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Abstract 
 
In this paper we consider the arrival process of a multiserver queue governed by a discrete autoregressive 
process of order 1 [DAR(1)] with Quasi-Negative Binomial Distribution-II as the marginal distribution. This 
discrete time multiserver queueing system with autoregressive arrivals is more suitable for modeling the 
Asynchronous Transfer Mode(ATM) multiplexer queue with Variable Bit Rate (VBR) coded teleconference 
traffic. DAR(1) is described by a few parameters and it is easy to match the probability distribution and the 
decay rate of the autocorrelation function with those of measured real traffic. For this queueing system we 
obtained the stationary distribution of the system size and the waiting time distribution of an arbitrary packet 
with the help of matrix analytic methods and the theory of Markov regenerative processes. Also we consider 
negative binomial distribution, generalized Poisson distribution, Borel-Tanner distribution defined by Frank 
and Melvin(1960) and zero truncated generalized Poisson distribution as the special cases of Quasi-Negative 
Binomial Distribution-II. Finally, we developed computer programmes for the simulation and empirical 
study of the effect of autocorrelation function of input traffic on the stationary distribution of the system size 
as well as waiting time of an arbitrary packet. The model is applied to a real data of number of customers 
waiting for checkout in an airport and it is established that the model well suits this data. 
 
Keywords: Discrete Autoregressive Process of Order [DAR(1)], Multiserver ATM Multiplexer, Matrix 

Analytic Methods, Markov Renewal Process, Markov Regenerative Theory, Teleconference 
Traffic, Quasi-Negative Binomial Distribution-II, Generalized Poisson Distribution, Borel-Tanner 
Distribution 

1. Introduction 
 
In B-ISDN/ATM network, IP packets or cells of voice, 
video, data are sent over a common transmission channel 
on statistical multiplexing basis. The performance analysis 
of statistical multiplexer whose input consists of a super- 
position of several packetized sources is not a straight- 
forward one. The difficulty in modeling this type of tra- 
ffic is due to the correlated structure of arrivals. A com- 
mon approach is to approximate this complex non re- 
newal input process by analytically tractable arrival pro- 
cess, namely discrete autoregressive process (DAR). The 
impact of autocorrelation in traffic processes on queueing 
performance measures such as mean queue length, mean 
waiting times and loss probabilities in finite buffers, can 
be very dramatic. 

The DAR process, constructed and analyzed by Jacobs 
and Lewis [1] has developed into one of several standard 
tools for modelling input traffic in telecommunication 
networks. The discrete autoregressive process of order 1 
[DAR(1)] is known to be a good model for VBR coded 
teleconference traffic as in Elwalid et al. [2]. Kamoun 
and Ali [3] modeled an ATM multiplexer as a discrete 
time multiserver queueing system with on-off sources 
and studied the transient and stationary distribution of 
the number of packets in the system.  

Hwang and Sohraby [4] obtained the closed form ex- 
pression for the stationary probability generating fun- 
ction of the system size of the discrete time single server 
queue with DAR(1) input. Hwang et al. [5] obtained the 
waiting time distribution of the discrete time single server 
queue with DAR(1) input. Choi and Kim [6] analyzed a 
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multiserver queue fed by DAR(1) input. Kim et.al [7] 
derived mean queue size in a queue with discrete 
autoregressive arrival of order p.  

In this paper we analyzed a discrete-time multi-server 
queue with s servers (s > 0) having deterministic service 
times (specifically, service time is 1) and the following 
arrival process: Let Am be the number of arrivals at time 

. Then Am = Am–1 with probability β; other-
wise, Am is sampled independently from a quasi-negative 
binomial distribution-II. The stationary distribution of 
the waiting time in that queue is calculated numerically 
with a matrix analytic method. Specifically, the arrival 
process is first analyzed at embedded times when Am is 
sampled independently of Am–1 or when Am is less than 
the number of servers. This analysis reduces to an analy-
sis of a Markov chain of M/G/1 type as presented in 
Neuts [8]. Then the stationary distribution of Am at gen-
eral m is derived, which in turn gives the stationary dis-
tribution of the waiting time. 

