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Abstract 
Backgrounds: Although many disease-associated common variants have been dis-
covered through genome-wide association studies, much of the genetic effects of 
complex diseases have not been explained. Population-based association studies are 
vulnerable to population stratification. A possible solution is to use family-based 
tests. However, if tests only estimate the genetic effect from the within-family varia-
tion to avoid population stratification, they may ignore the useful genetic informa-
tion from between-family variation and lose power. Methods: We have developed an 
adaptive weighted sum test for family-based association studies. The new test uses 
data driven weights to combine two test statistics, and the weights measure the 
strength of population stratification. When population stratification is strong, the 
proposed test will automatically put more weight on one statistic derived from with-
in-family variation to maintain robustness against spurious positives. On the other 
hand, when the effect of population stratification is relatively weak, the proposed test 
will automatically put more weight on the other statistic derived from both with-
in-family and between-family variation to make use of both sources of genetic varia-
tion; and at the same time, the degrees of freedom of the test will be reduced and 
power of the test will be increased. Results: In our study, the proposed method 
achieves a higher power in most scenarios of linkage disequilibrium structure as well 
as Hap Map data from different genes under different population structures while 
still keeping its robustness against population stratification. 
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1. Introduction 

In past decades, many disease-associated common variants have been discovered through 
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genome-wide association studies (GWASs). However, the majority of the genetic effects 
of complex diseases still cannot be explained. Recent advances in next-generation se-
quencing technologies provide new opportunities to study the genetic effects of low- 
frequency variants and rare variants. Many of those complex-trait rare-variant associa-
tion studies are population based [1]. Since rare variations can differ greatly among 
populations, population-based rare variant association studies are vulnerable to popu-
lation stratification. Several rare-variant transmission disequilibrium tests have been 
proposed [2] [3]. Traditionally, family-based association studies test one SNP at a time. 
Multi-marker tests usually work better to detect an underlying genetic variance over a 
genomic region than single marker tests, especially in the detection of complex diseases, 
because multi-marker tests consider the joint information over the whole region. Many 
multi-marker family association tests have been proposed, some are based on gene- 
ralized estimating equations (GEEs) [4], and some use linear combinations of single 
marker contributions [3]. After a genome-wide association study, people often use ge-
notype imputation for further studies. A recently developed program GIGI is efficient 
to impute genotypes in a large pedigree [5], and it is used for rare-variant family asso-
ciation studies [6]. One distinct advantage of family-based association tests (FBAT) is 
their robustness against population admixture and stratification. However, if tests only 
estimate the genetic effect from the within-family variation to avoid population strati-
fication, they may ignore the useful genetic information from between-family variation 
and lose power. Imputed allele dosages are used in FBATdosage [7]. To correct the bias 
introduced by genotype uncertainty, FBAT-LRT is proposed [8]. In this article, we in-
troduce an adaptive weighted sum association test to capture more important informa-
tion from multiple loci in family-based studies by considering the genetic effect from 
both within-family and between-family variation while maintaining robustness to pop-
ulation stratification. 

The test is proposed for family-based association studies of quantitative trait in either 
a candidate region study or a genome-wide scan. The data-driven weights are based on 
a measure of population stratification. Since population stratification and linkage dise-
quilibrium (LD) cause a bias for the estimate, a permutation procedure is employed to 
find the p-value. Extensive simulation studies are carried out under various LD struc-
tures as well as Hap Map data from different genes under different population struc-
tures. In these simulation studies, we examine the Type I error rate and compare the 
power of the proposed method with other FBAT tests. Simulation results show that the 
proposed method has a correct Type I error rate and consistently achieves a higher or 
similar power in all scenarios. In summary, we believe the adaptive weighted sum based 
FBAT is a potentially powerful method for family-based genetic study of multiple 
markers and it can also be used as an alternative tool for the detection of underlying 
causative genetics variances. 

