i.e. ( ) ( )2 2

IR QCDD k kα  at 2 22 GeVk ≥ . Otherwise, ( )2
IRD k  is a pure 

phenomenological term, the form of which can be only qualitatively inferred from lat-
tice calculations or from solution of a (truncated) set of Dyson-Schwinger equations for 
the quark and gluon propagators within some additional reasonable approximations. 
After choosing an explicit form of the interaction, the numerical values of the pheno-
menological parameters are determined from fitting empirical data. 
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