0,1, 2,m  

The rest of the paper is arranged as follows. Quasi- 
Negative Binomial Distribution-II is described in Section 
2. Queues with input traffic as DAR(1) with marginal 
Quasi-Negative Binomial-II is explained in Section 3. 
Analysis of DAR(1) /D/s queue with marginal Quasi- 
Negative Binomial Distribution-II is given in Section 4. 
The stationary distribution of the Markov renewal pro- 
cess is given in Section 5. Deriving the stationary distri- 
bution of system size and waiting time of an arbitrary pa- 
cket is explained in Sections 6 and 7. The quantitative 
effect of the stationary distribution of system size and 
waiting time on the autocorrelation function as well as 
the parameters of the input traffic is illustrated numeri- 
cally in Section 8. The application to real data set is 
given in Section 9. 
 
2. Quasi Negative Binomial Distribution-II 
 
The quasi-negative binomial distribution (QNBD) obtained 
by Janardan [9], Sen and Jain [10] has the probability 
mass function as  
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where x be the number of occurrences. When p2 = 0 the 
QNBD reduces to negative binomial distribution (NBD) 
and when n = 1, QNBD reduces to quasi geometric dist- 
ribution (QGSD) for n = 1. QNBD tends to the Consul 
and Jain’s [11] generalized Poisson distribution. But un- 
fortunately the moments of this distribution appear in an 
infinite series which is not suitable for summation. The 

method of moments fails to provide quick estimates of its 
parameters. Hence Ahmad et al. [12] introduced a new 
model of quasi negative binomial distribution-II (QNBD- 
II). This new model has the probability mass function 
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 (2) 

When 2 0p   this new model reduces to negative 
binomial distribution. The probabilities of QNBD-II de- 
creases with the successive occurrences. This tendency 
of probabilities suggests its possible applications in 
reliability, biometry, and survival analysis. The QNBD-II 
is uni-model and only its first moment (mean) appears in 
compact form. The lower and upper bound of Mode M is  
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2.1. Remarks 
 
1) Let X be a quasi-negative binomial variate with 
parameters (n, ) and pmf given by (2). If  
such that 1

1 2,p p
=np

n 
  and 2 =np   then the random 

variable X tends to generalized Poisson distribution with 
parameters  ,  .  

2) Let X be a quasi-negative binomial variate with 
parameters (n, 1 2 ) and probability mass function is 
(pmf) is given by (2). If  such that 

,p p
n  1 =n   

where  then the random variable X tends to 
Borel-Tanner distribution defined by Frank and Melvin 
[13]  

1 =
2p

3) Let X be a quasi-negative binomial variate with 
parameters (n, 1 2 ) and pmf given by (2), then zero- 
truncated quasi-negative-binomial distribution-II tends to 
zero-truncated generalized Poisson distribution as  

.  

,p p

n 
 

3. Queues with DAR(1) Arrivals with Quasi 
Negative Binomial Distribution-II as 
Marginal 

 
The input ATM multiplexer with VBR coded telecon- 
ference traffic is assumed to be DAR(1) with quasi- 
negative binomial distribution-II as marginal. Let 

  : = 0,1, 2Y t t  be a sequence of i.i.d random vari- 
ables. Y(t) assumes positive values only and 

 = =xb P Y t x   , = 0,1, 2x , . When the input process 
has quasi-negative binomial distribution-II as marginal 
we have bx as the pmf of the form (2).  
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



Discrete Autoregressive Process of order 1 (DAR(1) 
 is defined by the regression equa- 

tion as  
  : 0,1,2,X t t  
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where  are i.i.d Bernoulli random 

variables with  and 

  : 1,2,3,Z t t  
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 Y t t

   is 

assumed to be independent of   . 

DAR(1) is determined by the parameter 

: 0 ,1,2,
  and the 

distribution  of Y(t), so that  : = 0,1, 2,xb x 
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The properties of DAR(1) are as follows 
1)  is stationary   : 0,1, 2X t t 
2) The probability distribution of X(t) is the same as 

the distribution of Y(t) 

  = = , = 0,1, 2xP X t x b x    

3) The autocorrelation function for X(t) at lag t is 
obtained as  

 
    

  
0 ; )

= = ,
0

t
Cov X X t
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Var X

  = 0,1, 2t  

the parameter   is the decay rate of the autocorrelation 
function. 