2. Method 

In family-based association studies, FBAT, a general unified approach, has been pro-
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posed to permit any type of genetic models, a general family design, different pheno-
types and multiple markers [9]. Family-based tests are generally robust to population 
stratification and those tests can avoid any population bias in other standard designs. 
Recently, the multi-marker test FBATMM [10], which is similar to the Hotelling 2T  
test, has been proposed for family-based studies. Another multi-marker test FBATLC 
[11] linearly combines single-marker test statistics using data-driven weights derived by 
conditional mean model �[12]. The weights are least square estimates of genetic effects. 
The data-driven weights are regarded as fixed for FBAT. These two methods have been 
implemented in the program FBAT, which has been widely used in family-based asso-
ciation studies. The data-driven weights in FBATLC are the estimates of genetic effect 
considering between-family variation. It is a biased estimator and is sensitive to popu-
lation structure. We investigate the data-driven weights used in FBATLC and provide a 
new methodology to analyze the multiple correlated markers for family-based associa-
tion studies. 

We use FBATWS to denote the new test. It is based on weighted sum of two associa-
tion tests. One of which estimates the genetic effect from both within-family and be-
tween-family variation and the other is from within-family variation only. The weights 
are computed automatically based on a measure of the population stratification str- 
ength in family data. If the strength of the population stratification is strong, including 
between-family variation will produce false positives. At this time we need to decrease 
the weight of the test estimating the genetic effect from both within-family and be-
tween-family variation, and increase the weight of the other test to reduce false positive 
rates. If the strength of the population stratification is weak, it will not produce much 
false positive. Including between-family variation will increase power of the test, and at 
the same time it will not produce much false positive. That is why we want to increase 
the weight of the test estimating the genetic effect from both within-family and be-
tween-family variation. The proposed method can capture more important information 
from multiple loci in the family data while maintaining robustness to population strati-
fication. Since population stratification and linkage disequilibrium cause a bias for the 
estimate, a permutation procedure is employed conditional on the traits, parental ge-
notypes, and haplotypes. 

The general idea of FBAT [9] is to regard the offspring genotype as random condi-
tional on the traits and parental genotypes. The test statistic is computed from the dis-
tribution of offspring genotype under the null hypothesis. Let ijT  denote the coded 
trait for the jth offspring in the ith family and ijkX  denote the coded genotype score 
for the kth marker of the jth offspring in the ith family, where 1, , , 1, , ,i M j N= =   
and 1, ,k K=  . 

Following the standardized FBAT [9], let: 

( )( )ik ij ijk ijk
j

U T X E X= −∑                          (1) 

( ) ( ),ik ik ij il ijk ilk
j l

V var U T T cov X X= = ∑∑                     (2) 
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With a large number of families, FBAT statistic for the kth marker: 

( ) ( )k ik iki iZ U V= ∑ ∑                          (3) 

is approximately N(0,1). 
Another approach to the multi-marker family-based association testing is to linearly 

combine single-marker test statistics using data-driven weights (FBATLC) [11]. Condi-
tional on the traits and parental genotypes, the weights can be derived by the condi-
tional mean model of trait T for the kth marker as follows: 

( ) ( )ij k k ijkE T f Xα β= +                          (4) 

where ( ) ( )ijk ijkf X E X=  for offspring in the informative families and ( )ijk ijkf X X=   

for the others (include offspring in the non-informative families and all parents). 
Let ( )1, , kw w w=   where ( )ˆ ˆ

k k kw SEβ β=  is the standardized least square esti- 
mator of kβ . Then the multi-marker FBATLC test statistic: 

( ) ( )T T
LCFBAT w Z w w= Σ                      (5) 

is approximately N(0,1), where ( )T
1, , kZ Z Z=   is the vector of single FBAT test sta-

tistics and Σ  can be derived from the conditional pairwise haplotype distribution in 
offspring or from the empirical estimator of the covariance matrix [10]. 

