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Abstract 
 
In this paper, a new nonlinear conjugate gradient method is proposed for large-scale unconstrained optimiza-
tion. The sufficient descent property holds without any line searches. We use some steplength technique 
which ensures the Zoutendijk condition to be held, this method is proved to be globally convergent. Finally, 
we improve it, and do further analysis. 
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1. Introduction 
 
The nonlinear conjugate gradient method is designed to 
solve the following unconstrained optimization problem: 

min ( ),f x   nx
where  is a smooth nonlinear function, and 
the gradient of 

: nf  
f  at x  is denoted by ( )g x . The it-

erative formula of the conjugate gradient methods is 
given by 

1k k k kx x t d   ,        (1.1) 0,1,...,k 

where k  is a steplength which is computed by carrying 
out some line search,  is the search direction defined 
by 
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where k  is a scalar, kg  denotes ( )kg x . 
There are some well-known formulas for k , which 

are given as follows: 
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where 1k k k , and 1y g g     stands for the Euclid-
ean norm of vectors. 

In addition, the sufficient descent condition is defined 

as follows: 
2T

k k kg d c g  ,             (1.5) 

where , has often been used in the literature to 
analyze the global convergence of conjugate gradient 
methods with inexact line searches. 

0c 

Generally, the PRP method was much better than the 
FR method judging from the numerical calculation. 
When the objective function was convex, Polak and Ri-
bie`re proved that the PRP method with the exact line 
search was globally convergent. But Powell showed that 
there existed nonconvex functions on which the PRP 
method did not converge globally. He suggested that k  
should not be less than zero. Under the sufficient descent 
condition, Gilbert and Nocedal proved that the modified 
PRP method  max 0, PRP

k  k  was globally conver-
gent with the Wolfe-Powell line search. 

Recently, G. Yu [3] proposed a modified FR (MFR) 
formula such as 

2

1
k 2

2 1 3 1

( ) ,kMFR

T
k k k

g

g d g


 

  




    (1.6) 

where 1 (0, ),    2 1 1, ,     3 0,    and 

1  was an any given positive constant. They proved that 
for any line search, (1.6) satisfied the condition (1.5), in  

which 1

2

1c



  . In fact, the term 2
T
k k 1g d   in the  

denominator of (1.6) played an important role in en-
hancing descent. It essentially controled the relative 
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weight placed on conjugacy versus descent. Along this 
way, G. Yu [3] proposed a new nonlinear conjugate gra-
dient formula such as 
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              (1.7) 

in which 1  . It possessed the sufficient descent 
property for any line search, and had an advancement 
that the directions would approach to the steepest descent 
directions while the steplength was small. They also 
proved the algorithm which possed the global conver-
gence property with the weak Wolfe-Powell. 

Z. Wei [4] proposed a new nonlinear conjugate gradi-
ent formula such as 
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In [4], a new conjugate gradient formula *
k  was 

given to compute the search directions for unconstrained 
optimization problems. It was discussed some general 
convergence results for the proposed formula with some 
line searches such as the exact line search, the Wolfe- 
Powell line search and the Grippo-Lucidi line search. 
The given formula , and had the similar form 
with 

* 0k 
PRP
k . 

Combining the algorithms above, in this paper, we 
propose a new modified scalar formula ( )N

k  , denoted 
( )MN

k  , the new algorithm calls MN algorithm, where 
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in which 1  . We add some parameters for ( )MN
k   

so that it is generalization, then we have VMN algo-
rithm 

2

1 1
1

k 2

2 1 3 1

( )

k T
k k

kVMN

T
k k k

g
g g g

g

g d g


 

 




 


 

 


k




,    (1.10) 

in which 1 (0, ),    2 1 1, ,     3 (0, ),    
and 1  is any given positive number, calls VMN algo-
rithm. 

In the next section, we present the global convergence 
of MN algorithm and establish some good properties for 
which. The global convergence results of VMN algo-
rithm are given in Section 3. Finally, we have a conclu-
sion section. 

2. The Global Convergence of MN Algorithm 
 

Firstly, we can prove ( )MN
k   in (1.9) is non-negative, 
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The following theorem shows that MN algorithm pos-
sesses the sufficient descent property for any line search. 

Theorem 2.1. Consider any method (1.1) and (1.2), 
where ( )MN

k k   .Then for all  1k 

21
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Proof. If 1 0T
k kg d  , for 1  , then we have 
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Otherwise, from the definition of k ( )MN  , we can 
Obtain  
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From 
2

1 1 1 0Tg d g   , we can deduce that (2.1) 
holds for all . 1k 

In order to establish the global convergence result for  
MN algorithm, we will impose the following assumptions. 

Assumption A. 
1) The level set  

 0( ) ( )nx R f x f x     is bounded. 

2) In some neighborhood  of ,N  f  is differenti-
able and its gradient g  is Lipschitz continuous, that is 
to say, there exists a constant  such that 0L

( ) ( ) ,g x g y L x y   , .x y N        (2.2) 

By using the Assumption A, we can deduce that there 
exists B and  such that 0M 

,x B  ( ) ,g x M        (2.3) .x 

Copyright © 2011 SciRes.                                                                                  AM 



H. FAN  ET  AL. 1121 
 

The following important result is obtained by Zoutendijk 
[5]. 

