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Abstract 
This paper discusses the mathematical modeling for the mechanics of solid using the 
distribution theory of Schwartz to the beam bending differential Equations. This 
problem is solved by the use of generalized functions, among which is the well 
known Dirac delta function. The governing differential Equation is Euler-Bernoulli 
beams with jump discontinuities on displacements and rotations. Also, the governing 
differential Equations of a Timoshenko beam with jump discontinuities in slope, 
deflection, flexural stiffness, and shear stiffness are obtained in the space of genera-
lized functions. The operator of one of the governing differential Equations changes 
so that for both Equations the Dirac Delta function and its first distributional deriva-
tive appear in the new force terms as we present the same in a Euler-Bernoulli beam. 
Examples are provided to illustrate the abstract theory. This research is useful to 
Mechanical Engineering, Ocean Engineering, Civil Engineering, and Aerospace En-
gineering. 
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1. Introduction 

This article introduces the method for computing lateral deflections of plane beams 
undergoing symmetric bending. Reviewers should be acquainted with: integration of 
ordinary differential Equations, and statics of plane beams under symmetric bending. 

Our primary objective is to apply the discontinuous beam bending differential 
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Equation to different application obviously representing beam bending. One of the 
most common types of structural components is a beam, recommended more in Civil 
and Mechanical Engineering. A beam resembles as a bar-like structural that is used to 
support transverse loading and carry it to the supports. Beams resist against transverse 
loads through a bending action, which creates compressive longitudinal stresses on one 
side of a beam and tensile stress on the other side. With these two combinations be-
tween compressive longitudinal stress and tensile stress, an internal bending moment 
starts to occur. In the case of a discontinuous load, we begin applying beam-bending 
differential Equation for each part of the beam. 

All models use some sort of approximation to the underlying physics because beams 
are three-dimensional bodies. 

Transverse loading being resisted on a preferred longitudinal plane is known as a 
plane beam. Because the classical beam theory is the simplest and most associated 
model for plane beams, it presents assumptions such as: 
1) Planar symmetry: The longitudinal axis appears to be straight with a cross section 

of the beam being longitudinal plane of symmetry. Each sections that lie on the plane, 
both resultant of the transverse loads. The resultant of the transverse loads acting on 
each section lies on the plane. 

2) Cross sectional variation: The cross section remains constant or varies. 
3) Normality: The plane sections are originally normal to the longitudinal axis of the 

beam remain plane and normal to the reformed longitudinal axis upon bending. 
4) Strain energy: Transverse shear and axial forces are ignored, while only internal 

strain energy from another object accounts for the bending moment deformations. 
5) Linearization: The infinitesimal deformation of the beam is brought into the mix 

due to the consideration of transverse deflections, rotations and deformations. 
6) Material model: The heterogeneous beams are fabricated with several elastic and 

isotropic materials, such as reinforced concrete. 
Transverse shear and axial force are ignored, while only internal strain energy from 

another object accounts for the bending moment deformations. The assumption of in-
finitesimal deformation is brought into the mix due to the consideration of transverse 
deflections, rotations and deformations. The assumption is made that heterogeneous 
beams are fabricated with several elastic and isotropic materials. 

Now we will begin our discussion on classical beam theory, also known as The Euler- 
Bernoulli Beam Theory. 
• Beam coordinates system: 

The coordinate system throughout the beam undergoes a transverse loading at a 
point on the top surface will shorten. As for the other, it will elongate. This causes a 
neutral surface between the top and the bottom. 
• Beam motion: 

We associate beam motion as the loading on a x, y plane beam is structured in to two 
dimensional displacement field ( ),u x y    and ( ),v x y    u and v are respected as the 
axial and transverse displacement components with respect to a beam point. 
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• Beam loading: 
( )P x  is denoted as the transverse force per unit length occurs on the plane beam in 

a positive y direction. We can determine the strong and the weak loading points based 
on what beam is being used. For instance, support on a simply supported beam is found 
on the end points that prohibit transverse displacements. In contrast, one side of a can-
tilever beam does not have an end support, resulting with one being clamped on and 
the other being free. Airplane wings, diving boards, and stabilizers are prime examples 
of cantilever beams. 