 
4. Analysis of DAR(1)/D/s Queue with 

Quasi-Negative Binomial-II as Marginal 
 
We assume that the input process is DAR(1) with 
quasi-negative binomial distribution-II distribution as the 
marginal distribution and there are s servers (s > 0) 
whose service occurs at constant rate. In this integer 
valued time queue, the time is divided into slots of equal 
size and one slot is needed to serve a packet by a server. 
We assume that packet arrivals occur at the beginning of 
slots and departures occur at the end of the slots. Here 

 represents packet arrivals so that 
X(t) is the number of packets arriving at the beginning of 
the t  slot. 

  : 0,1, 2X t t 

th







Let N(t) be the number of packets in the system say 
system size, immediately before arrivals at the beginning 
of the tth slot. Then 

 is a two dimensional Mar- 
kov process of M/G/1 queue type. The state space is  

     , : 0,1, 2N t X t t 

       0 , 0
= , = 0,1,2, 0,1,2  n n i

l n n i E
 

  

The number of phases is infinity. So the computation 
of stationary distribution of  
is not easy to work out.  

     , : 0,1, 2N t X t t 

In practice by matrix analytical method and using the 
theory Markov regenerative processes, we compute the 
stationary distribution of the new process at the em- 
bedded epochs  , = 0,1, 2t 

2 3< t t
 

 as follows, we have 0 10 < < <t t
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The packet arrivals at and after t  are independent of 
the information prior to t  given J . From this, it is 
observed that   =N J , : 0,1,2,  is the new 
Markov renewal process with state space 

   0,1,2 0,1 E s   

The probability transition matrix of the Markov 
renewal process is computed as follows.  

1) For 0,1,2n   and  0,1, , 1 i s
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2) For 0,1,2n     
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The transition probability matrix P 

Copyright © 2011 SciRes.                                                                                  AM 



K. K. JOSE  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

1162 

1








1 2 1 2

1 2 2 2

1 2 1

0 1 1

0 2 1

3 2

0

0 0

0 0 0 0

 

 

     

 

 

 

 

    

 

s s s s

s s s s

c s

s s

s s

s s

B A A A

B A A A

B A A A

A A A A

A A A

A A

 

 





 

 

 
 
 
 
 
 
 
 

 
 
 




 

 

0 0 0

= ,

0


   


i

i s

A i s

s g 

 
   
 
 

 

=0

= ,1
i

i j
j

B A i  s

<

 
We assume that the stability condition 

  =1
= = mm

E X t mb s      is satisfied. 

 
5. The Stationary Distribution of the 

Markov Renewal Process 
 

is obtained as above. 
Where the elementary matrices are 
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Consider   , , = 0,1, 2N J   , and 
 π = lim 0, 0ni = , = ,P N n J i n 
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 We apply 

matrix analytic method as described below. The 
transition probability matrix P has infinite order, so that 
it would have to be truncated before we implement 
matrix analytic method. We assume that there exists 
some index N such that  for all . That is 
we assume that the Markov chain does not jump more 
than N steps at a time so that the matrix is of finite order, 
see Latouche and Ramaswamy [14]. For a numerical 
illustration , consider the case when s = 5 and N = 14. 
Then the transition probability matrix P can be obtained 
as 
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By arranging the transition probability matrix into (sxs) 
matrices we get 
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In general we can symbolize the transition matrix P as  
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The elements of P can be written as 

1 2

1 2
0

1 2

ˆ =




   


s s s

s s s

s
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B A A
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
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 
 

 
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= 0,1, 2 ,n n  

1
ˆˆ = , = 1, 2,n nB A n n

   

A matrix P of the above structure is said to be of 
M/G/1 type, which underlines the similarity to the 
embedded Markov chain of the M/G/1 queue. With 
respect to the levels , the Markov chain is called skip free 
to the left, since in one transition the level can be 
reduced only by one. 