Although the data-driven weights are independent of Z under 0H  because the 
FBAT test is computed conditional on traits and on parental genotypes, the power of 
FBATLC will be highly dependent on the estimate of the optimal weights. In the condi-
tional mean model, the weights are estimates of genetic effects using population data, 
which can be regarded as estimates of the genetic effects using between-family varia-
tion. It has been shown that this estimator is biased unless there is no population strati-
fication. Intuitively, the more accurate the estimate is, the closer the weights to the op-
timal weights, and the more power the test can gain. However it will lose power if the 
effect of population stratification is significant. Thus, we proposed a new multi-marker 
test FBATWS using adaptive weights to combine two test statistics based on the estimate 
of the existing population stratification. 

The strength of population stratification will be measured by 

( ) ( )( ) ( )1/ k k kkv k D E D SD D= −∑                    (6) 

where k k kD Z w= −  for 1, ,k K=   Then the test statistic can be written as: 

( )( ) ( )( )1 1 1T T
WSFBAT v w Z v v Z Z= + + +                (7) 

Under the null hypothesis: no genetic effect and no population stratification, kZ  
and kw  are independent standard normal random variables. Therefore, kD  is a 
folded normal random variable with ( ) 2kE D π=  and ( ) 2 4 /kVar D π= − . It is 
clear that the strength of population stratification increases as kD  increases. When 
population stratification is strong, FBATWS will automatically put more weight on the 
second term to maintain robustness against spurious positives. On the other hand, 
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when the effect of population stratification is relatively weak, FBATWS will automatical-
ly put more weight on the first term to make use of both sources of genetic variation: 
between-family and within-family. In latter case, the degrees of freedom of the test will 
be reduced, and power of the test will be increased. Because LD structure will be main-
tained in the permutation procedure, in order to improve the computational efficiency, 
FBATWS does not consider LD structures. 

The second term TZZ  can be written as: 
( ) 1diagT TZ Z U V U−=                             (8) 

 

( )1, ,i iki iU U U= ∑ ∑  is a vector and ( )1 2k kV v=  is an empirical estimator of the  

covariance matrix Σ . The entry of V  at the 1k  th row and the 2k  th column is 

( ) ( )1 2 1 1 2 2k k ij ijk ijk ij ijk ijk
i j j

v T X E X T X E X
    = − −     

∑ ∑ ∑              (9) 

ijkX  is the coded genotype score for the kth marker, of the jth offspring in the ith 
family. ijT  is the coded trait for the jth offspring in the ith family. Therefore, the 
second term TZ Z  is one of the asymptotic tests in [13], which has been proposed re-
cently to gain more power under strong LD structures. When the parental haplotypes 
are known, a permutation procedure will be employed to compute the p-value of 
FBATWS. For each child with fixed trait in any family, each parental haplotype is trans-
mitted to the child with equal probability, so that, for any given parental hypostyles, 
there are four different permutations of the data. When the parental haplotypes are 
unknown, inferring haplotype is needed. There are several methods to infer haplotypes. 
For example, Thunder [14], Beagle [15], Impute 2 [16], and SNPtools [17]. Haplotype 
can also be inferred by using sequencing reads [18]. 

3. Simulation Results 

In the simulation study, we apply the proposed test FBATWS on two sets of data. One is 
simulated with six scenarios of LD structure. The other is downloaded haplotype data 
from 170 unrelated samples of JPT + CHB (Japanese in Tokyo, Japan + Han Chinese in 
Beijing, China) in the HapMap3 Phased Haplotypes. We compare the power of the 
proposed test FBATWS with the following three FBAT tests: 1) the single-marker test 
with Bonferroni multiple testing adjustment FBATB the Bonferroni adjusted p-value 

( )min1 1 K
adjP P= − −  where minP  is the minimal p-value among the single-marker tests 

2) the multi-marker test FBATMM [10], which is similar to the Hotelling 2T  test, 3) the 
multi-marker test FBATLC [11] that linearly combines the single-marker test statistics 
using data-driven weights. 