2. Singular Loading Conditions 

This section will explain the equivalent distributed force for a family of singular loading 
condition by using Schwartz’s distribution theory. 

Definition 1. Let ( )q x  be a distributed force. The nth order moment of ( )q x  that 

0x  is given by 

( ) ( ) ( )0 0 dnnM x x x q x x
+∞

−∞
= −∫                   (1) 

Definition 2. Let ( )q x  be a distributed force in the small open segment (interval). 
( )0 0,x x− +   Also consider 

( )
( ) ( )

( ) ( )
0

0

d 0;

d 0;

n

n

m

x x q x x m n
M

x x q x x m n

∞

−∞

∞

−∞

 − ≠ == 
 − = ≠

∫

∫





              (2) 

Then 

( ) ( )0

0
0 0 0lim d

x nn
x

M x x q x x
+

→ −
= −∫



 
                (3) 

In 1959, Timoshenko and Woinowsky-Krieger [1] studied the concentrated double 
moment of the beam, which is the limiting situation of two opposite movements acting 
on two different separated points. They proved the result in a deflection with a discon-
tinuous slope at the point of the concentrated double movement. 

In this article, we want to study the equivalent distributed force in the loading func-
tion of a point moment of order n by using the distribution theory, refer [2]. We will 
show that the loading function for this loading condition is expressed by 

( ) ( ) ( )
2

2
02

Mq x x xδ= −                      (4) 

where 2M  is the value of double movement and ( )2δ  is the second distributional 
derivative of δ . 

Theorem 1. The equivalent distributed force of a unit moment of order n applied at 

0x x=  is 

( )
( ) ( ) ( )0

1

!

n
n

nq x x x
n

δ
−

= −                     (5) 

where ( )nδ  is the nth distributional derivative of the Dirac Delta function. 
Corollary 1. The equivalent distributed force for an upward concentrated force of 
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magnitude p is 

( ) ( )0pq x p x xδ= −                         (6) 

This was obtained by Timoshenko (1976) [3] and Shames (1989) [4], where the li-
miting case of a load distributed over a very short portion of a beam. The shearing 
forces of an Euler-Bernoulli beam can be applied to act as another proof of this repre-
sentation by using the discontinuity of a concentrated force, appears in Section 3.4. 

Corollary 2. The equivalent distributed force of a clockwise concentrated moment of 
magnitude M is 

( ) ( ) ( )1
0Mq x M x xδ= −                        (7) 

This result was founded by Shames in (1989) [4], in which this loading is considered 
to be the limiting case of two concentrated forces M  ,   apart, when   goes to 
zero. The bending moment of an Bernoulli beam can be applied to act as another proof 
of this representation by using the discontinuity a concentrated moment introduces. It 
appears in Section 3.3. 

Corollary 3. The equivalent distributed force of a concentrated double moment is 
given by Equation (4). As Timoshenko and Woinowsky-Krieger (1959) [1] mention, 
this loading results in a deflection with a discontinuous slope at the point of double 
moment. We see later that, in an Euler-Bernoulli beam with a jump discontinuity in 
slope, this forcing function appears. 

3. A Mathematical Explanation for Corner Condition in Classical 
Plate Theory and Equally Distributed Force for Distributed 
Moments 

In this section we obtain the equivalent distributed force of a distributed moment. We 
then give a mathematical explanation for corner condition in classical plate theory. 

It can be shown that the force function of a distributed moment, ( )m x , can be ex-
pressed in terms of m and ( )1δ  

( ) ( )( )( )1q x m xδ= ∗                           (8) 

But distribution theory shows that for any function f 
( )( )( ) ( ) ( )n nf x f xδ∗ =                          (9) 

Hence, 

( ) ( ) ( )1q x m x=                            (10) 

Accordingly, for a distributed moment the first distributional derivative of ( )m x , is 
the forcing function. Imagine a beam that has a length of L under a distributed moment 

( )0m x , (see Figure 1(a)). The moment can be written as 

( ) ( )0 ; 0
0; or 0
m x x L

m x
L x x

 < <= 
≤ ≤

                    (11) 

Hence, 
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(a) 

 
(b) 

Figure 1. (a) A beam under a distributed moment. (b) The equivalent force system. 
 