By the matrix analytic method we proceed as follows. 
Step 1: Find the minimal nonnegative solution G of 

the matrix equation  

=0

ˆ= n
n

n

G A G


  

G can be given by the following iteration See Breuer 
[15] 

0

1 0
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
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n
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n

k
k

G
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






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G is a stochastic matrix ,and hence we can stop the 
iteration procedure when 1 .1 <G   reaches where 

= 0.0001 . From this iteration we obtained the upper 
limit of k & =let n k 1 . From this  we come to 
know the truncated index N at which G becomes 
stochastic  

n

Step 2: Find  

=0
ˆ=

n n
nn

H B G


  

and a positive row vector h satisfying  =hH h
Step 3:  

0

1

0 1
=0 =1 =0

1

1
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ˆˆ=

ˆ , = 1, 2
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Step 4: Finally 

       ,0 , 1 1,0 1 1,π , π π π = ,

= 0,1, 2, ,

ns ns s nn s n s s Cx

n n

   



  


 

where 
1

=0
=

n

nn
C x



e


 
   and e is the s (s + 1) dimensional 

column vector whose components are all ones. 
 
6. Stationary Distribution of 

    , , = 0,1,2N t X t t   
 
Observe that    , , , = 0,1,2N J t     is a Markov 
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renewal process and 

     , : = 0,1, N t t X t t t   2

.



 given 

        , ,0 < , , = ,N X t N J n i      is 

stochastically equivalent to      , : = 0,1, 2N t X t t

given  Hence   0 0, = ,N J n i

    , : = 0,1, 2N t X t t

 

 is a discrete time Markov 
regenerative process with the Markov renewal sequence 
  , , : = 0,1,2    N J t . From the theorm See Kul- 

karni [16]  

       = lim , = , , = 0,1,2nj
t

p P N t X t n j n j


of 

     , : = 0,1, 2N t X t t  are determined by  

          
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We have 
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The numerator of Equation (3) is  

 ,
=0

π π , 0

π
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1
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We have 

   1

1

=0 =
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The denominator of Equation (3) is  
1 1
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where  is the stationary probability  0=0 =0
π  n

ll l

 

vector of the Markov process   whose 
transition probability matrix is 

: = 0,1,2J 
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The infinitesimal transition matrix of (5) is 

Q = 

  
   

 
1

0 1
=0

1 0 1

0 1 1

0 0 1




   



s

r
r

b b



b

 
 



  


    
     
 
 

  
 
  
 



 

The balance equations are  
= 0  &  e = 1Q   

By solving the balance equations we obtain the sta- 
tionary distribution of the Markov process 
 : = 0,1,2J   as  
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    (6) 

By substituting (6) into (4) we obtain the denominator 
of the right hand side of (3) as    

1

=
1 rr s

b
 

Theorem 6.1 
The stationary distribution or the limiting pro- 

babilities 

       = lim , = , , , = 0,1, 2nj
t

p P N t X t n j n j
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wise

j

7. Stationary Distribution of Waiting Time 
of an Arbitrary Packet 

 
Let W denote the waiting time of an arbitrary packet at 
steady state. Then for  = 0,1, 2 .w

P(W = w) = (Mean number of arrivals in a slot at 
steady state whose waiting time is w)/(Mean number of 
arrivals in a slot)  

Suppose that there are n packets immediately before 
arrivals at the beginning of the tth slot and that the 
number of packet arrivals is j at the beginning of the tth 
slot, so that N(t) = n and X(t) = j. Then the number of 
packets whose waiting time is w among the ones who 
arrive at the beginning of the tth slot is  

    
 

min 1 , , < < 1

min = , , =

0 other

s w n j sw n s w

n j sw s n sw n j

   
   



 

Therefore the mean number of arrivals in a slot at 
steady state whose waiting time w is  

 
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1 1

= 1 =1

min = ,

min 1 ,

sw

nj
n j sw n

s w

nj
n sw j

p n j sw s

p s w n



 
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 

 

 
 

Since the mean number of arrivals in a slot is  , the 
following theorem is obtained from (7). 

Theorem 7.1 
The distribution of the waiting time W of an arbitrary 

packet is given by 

   

 
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=0 = 1

1 1

= 1 =1

1
min = ,

min 1 , ,
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
  




   


 

   

 
8. Empirical Study 
 
The complementary distribution function of the station- 
ary system size when when λ = 2.5 and β = 0.3, 0.5, 0.7 
& 0.9 and the complementary distribution function of the 
stationary system size when β = 0.3 and p1 = 0.009, 
0.0015, 0.02 &0.024 (p2 = 0.0064, 0004, 0.002 & 0.0004) 
respectively are derived .  