One goal of the simulation study is to examine whether the proposed multi-marker 
test is robust to the underlying LD structure. We consider six different LD structures 
and assume additive genetic effect. A target region with eight observed SNPs and an 
unobserved causative SNP in the middle is simulated. For each nuclear family, both 
parental haplotypes for nine correlated SNP markers are simulated on the basis of a 
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multivariate normal distribution with LD structure ( ),k
LD i jΣ  where 1, ,6k =   Each 

allele on the haplotype is generated with the cut-off of the minor allele frequency which 
is obtained from a uniform distribution between 0.1 and 0.3. The haplotypes of off 
spring are obtained by the simulated Mendelian transmission without recombination 
based on the parental haplotypes. The genotypes for each individual are generated by 
the sum of two haplotypes. The six scenarios of LD pattern are defined by the following 
pairwise ( ),k k

LD iji j ρΣ =  if i j≠  0, otherwise. The formula of k
ijρ  is shown in Table 

1. For all scenarios, the correlation between the causal SNP and the observed SNPs is 
D
id id tρ ρ=  where d is the index of causal SNP and t has the equal possibility to be +1 or 

−1. The results are shown in Figure 1. 
The quantitative phenotype of each individual is determined by: 

iY Gµ= + +                             (8) 

where iµ  is the overall mean for one family following a normal distribution 

( )2,p fN µ σ , 2
fσ  is the trait correlation within one family, G is the genetic effect term 

and ε is a independent error term following a normal distribution ( )0, eN V , where 
2 21e fV h σ= − −  so that the total variance of the trait is 1.We consider all the samples 

come from one population and set pµ  to be 0 in this simulation study. The Heritabil-
ity 2h  for this model will be given from 0 to 0.09, thus the variance of the genetic ef-
fect can be obtained by 2h . The genetic effect G is determined by the genotype score  
 
Table 1. Six scenarios of LD pattern (t has a equal possibility to be +1 or −1). 

k 1 2 3 4 5 6 

k
ijρ  0.4 0.8 i j−  Unif (0.3, 0.7) 0.4t 0.8 i j t−  Unif (0.3, 0.7) t 

 

 

Figure 1. LD structures for simulation. 
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g  of the unobserved causal SNP: ( )= −1G a g  where a is genetic effect value which is 
determined by ( )2 / 2 1a h p p= −  (p is the minor allele frequency at the causal SNP) 
for the additive model [11]. 500 trios with 1000 simulation replicates are considered 
and the significance level is set at 0.05. 

Next, our simulation study will be based on real LD structure. We download haplo-
type data from 170 unrelated samples of JPT + CHB (Japanese in Tokyo, Japan + Han 
Chinese in Beijing, China) in the HapMap3 Phased Haplotypes. We consider three 
genes CHI3L2 (in the region of 15.78 kb), CTLA4 (in the region of 10 kb) and IL21R (in 
the region of 47.69 kb), which have also been analyzed in other simulation studies [19] 
[20] [21] [22]. Their LD pattern can be visualized on the HapMap site. We perform the 
simulation study using SNPs with minor allele frequency (MAF) >0.01, and we remove 
the redundant SNPs that are perfectly correlated with other SNPs. We have 12 SNPs left 
for CHI3L2, seven SNPS for CTLA4 and 10 SNPs for IL21R. We calculate haplotype 
frequencies from the samples of each gene and generate the parents of each family 
based on the known haplotype frequencies. The disease marker is randomly chosen as 
unobserved SNP. Other SNPs are observed as haplotype data and the quantitative phe-
notypes of offspring in each family are generated from a quantitative phenotype model. 
Two scenarios (500 trios under one population and two populations) are considered in 
the simulation study with 1000 simulation replicates and a significance level of 0.05. To 
generate quantitative phenotypes for samples from one population, let µ = 0p  for 
samples from two distinct populations, let µp  be 0.5 or −0.5. 

Type I error rate for the case of six mimicked LD structures is shown in Table 2. All 
tests have a correct Type I error rate. It is expected that the proposed method will have 
a correct Type I error rates due to the permutation procedure. The result of power 
comparison is shown in Figure 2. 