( ) ( ) ( ) ( )0m x m x H x H x L= − −                      (12) 

where H is Heaviside’s function. When substituting Equation (12) into Equation (10), 
the output is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1
0 0

0 00x

q x m x m x H x H x L m x x x L

m H x H x L m x m L x L

δ δ

δ δ

= = − − + − −      
′= − − + − −  

    (13) 

The distributed moment is equivalent to the distributed force ( )0m x′  on both end 
points of the beam given by ( )0, L . Also distributed moment is equivalent to two 
concentrated forces ( )0 0m  and ( )0m L−  at 0x =  and x L= , respectively, as 
shown in Figure 1(b). Similarly, if ( )m x  is a partially distributed moment in ( )1 2,x x  
is equivalent to a distributed force in this interval ( )1 2,x x  and two concentrated forces 
at 10x x= =  and 2x L x= = . 

xy
x

x a

M
Q

y
=

∂ 
′ =  ∂ 

                         (14) 

Corner condition: Timoshenko and Woinowky-Krieger (1959) [1] were unable to 
explain the corner condition mathematically, although they mentioned it physically as 
below: 
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• Corner conditions definition—physically: The polygonal loaded plates will usually 
produce concentrated reaction at corner points with the distributed reaction along 
the edges. 

• Corner conditions definition—mathematically: In classical plate theory xQ′  Equa-
tion (14) consists of a system of distributed forces and two concentrated forces as 
the corner points. 

Note: Corner conditions phenomenon does not appear in sheer deformation theo- 
ries. 

4. Representing Point Loads and Moments through Jump 
Discontinuities, Deflection, and Flexural Stiffness Using the 
Euler-Bernoulli Beam Theory 

The classical method of solving the differential Equation of Euler-Bernoulli beam with 
jump discontinuity in slope, deflection and flexural stiffness, is to solve the problem on 
both sides of the discontinuities and then apply boundary and continuity conditions. 
Here we will solve a problem of differential Equation in the space of generalized func-
tions we solve the problem as a single beam using generalized functions therefore we 
will consider only one point of jump discontinuity and then generalize this idea with n 
singular points of an Euler-Bernoulli beam. 

Euler-Bernoulli beam theory provides the following displacement field assumptions: 

( ) ( )
1

d
, ,

d
w x

u x y z z
x

= −  

( )2 , , 0u x y z =  

( ) ( )3 , ,u x y z w x=                            (15) 

where 1u , 2u , 3u  are displacement components along the x, y, and z axes respectively. 
The beam lies along the x-axis and the loads are applied vertically along the z-axis. We 
can use Equation (15) and the foundation of virtual work, the governing equilibrium 
Equation can be declared as: 

( )
2 2

2 2

d d
d d

wq x EI
x x
 

=  
 

 

( ) 2 2 4

2 2 4
d d d
d d d

q x w w
EI x x x

 
= = 

 
 

( ) 4

4

d
d

q x w
EI x

=                                  (16) 

where EI is the flexural stiffness and q is a distributed force and is called the loading 
function. 

The first three derivatives of w are continuous and the fourth derivative is piecewise 
continuous, only when q is a piecewise continuous function. On the other hand, there 
are some equivalent distributed conditions for which the loading function cannot be 
declared as a classical function. A general case of these conditions were studied in 
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Section 2. However, displacement of the beam or its derivatives can sometimes have 
discontinuities that are separate from the loading condition. That introduces the focus 
of this section. 

The beam shown in Figure 2 is of length L and the boundary conditions are arbitrary 
at 0,x L= . The flexural stiffness of the beam is changed periodically at 0x x= . This 
point will also house discontinuities in slope and deflection. The most general case uses 
a combination of an internal hinge with a rotational spring along with a shear-free 
connection with a translational spring. The constants of the rotational and translation 
springs are rK  and tK , respectively. Now we take 

( ) ( )0 0w x w x+ −− = ∆                              (17) 

( ) ( ) ( )0 0
d d
d d

w x w x
x x

θ+ − − = ∆ =                    (18) 

The beam has two components to it, segments AB and BC. Hence, why the Heavi-
side’s function is applied. 