The parameter β gives the information on the strength 
of correlation of the input process. Stationary system size 
is larger for the large β (see Figure 1). Also stationary 
system size stochastically increases when the parameter 
p1 of the input process decreases (see Figure 2). 

The complementary distribution function of the wait- 
ing time of an arbitrary packet,when λ = 2.5 and β = 0.3,  

 

Figure 1. Complementary distribution function of the sta- 
tionary system size, when p1 = 0.0045, p2 = 0.0082, λ = 2.5.  
 

 
Figure 2. Complementary distribution function of the sta- 
tionary system size, when λ = 2.5, β = 0.3. 
 
0.5, 0.7 & 0.9 and the complementary distribution func- 
tion of the waiting time when β = 0.3 and p1 = 0.009, 
0.0015, 0.02 & 0.024 (p2 = 0.0064, 0004, 0.002 & 0.0004) 
respectively are derived. 

Stationary waiting time of an arbitrary packet, is larger 
for large β (see Figure 3). Also stationary waiting time 
of an arbitrary packet, stochastically increases when the 
input parameter p1 decreases (see Figure 4). We assume 
the number of servers to be 3 

Tables 1-3 display the stationary probabilities of the 
system size for different values of 1 2, ,&p p  .  

Tables 4 and 5 display the stationary probabilities of 
waiting time of an arbitrary packet for different values of 

1 &p  . 
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Figure 4. Complementary distribution function of the wait- 
ing time of an arbitrary packet, when β = 0.3. 

Figure 3. Complementary distribution function of the wait- 
ing time of an arbitrary packet,when p1 = 0.009, p2 = 0.0064. 

  
Table 1. Showing the values of distribution of stationary system size P(n, j) for λ = 2.5, β = 0.1, p1 = 0.0045, p2 = 0.0082 and s = 3. 

j 

n 0 1 2 3 4 5 6 7 8   

0 0.5148 0.1005 0.0460 0.0264 0.0158 0.0114 0.0086 0.0067 0.0054   

1 0.0460 0.0090 0.0090 0.0026 0.0031 0.0011 0.0008 0.0006 0.0005   

2 0.0135 0.0026 0.0495 0.0007 0.0007 0.0014 0.0002 0.0001 0.0001   

3 0.0104 0.0021 0.0009 0.0005 0.0004 0.0003 0.0010 0.0001 0.0001   

4 0.0081 0.0016 0.0007 0.0004 0.0003 0.0003 0.0002 0.0007 9.E - 04   

5 0.0005 0.0012 0.0005 0.0003 0.0002 0.0001 0.0001 0.0001 0.0006   

6 0.0043 0.0009 0.0004 0.0002 0.0001 0.0001 0.0001 8.E-04 0.0001   

7 0.0034 0.0006 0.0003 0.0001 0.0001 0.0001 8.E - 04 6.E-04 5.E - 04  

8 0.0028 0.0005 0.0002 0.0001 0.0001 8.E-04 6.E - 04 0.0001 4.E - 04   

9 0.0028 0.0005 0.0002 0.0001 0.0001 8.E-04 7.E - 04 5.E - 04 4.E - 04   

10 0.0023 0.0004 0.0002 0.0001 9.E - 04 6.E-04 5.E - 04 4.E - 04 8.E - 04  

11 0.0019 0.0003 .00017 00011 7.E - 04 5.E-04 4.E - 04 3.E - 04 3.E - 04  

                     

 
Table 2. Showing the values of distribution of stationary system size P(n, j) for λ = 2.5, β = 0.3, p1 = 0.009, p2 = 0.0094 and s = 3. 