Four FBAT tests are considered for power comparisons with six different LD struc-
tures. The unobserved casual SNP has an equal chance to be positively or negatively 
correlated to those observed SNPs in all scenarios. In Figure 2, FBATB (B), (MM), 
FBATLC (LC), and FBATWS (WS) are indicated by the blue dot-dashed line, the green 
dotted line, the red dash line, and the black solid line, respectively. In the first simula-
tion study, the goal is to compare the performance of the proposed method with other 
FBAT methods. We fix the window size for each scenario and assume the sample come 
from the same population. An examination of the results show that FBATWS has a con-
sistently higher power in all cases, followed by FBATLC, FBATMM and FBATB FBATB is 
considered as the most conservative test in this study, because the independent as-
sumption is violated. The power of FBATMM is improved since it considers the va-
riance-covariance matrix. On the other hand, it also suffers from the relatively high de-
grees of freedom, especially when the region under consideration is large. The power of 
FBATLC is improved since it has only one degree of freedom, it uses the optimal weights 
to combine single-marker tests, and it overcomes the degrees of freedom problem 
raised by FBATMM. In a genetic region with strong LD, we do not have any clue of how 
the underlying casual marker is related to the observed SNPs. The optimal weights in 
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FBATLC are biased estimates of genetic effects [23]. Therefore, using incorrect estima-
tion of genetic effect as weights in FBATLC will lose some power. The power of FBATWS 
is improved since it not only considers the optimal weights to combine single-marker 
tests like FBATLC, but also automatically adjusts the weights based on the estimate of 
the genetic effect from between-family variants and within-family variants. 

Type I error rates for the simulated HapMap data on CHI3L2, IL21R, and CTLA4 are 
given in Table 3. Type I error rate of all tests are well controlled under 0.05 level of 

 
Table 2. Type I error rates for four FBAT tests using simulated data. 

LD LD = L1 LD = L2 LD = L3 LD = L4 LD = L5 LD = L6 

B 0.047 0.036 0.051 0.042 0.052 0.039 

MM 0.047 0.045 0.068 0.054 0.057 0.050 

LC 0.050 0.057 0.058 0.045 0.055 0.047 

WS 0.052 0.052 0.059 0.038 0.052 0.048 

B, MM, LC, WS indicates FBATB, FBATMM, FBATLC, FBATWS, respectively. L1, L2, L3, L4, L5, L6, indicate six scena-
rios of LD structure given in Table 1. 

 

 

Figure 2. Power comparisons using simulated data. 
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significance. We also found that FBATB has a lower type 1 error rate than other tests, 
because the strong LD structure existed in all three regions. The results of power com-
parison in one population and two populations are shown in Figure 3 and Figure 4. 
The underlying casual marker is randomly selected each time, which make the LD 
structures relatively complicated in these scenarios. 

 
Table 3. Type I error rates of four FBAT tests using HapMap data, * denotes the cases in mixed 
populations of two. 

 CHI3L2 CTLA4 IL21R CHI3L2* CTLA4* IL21R* 

B 0.023 0.024 0.027 0.029 0.026 0.034 

MM 0.049 0.036 0.041 0.051 0.040 0.042 

LC 0.044 0.035 0.042 0.045 0.050 0.039 

WS 0.040 0.037 0.037 0.037 0.041 0.054 

B, MM, LC, WS indicates FBATB, FBATMM, FBATLC, FBATWS, respectively. 
 

 

Figure 3. Power comparisons using Hapmap data. 
 

 

Figure 4. Power comparisons using Hapmap data. 
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Four FBAT tests are considered for power comparisons under different LD struc-
tures of three genes CHI3L2 (in the region of 15.78 kb), CTLA4 (in the region of 10 kb) 
and IL21R (in the region of 47.69 kb). The unobserved casual SNP is randomly selected 
in all scenarios. In Figure 3 and Figure 4, FBATB (B), FBATMM (MM), FBATLC (LC), 
and FBATWS (WS) are denoted by the blue dot-dashed line, the green dotted line, the 
red dash line, and the black solid line, respectively. 