( ) ( ) ( ) ( ) ( )1 2 1 0w x w x w x w x H x x= + − −                 (19) 

where w is the deflection of the beam, 1w  is the deflection of the segment AB, and 2w  
is the deflection of the segment BC. After the calculation given in the appendix, the go-
verning differential Equation of the beam is 

( ) ( )1 2 2
0 0

d d dd
d d d d

w w ww H x x x x
x x x x

δ = + − − + ∆ − 
 

 

( ) ( ) ( ) ( )
2 2 22

11 2 2
0 0 02 2 2 2

d d dd
d d d d

w w ww H x x x x x x
x x x x

θδ δ
 

= + − − + − + ∆ − 
   

( ) ( )

( ) ( ) ( ) ( )

3 3 3 2 23
1 2 2 2 2

0 03 3 3 3 2 2

1 2
0 0

d d d d dd
d d d d d d

w w w w ww H x x x x
x x x x x x

x x x x

δ

θδ δ

   
= + − − + − −   

   

+ − + ∆ −

 

 

 
Figure 2. A beam with a jump discontinuity in slope, deflection, and flexural stiffness with 
arbitrary boundary conditions under a distributed force. 



D. Chalishajar et al. 
 

1950 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

4

0 04

1 2 3
0 0 0

d 1 11 1
d

1 1

t

r

q x q x Kw H x x x x
EI EI EIx
K x x x x x x
EI

δ
α α

θ δ θδ δ
α

∆   = + − − + − −   
   

 + − − + − + ∆ − 
 

       (20) 

where the distributional differentiation is denoted by the bar. As can be seen having 
jump discontinuities in slope and deflection is equivalent to having double and triple 
point moments 2 2M θ= , 3 6M = ∆  at the point of jump discontinuities. Also, con-
tinuity conditions can be written as 

( ) ( )2 3
0 0

2 3

d d
,

d dr t

w x w x
EI K EI K

x x
θ

− −

= = ∆                (21) 

when you apply the four boundary conditions at 0,x L=  as well as the continuity 
conditions from Equation (21), you are able to gather the deflection w. As can be seen 
only the force term changes; the form of the operator of the differential Equation is the 
same as that of Equation (16). 

4.1. Solution Procedure 

Kanwal [5] proposed a method, that we are about to use, in order to solve a differential 
Equation in the space of a generalized function. The general solution is 

( ) ( ) ( )h pw x w x w x= +                       (22) 

hw  and pw  are solutions to the following differential Equations 

( )4

4
d
d

h q xw
EIx

=                           (23) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

4

0 04

1 2 3
0 0 0

d 1 11 1
d

1

h t

r

q xw KH x x x x
EI EIx
K x x x x x x
EI

δ
α α

θ δ θδ δ
α

∆   = − − + − −   
   
 + − + − + ∆ − 
 

      (24) 

when finding pw , we assume that 

( ) ( ) ( )0pw x W x H x x= −                     (25) 

Hence, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

4 3 24
10 0

0 0 04 4 3 2

2 30
0 0 0

d d dd
d d d d

d
d

pw W x W xW x
H x x H x x x x

x x x x
W x

x x W x x x
x

δ

δ δ

= − + − + −

+ − + −

  (26) 

Equating the coefficient of the generalized functions in Equation (24) and Equation 
(26), we are able to obtain 

( ) ( )4

4

d 1 1
d
W x q x

EIx α
 = − 
 

                               (27) 

( ) ( )3 2
0 0

3 2

d d1 11 , 1
d d

t rW x W xK K
EI EIx xα α
∆ ∆   = − = −   
   

         (28) 
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( ) ( )0
0

d
,

d
W x

W x
x

θ= = ∆                     (29) 

After solving Equation (27) and applying the initial conditions (29), we are able to 
obtain 

( ), ,W W x θ= ∆                         (30) 

Solving Equation (23) for hw , we have four integration constants. Applying the four 
boundary conditions at 0,x L=  for h pw w w= +  and the continuity conditions (21), 
we obtain the beam deflection. Obviously, this is not an efficient method and has no 
superiority over the classical method. A more efficient method is proposed here for 
calculating the beam deflection. 