j 

n 0 1 2 3 4 5 6 7 8   

0 0.5875 0.1148 0.1413 0.0300 0.0020 0.0014 0.0010 0.0008 0.0006   

1 0.0009 0.0001 0.0100 0.0004 0.0018 2.E - 04 1.E - 04 1.E - 04 1.E - 04   

2 0.0097 0.0046 0.0682 00206 0.0040 0.0054 0.0005 0.0003 0.0003   

3 0.0001 3.E - 05 2.E - 05 4.E - 05 0.0014 2.E - 05 0.0009 1.E - 05 9.E - 05   

4 8.E - 05 1.E - 05 1.E - 05 3.E - 05 0.0013 0.0011 1.E - 05 0.0007 7.E - 05   

5 2.E - 05 1.E - 05 7.E - 05 2.E - 05 0.0012 2.E - 05 2.E - 05 1.E - 05 0.0006   

6 3.E - 05 1.E - 05 8.E - 05 2.E - 05 0.0010 0.0010 0.0008 1.E - 05 9.E - 05   

7 3.E - 05 6.E - 06 5.E - 06 1.E - 05 0.0009 1.E - 05 1.E - 05 1.E - 06 1.E - 06   

8 3.E - 05 6.E - 06 5.E - 06 1.E - 05 0.0009 1.E - 05 1.E - 05 1.E - 06 1.E - 06   

9 0.0016 0.0007 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 0.0007   

10 2.E - 05 4.E - 06 3.E - 06 1.E - 05 0.0007 0.0008 1.E - 05 2.E - 06 0.0005   

11 1.E - 05 3.E - 06 1.E - 06 9.E - 06 0.0006 1.E - 05 2.E - 06 1.E - 06 8.E - 06   

                      
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Table 3. Showing the values of distribution of stationary system size P(n, j) for λ = 2.5, β = 0.3, p1 = 0.024, p2 = 0.0004 and s = 3. 

j 

n 0 1 2 3 4 5 6 7 8   

0 0.0922 0.1530 0.1759 0.1358 0.0605 0.0320 0.0147 0.0060 0.0022   

1 0.0064 0.0150 0.0208 0.0190 0.0266 0.0040 0.0020 0.0008 0.0003   

2 0.0603 0.0089 0.0111 0.0115 0.0131 0.0120 0.0012 0.0005 0.0001   

3 0.0024 0.0060 0.0077 0.0073 0.0072 0.0030 0.0052 0.0003 0.0001   

4 0.0013 0.0032 0.0044 0.0041 0.0040 0.004 0 0.0010 0.0019 6.E - 05   

5 0.0001 0.0017 0.0021 0.0022 0.0021 0.0010 0.0006 0.0003 0.0007   

6 0.0004 0.0010 0.0013 0.0013 0.0012 0.0010 0.0017 0.0002 0.0001   

7 0.0002 0.0005 0.0007 0.0007 0.0006 0.0001 0.0004 0.0001 6.E - 05   

8 0.0001 0.0002 0.0003 0.0003 0.0003 0.0004 0.0002 0.0006 4.E - 05   

9 7.E - 05 0.0001 0.0002 0.0002 0.0002 0.0002 0.0005 0.0001 4.E - 05   

10 4.E - 05 9.E - 05 0.0001 0.0001 0.0001 0.0002 0.0001 6.E - 05 0.0002   

11 2.E - 05 4.E - 05 6.E - 05 6.E - 05 6.E - 05 8.E - 05 7.E - 05 4.E - 05 3.E - 05   

                      

 
Table 4. Showing the values of the distribution of waiting time of an arbitrary packet P(W = ω) for different values of β and λ 
= 2.5, p1 = 0.009, p2 = 0.0064 and s = 3. 

β
 

ω 0.1 0.3 0.5 0.7 0.9 

0 0.2332 0.2326 0.2306 0.2270 0.2211 

1 0.1096 0.0991 0.0832 0.0598 0.0245 

2 0.0499 0.0473 0.0432 0.0359 0.0187 

3 0.0280 0.0289 0.0285 0.0257 0.0158 

            

 
Table 5. Showing the values of the distribution of waiting time of an arbitrary packet P(W = ω) for different values of p1, β = 
0.3, and s = 3. 

p2 

 0.0082 0.0064 0.004 0.002 0.0004 

p1 

ω 0.0045 0.009 0.015 0.02 0.024 

 

0 0.2326 0.3748 0.4847 0.5303 0.5944 

1 0.0991 0.1790 0.2407 0.2267 0.2229 

2 0.0473 0.0898 0.1102 0.0890 0.0636 

3 0.0289 0.0543 0.0569 0.0341 0.0179 

            

 
9. Analysis and Modeling of a Data Set  
 
In this section we apply the model to a data on the 
number of initially waiting customers for checking in an 
airport for a time period of 30 minutes each 

. The data was collected from morning 
8.00 A.M to 11.30 P.M for one week. This includes all 
the busy periods as well as idle periods. The data is taken 
from the file customer checkout.xlsx available in [17]. 
Table 6 gives the frequency distribution of the corre- 

sponding data, where x is the number of customers 
initially waiting for the service. 