Lemma 2.2. Suppose that Assumption A holds. Con-
sider any iteration method of the form (1.1) and (1.2), and 

 is obtained by the Wolfe line search (1.4). Then kt

 2
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             (2.4) 

Then we will analyse the global convergence property of 
MN algorithm. 

Gilbert and Nocedal [6] introduced the following Prop-
erty A which pertains to the PRP method under the suffi-
cient descent condition. Now we will show that this Prop-
erty A pertains to the new method. 

Property A. Consider a method of form (1.1) and (1.2). 
Suppose that 

0 .kg                (2.5) 

We say that the method has Property A, if for all , 
there exist constants  

k
1,b  0   such that k b   

and we have 
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2k b
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The following lemma shows that the new method has the 
Property A. 

Lemma 2.3. Consider the method of form (1.1) and (1.2) 
in which k ( )MN

k   . Suppose that Assumption A 
holds, then the method has Property A. 
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By the Assumption A (2) and (2.2) hold, if 1ks   , 
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The proof is finished. 
If (2.5) holds and the methods have Property A, then the 

small steplength should not be too many. The following 
lemma shows this property. 

Lemma 2.4. Suppose that Assumption A and (1.5) hold. 
Let  kx  and  kd  be generated by (1.1) and (1.2) in 
which k  satisfies the Wolfe-Powell line search, kt   
has Property A. If (2.5) holds, then, for any 0  , there 
exist N  and 0k N  , for all , such that 0k k

, 2k
 


 , 

where 

 , 1: 1,k ii Z k i k s 
         , ,k

   

denotes the number of the ,k
  . 

Lemma 2.5. Suppose that Assumption A and (1.5) hold. 
Let  kx  be generated by (1.1) and (1.2), k  satisfies 
the Wolfe-Powell line search, and 

t
0k   has Property 

A. Then, 

lim inf 0.kk
g


  

The proofs of Lemmas 2.4 and 2.5 had been given in [7]. 
By the above three lemmas, it is easy to obtain the follow-
ing convergence result. 

Theorem 2.6. Suppose that Assumption A holds. Let 
 kx  be generated by (1.1) and (1.2),  satisfies the k

Wolfe-Powell line search, 
t

k  is computed by (1.9), 
then 

lim inf 0.kk
g


  

 
3. The Global Convergence of VMN  

Algorithm 

In this section we will add some parameters of ( )MN
k   

so that it is generalization, then we have VMN algorithm 
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Table 1. The detail information of numerical experiments for MN algorithm. 

No.  0x  kx  kg  k  

S201 (8, 9) 
(5.00000000000007, 
6.00000000000002) 

5.338654227543967e−013 2 

S202 (15, −2) 
(11.41277974501077, 
−0.89680520867268) 

7.343412874359107e−007 30 

S205 (0,0) 
(3.00000000072742, 
0.49999999510645) 

2.411787046907220e−007 12 

S206 (−1.2, 1) 
(1.00000000400789, 
1.00000020307759) 

3.907063255896894e−007 5 

S311 (1, 1) 
(−3.77931025686871, 
−3.28318599743028) 

5.006611497285485e−007 6 

S314 (2, 2) 
(1.79540285273286, 
1.37785978124895) 

7.487443339742852e−008 6 

 
in which  

1 (0, ),      2 1 1, ,     3 1( , )   , 

1  is any given positive number. 
Theorem 3.1. Suppose that Assumption A holds. Let 

Let  kx  be generated by (1.1) and (1.2), k  satisfies 
the Wolfe-Powell line search, and 

t
0k   has Property 

A. Then, 

lim inf 0kk
g


  

Similar to the second part of the discussion for the above 
general algorithm ( )VMN

k  , we can get . 
And the algorithm possesses the sufficient descent prop-
erty, in which 

( ) 0MN
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1

2

1c



   

The proof is similar as the one of Theorem 2.1 in Sec-
tion 2. 
 
4. Numerical Experiments 
 
In this section, we carry out some numerical experiments. 
The MN algorithm has been tested on some problems 
from [8]. The results are summarized in Table 1. For the 
test problem, No. is the number of the test problem in [8], 

0x  is the initial point, kx  is the final point,  is the 
number of times of iteration for the problem.  

k

Table 1 shows the performance of the MN algorithm 
relative to the iteration. It is easily to see that, for all the 
problems, the algorithm is very efficient. The results for 
each problem are accurate, and with less number of times 
of iteration. 
 
5. Conclusions 
 
In this paper, we have proposed a new nonlinear conjugate 
gradient method-MN algorithm. The sufficient descent 

property holds without any line searches, and the algorithm 
satisfys Property A. We also have proved, employing some 
steplength technique which ensures the Zoutendijk condi-
tion to be held, this method is globally convergent. Judging 
from the numerical experiments in Table 1, compared to  
most other algorithms, MN algorithm has higher precision 
and less number of times of iteration. Finally, we have 
proposed VMN algorithm, it also have the sufficient de-
scent property and Property A, and it is global convergence 
under weak Wolfe-Powell line search. 
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