4.2. Auxiliary Beam Method 

Suppose w represents the deflection of an Euler-Bernoulli beam with jump discontinui-
ties in slope, deflection, and flexural stiffness at the point 0x x= . The deflection is de-
fined as: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
0 0 0 0 0

3
0 0

1 1
2

1
6

r

t

Kw w x H x x x x H x x x x H x x
EI

K x x H x x
EI

θθ
α

α

 = − ∆ − − − − − − − − 
 

∆  − − − 
 

 (31) 

( )w x  is the classical function. Using Equation (31) in Equation (20) allows us to obtain 

( ) ( ) ( ) ( )
4

04

d 1
d
w x q x q x

H x x
EI EIx α

 = + − 
 

               (32) 

We also have, from Equation (31) 

( ) ( )0 0 ,w w=  

( ) ( ) ( ) ( )

( )

2
0 0

3
0

1 1
2

1 1
2

r

t

Kw L w L L x L x
EI

K L x
EI

θθ
α

α

 = − ∆ − − − − − 
 

∆  − − − 
 

             (33) 

( ) ( )d 0 d 0
,

d d
w w

x x
=  

( ) ( ) ( ) ( )2
0 0

d d 1 11 1
d d

trw L w L KK L x L x
x x EI EI

θθ
α α

∆   = − − − − − − −   
   

   (34) 

( ) ( )2 2

2 2

d 0 d 0
,

d d
w w

x x
=  

( ) ( ) ( )
2 2

02 2

d d 1 11 1
d d

trw L w L KK L x
EI EIx x
θ

α α
∆   = − − − − −   

   
           (35) 

The continuity conditions for the auxiliary beam are: 

( ) ( ) ( ) ( )2 2 3 3
0 0 0 0

2 2 3 3

d d d d
,

d d d d
tr

w x w x w x w x KK
EI EIx x x x
θ

− − − −
∆

= = = =        (36) 
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Therefore, instead of solving two differential Equations for the two beam segments 
and applying eight boundary and continuity conditions, only one differential Equation 
with six boundary and continuity Equations is solved. To clarify the method, three ex-
amples are solved in the next section. 

Three examples are presented and solved in order to show the efficiency of The Eu-
ler-Bernoulli Beam Theory with jump discontinuities. 

Example 1. This is an example of a internal hinged beam under a uniform distri-
buted force. The beam shown in Figure 3 is clamped at 0x =  and simply supported at 
x L= . 

The flexural stiffness is constant. 

( ) 0 , 1, 0, 0r tq x q K Kα= − = = = ∆ =                (37) 

From Equation (32), the G.D.E of the auxiliary beam is 
4

0
4

d
d

qw
EIx

= −                                    (38) 

3
0

33
d
d

qw x a
EIx

= − +                               (39) 

2 2
0

3 22
d

2d
qw x a x a
EIx

= − + +                         (40) 

3
0

3 2 1
d
d 6 2

qw x xa a x a
x EI
= − + + +                     (41) 

Lastly, 

4 3 20
3 2 1 024

qw x a x a x a x a
EI

= − + + + +                (42) 

It is known that for this beam, 

( ) ( ) ( ) ( )2

2

d 0 d
0 0

d d
w w L

w w L
x x

= = = =                 (43) 

Using Equation (33) through Equation (35) we are able to find, 
 

 
Figure 3. A clamped, simply supported beama with an internal hinge under a uniform distri- 
buted force. 
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( ) ( ) ( ) ( ) ( ) ( )2 2

2 2

d 0 d d
0 0, 1 , 0, 0

d d d
w w L w L

w w L L
x x x

λ
λ θ= = = − = =      (44) 