 = 0,1, ,30t 

In the present paper we assumed the number of arrivals 
as DAR(1) with marginal Quasi Negative Binomial II 
distribution. Thus the data set can be fitted to the the 
Quasi Negative Binomial II distribution as follows. 

To test whether there is a significant difference be- 
tween an observed distribution and the Quasi Negative 
Binomial II distribution, we use Kolmogorov-Smirnov 
[K.S.] test for 0H : Quasi Negative Binomial II distri-  
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Table 6. Table showing the frequency distribution of the 
number of customers waiting for checkout. 

x frequency x frequency 

0 43 12 8 

1 49 13 2 

2 47 14 5 

3 44 15 3 

4 29 16 3 

5 22 17 2 

6 30 18 0 

7 14 19 1 

8 15 20 0 

9 5 21 1 

10 8 22 1 

11 4 Total 336 

 
bution with parameter p1 = 0.021 and p2 = 0.00513 is a good 
fit for the given data. Here the calculated value of the 
K.S. test statistic is 0.017857 and the critical value 
corresponding to the significance level 0.01 is 0.088924, 
showing that the assumption for number of arrivals 
follow Quasi Negative Binomial II distribution is valid 
(see Figure 5).  

By applying matrix analytic method we obtain the 
stationary distribution of system size and waiting time of 
an arbitrary customer for the Quasi Negative Binomial 
II/D/s queue. Here the mean = λ =4.3125. To satisfy the 
stability condition we assume the number of servers as 

. Also we assume the value of autocorrelation func- 
tion 

= 5s
= 0.1 , 1  and 2 . Tables 7 

and 8 display the stationary distribution of waiting time 
of an arbitrary customer and system size. 

= 0.021p = 0.00513p

 

 

Figure 5. The Probability histogram of real data and the 
Quasi Negative Binomial II distribution with p1 = 0.021 and 
p2 = 0.00513. 
 
Table 7. Table showing the stationary distribution of wait- 
ing time of an arbitrary customer P(W =ω)when β = 0.1, λ = 
4.3125, s = 5. 

w p(w) 

0 0.2832 

1 0.1195 

2 0.0589 

3 0.0380 

    

 
Table 8. Table showing the stationary distribution of system size P(n, j) when β = 0.1, λ = 4.3125, s = 5. 

j 

n 0 1 2 3 4 5 6 7 8 9   

0 0.102 0.123 0.114 0.094 0.075 0.058 0.041 0.031 0.024 0.019   

1 0.007 0.009 0.008 0.008 0.008 0.004 0.003 0.002 0.001 0.001   

2 0.005 0.006 0.007 0.006 0.007 0.003 0.002 0.001 0.001 0.001   

3 0.004 0.005 0.005 0.005 0.005 0.003 0.002 0.001 0.001 0.001   

4 0.004 0.005 0.005 0.005 0.005 0.003 0.002 0.001 0.001 0.001   

5 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.031 0.000 0.000   

6 0.002 0.003 0.003 0.003 0.003 0.001 0.001 0.000 0.000 0.000   

7 0.002 0.002 0.002 0.002 0.002 0.0033 0.000 0.000 0.000 0.000   

8 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000   

9 0.001 0.001 0.001 0.001 0.001 0.001 0.007 0.000 0.000 0.000   

                        
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0. Conclusions 

In this paper we analyze DAR(1)/D/s queue with Quasi- 
Negative Binomial Distribution-II as the marginal distri- 
bution. Based on the matrix analytic methods and by 
using the theory of Markov regenerative processes, we 
obtained the stationary distributions of the system size 
and the waiting time of an arbitrary packet. From the 
definition of autocorrelation function we can say that the 
larger the parameter β, the slower the decay of the 
autocorrelation of the input process. So it is expected that 
stationary system size and waiting time for the case of 
large β are stochastically larger than those for the case of 
small β. Also the stationary system size and waiting time 
increases when the input parameter  decreases. 1p
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