We consider all samples from one population first. The power of FBATWS is relatively 
high in most scenarios. For gene CHI3L2, where SNPs are dense and highly correlated 
with each other, FBATWS is the most powerful test, followed by FBATWS, FBATMM and 
FBATB when the heritability is relatively low. As heritability increasing, the power of 
FBATMM is the highest, and FBATWS is the second among all tests. This implies FBATWS 
is more sensitive to the genetic effect with low heritability. FBATMM is adept to deal 
with genetic region with strong LD and high heritability. For the gene CTLA4, where 
the number of markers is relatively small and LD pattern is relatively weak, FBATWS is 
again the most powerful test, followed by FBATLC, FBATB and FBATMM. For the gene 
IL21R, where SNPs are loose and LD pattern is relatively weak, FBATWS is the most 
powerful test, followed by FBATB, FBATLC, and FBATMM. For genetic region with weak 
LD like CTLA4 and IL21R, FBATMM lose its potential power due to the issue of degrees 
of freedom. In all scenarios of two populations, the results are similar that FBATWS is 
the most powerful test except for simulated data based on gene CTLA4 with high heri-
tability. In practice, most undiscovered genetic variants have low heritability. The pow-
er of tests depends on the LD patter. In general, FBATWS automatically adjusted the 
weights to combine the estimates of genetic effect from various source of genetic va-
riants, therefore is a powerful test for family-based association studies. It is robust to 
population stratification and the underlying LD structure. Our simulated results dem-
onstrate that V is a potentially powerful test among multi-marker tests. 

4. Concluding Remarks 

We propose a novel multi-marker family-based association test for multi-marker test-
ing using data-driven weights to automatically combine statistics, which are based on 
different sources of genetic variation. One of the statistics comes from the estimation of 
the genetic effects from both within-family and between-family variations, which is 
more like a population-based statistic. The other is from estimation of within-family 
variation, which is a family-based statistic. The data driven weights are computed au-
tomatically, and they measure the strength of the population stratification existed in the 
family data. The advantage of family-based studies is its ability to avoid spurious posi-
tives caused by population stratification. For the FBAT test, we regard the offspring 
genotypes as a random variable given trait and parental genotypes or haplotypes. On 
the other hand, FBAT tests do not consider the genetic information from between- 
family variation, since those can raise the issue of population stratification. By using 
adaptive weighted sum to combine this information efficiently into the test statistics 
can improve the power of the test. 
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The proposed method tries to use the most information of genetic variance for family 
based association studies. Data driven weights are employed to make our test robust to 
population stratification and linkage disequilibrium between multiple markers. Since 
population stratification and linkage disequilibrium cause the bias of the estimation, a 
permutation procedure is employed and descried for this situation. The new test is a 
potentially powerful method for family-based genetic study of multiple markers by 
considering genetic variance in different aspects and can also provide an alternative 
tool for the detection of underlying causal genetics variances. In our simulation studies 
using mimicked LD patterns and three genes from HapMap data, the results show that 
the proposed test achieves a higher power in most scenarios than the single-marker test 
with Bonferroni correction, the multi-marker test similar to the Hotelling 2T  test, and 
the multi-marker test that linearly combines the single marker tests using data-driven 
weights. Although the proposed test can achieve a higher power in some complex situa-
tions, it is not optimal in all situations. For example among some SNPs or tag SNPs, if 
there is a super SNP strongly or perfectly associated with the disease or causal locus, 
then the single-marker test with Bonferroni correction should have a higher power than 
other multi-marker tests. 
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GWASs: Genome-wide association studies,  
FBAT: Family-based association test,  
GEE: Generalized estimating equation,  
FBAT dosage: Imputing allele dosages in FBAT,  
FBATMM: Multi-marker family-based association test,  
FBATLC: Linearly combined single-marker test statistics,  
FBATWS: Proposed test in this article,  
FBATB: Single-marker test with Bonferroni multiple testing adjustment,  
SNP: Single-nucleotide polymorphism. 
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