Using Equation (27) and Equation (29) we are able to obtain 0 1 2, ,a a a  and 3a  

( ) ( )20 0
0 1 2 3 2

1 13 10, , 1
16 2 8 6 2

q qa a a L a L
EI L EI L

λ θ λ θ− −−  = = = + = − − 
 

    (45) 

Now, using Equation (42) and Equation (44) we obtain 

( ) ( )4 3 20 2 1 6
24

qw x x Lx L
EI

λ λ = − − + +                (46) 

We also find that 

( )
( )

3
04 1

24 1
q L

EI
λ

θ
λ

−
=

−
                        (47) 

Therefore, from Equation (31) we can derive 

( ) ( ) ( )
( ) ( ) ( )4 3 2 2 30 4 1

2 1 6
24 1

qw x x Lx L x L x L H x L
EI

λ
λ λ λ λ

λ
 −

= − − + + − − − − 
 (48) 

Example 2. 
This example uses a beam that has a jump discontinuity at x Lλ= , shown in Figure 4. 
For this beam we know, 

( ) 0 , 1, 0, 0r t
qq x x K K
L

α θ= − = = = =              (49) 

Using Equation (49) we can find the G.D.E of the auxiliary beam 
4

0
4

d
d

qw x
EILx

= −                                     (50) 

3
20

33
d

2d
qw x a
EILx

= − +                                (51) 

2
30

3 22
d

6d
qw x a x a
EILx

= − + +                            (52) 

 

 
Figure 4. A double clamped beam with an internal shear-free connection under a linearly vary- 
ing distributed force. 
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2
40

3 2 1
d
d 24 2

qw xx a a x a
x EIL
= − + + +                      (53) 

Thus, 

( ) 5 3 20
3 2 1 0120

qw x x a x a x a x a
EIL

= − + + + +               (54) 

We know the following is true for this beam, 

( ) ( ) ( ) ( )d 0 d
0 0

d d
w w L

w w L
x x

= = = =                   (55) 

( ) ( )2 3
0 0

2 3

d d

d d

w x w x

x x

− −

=                               (56) 

Now, using Equation (33) through Equation (35) we have 

( ) ( ) ( ) ( ) ( ) ( )d 0 d d
0 0, , 0

d d d
w w L w L

w w L w L
x x x

= = = − ∆ = −∆ = =      (57) 

( )3

3

d
0

d
w xL

x
=                                                 (58) 

Now using Equation (54), Equation (57) and Equation (58), we obtain 

2 3 20
0

14 4 8
24 5

qa x x x
EIL

− = + −  
 

2 20
1 5 8

24
qa x x x
EIL

 = − +   

20
2 3

qa x
EIL
−

=  

20
3 2

qa x
EIL

=  

In a similar way as Example 1, we can find ( )w x  to be 

( ) ( )
2

3 2 2 3 20 2 20 5 1 6
24
q xw x x L x L

EIL
λ λ = − − − −               (59) 

( )4 2
0 10 3

24

q L
EI
λ −

∆ =                                     (60) 

Now, from Equation (31) 

( ) ( ) ( ) ( )
( )

4 22
3 2 2 3 20

0 10 3
2 20 5 1 6

24 24

q Lq xw x x L x L H x L
EIL EI

λ
λ λ λ

−
 = − − − − + −   (61) 

Example 3. A Simply supported beam under a uniform distributed force with jump 
discontinuity in flexural stiffness at x Lλ=  is shown in Figure 5. 

For this beam 

( ) 00, 2, q x qθ α∆ = = = −                      (62) 

and the deflection of the beam is defined as: 
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Figure 5. A simply supported beam with a jump discontinuity in flexual stiffness under a 
uniform distributed force. 
 

( ) ( ) ( ) ( )

( ) ( )

20

30

1 1
2

1 1
6

Mw x w x x L H x L
EI

V x L H x L
EI

λ λ
α

λ λ
α

 = − − − − 
 

 − − − − 
 

              (63) 

The governing differential Equation of the beam is 

( )
4

0 0
4

d
2d

q qw H x L
EI EIx

λ−
= + −                       (64) 

The boundary and continuity conditions are 

( ) ( ) ( )2 200 0,
4
Mw w L l L
EI

λ= = −                       (65) 

( ) ( ) ( )
2 2

0 0
2 2

d 0 d
0, 1

2 2d d
w w L M V L

EI EIx x
λ= = + −                (66) 

( ) ( )2 3
0 0

2 3

d d
,

d d
w L w LM V

EI EIx x
λ λ

= =                       (67) 

When you combine the boundary and continuity Equations, you will get 

( ) ( )2

2

d 0
0 0

d
w

w
x

=                                      (68) 

( ) ( ) ( )2 2

3

1 d
0

4 d
w L

w L
x

λ λ−
− + =                           (69) 

( ) ( ) ( ) ( )2 2 3

2 2 3

d d 1 d
0

2d 2d d
w L w L L w L
x x x

λ λ λ−
− + + =              (70) 

From Equation (54) we are able to obtain, 

( ) ( ) ( )
44

0 2 30
0 1 2 324 48

q x Lq xw x H x L a a x a x a x
EI EI

λ
λ

−
= − + − + + + +      (71) 

When applying the boundary and continuity conditions to Equation (61), we are able 
to obtain 
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( )

( ) ( ) ( ) ( )4 3 44 3 30 2 4 1 6 1 2
48

w x
q x Lx L x x L H x L
EI

λ λ λ λ λ

=

  − − + − − − + − − −   

  (72) 

From Equation (57) we are able to obtain, 

( ) 2
0 0 0 0

1 1,
2 2

M q L V q L
λ λ−  = =  

 
                 (73) 

Therefore, from Equation (64) we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 34 3 30

4 32

2 4 1 6 1 2
48

16 1 4
2

qw x x Lx L x
EI

x L L x L L x L H x L

λ λ λ

λ λ λ λ λ λ λ

 = − − + − − − + 

  + − − + − − + − − −    

 (74) 

Assuming 1λ =  gives us the deflection of a simply-supported beam with a constant 
flexural stiffness EI under a uniform distributed force 

( )
3

4 30 0 0

24 12 24
q q L q Lw x x x x
EI EI EI

= − + +                 (75) 

For n point loads (moment or force) one has to use ( )1n +  differential Equation 
and has to apply ( )1n +  boundary and continuity conditions. By using Macauly’s 
bracket we have only one expression for the bend moment and loading function using 
the singularity function matter. In this case only one differential Equation with four 
boundary conditions are required to be solved. 

In the case of n jump discontinuities, if one uses the auxiliary beam methods, shown 
in this article, instead of solving ( )1n +  differential Equations and applying ( )4 1n +  
boundary and continuity conditions need to be solved. In almost all practical problems, 
we do not have all three kinds of discontinuities at the same point (ie if a beam has n 
internal hinges, then the number of continuity Equations is reduced to n). 

In Section 3 for finding the governing differential Equation of an Euler-Bernoulli 
beam with jump discontinuities, the beam was partitioned to continuous beam seg-
ments. The next section will use the same ideas in order to find the equivalent distri-
buted forces for point forces and point moments. 

4.3. Equivalent Force Function for Concentrated Force and Moment: A 
Nonclasical Approach 

Here we will use that a concentrated force and a concerntrated moment represnt jump 
discontinities into shearing orce (the third derivative of the beam deflection) and the 
bending moment (the second derivative of the beam deflection) respectively, of an Eu-
ler-Bernoullie beam. As mentioned earlier, in Section 2, the classical proof of Equation 
(6) and Equation (7) is based on considering the singular loading condition as a distri-
buted force over a very short length of the beam. The concentrated force and the con-
centrated moment introduced jump discontinuities into the sheering force, third deriv-
ative of the Equation, and the bending moment, second derivative of the Equation, of 
an Euler-Bernoulli beam. In this section we will study a non classical approach for a 
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concentrated force of magnitude P, Equation (6) and a concentrated moment of M 
Equation (7). Figure 6 shows a beam with a concentrated force 0P  and a concentrated 
moment 0M  applied at 0x x= . The beam AC may be assumed to be composed of 
two beam segments, AB and BC. The deflections of the two beam segments AB and BC 
are denoted by w1 and w2 respectively. There is no loading for 00 x x< <  and 

0x x L< < ; hence, we have 

( )
4

1
04

d 0; 0,
d

w x x
x

= ∈                          (76) 

( )
4

2
04

d 0; ,
d

w x x L
x

= ∈                          (77) 

w is the deflection of the beam and can be written as 

( ) ( ) ( ) ( ) ( )1 2 1 0w x w x w x w x H x x= + − −                   (78) 

We know that the magnitudes of 1w  and 2w  are equal at 0x x= , the same is true 
for their first derivatives. Therefore, 

( ) ( ) ( ) ( ) ( )
2 2 2 2

1 2 1
02 2 2 2

d d d d
d d d d
w x w x w x w x

H x x
x x x x

 
= + − − 

 
             (79) 

From the figure above, we can write 

( ) ( )2 0 1 0 0V x V x P+ −− =  

( ) ( )2 0 1 0 0M x M x M+ −− =                        (80) 

Then, 
 

 
(a) 

 
(b) 

Figure 6. (a) A beam under a concentrated force and a concentrated moment. (b) Moment and 
shear discontinuity at the point of the action of concentrated loads. 
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( ) ( )3 3
2 0 1 0 0

3 3

d d

d d

w x w x P
EIx x

+ −

− =  

( ) ( )2 2
2 0 1 0 0

2 2

d d

d d

w x w x M
EIx x

+ −

− =                      (81) 

If you differentiate both sides from Equation (82) with respect to x, you get 

( ) ( ) ( ) ( ) ( ) ( )
3 3 3 3

1 2 1 0
0 03 3 3 3

d d d d
d d d d
w x w x w x w x MH x x x x

EIx x x x
δ

 
= + − − + − 

 
     (82) 

also 

( ) ( ) ( ) ( ) ( )

( ) ( )

4 4 4 4
1 2 1

04 4 4 4

0 0
0 0

d d d d
d d d d
w x w x w x w x

H x x
x x x x

M Px x x x
EI EI

δ δ

 
= + − − 

  

+ − + −

            (83) 

Now, from Equation (76), Equation (77) and Equation (86) we obtain 

( ) ( ) ( )14
0 0 0 0

4

d
d

P x x M x xw x
EIx

δ δ− + −
=                   (84) 

Therefore, the equivalent force function is 

( ) ( ) ( ) ( ) ( )0 0 0 0= P Mq x q x q x P x x M x xδ δ+ = − + −              (85) 

5. Timoshenko Beam with Jump Discontinuities 

Much like the work introduced on Euler-Bernoulli beams; we can also acquire jump 
discontinuities in slope, deflection, flexural stiffness, and shear stiffness to a system of 
differential Equations of a Timoshenko beam [6]. Differentiation between Euler-  
Bernoulli beams and Timoshenko beams are the distant shear deformation in the Ti-
moshenko beams. Shear deformation is where a force is being applied on one part and 
another force is being applied on another part, but in the opposite direction. Along the 
x, y, and z-axes, are displacement components 1u , 2u , and 3u . The displacement field 
is provided by the Equations 

( ) ( )1 , ,u x y z z xφ=  

( )1 , , 0u x y z =  

( ) ( )1 , , Tu x y z w x=                          (86) 

1u , 2u , and 3u  are displacement components in the ( ), ,x y x  plane. Also, φ  is 
the rotation of the Timoshenko beam about the y-axis and the superscript T shows the 
deflection of the Timoshenko beam. The Governing system of differential Equations 
can be written as, 

d d d 0
d d d

wEI GA
x x x

φ φ   ′− + =   
   

 

( )d d 0
d d

wGA q x
x x

φ  ′ + + =    
                     (87) 
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the shear modulus, G, is a distinguished ratio of the shear stress over the shear strain. 
The shear stress is the force applied to a certain amount of area it is applied to. The 
shear strain on the other hand, is the rate of change in displacement of the strain com-
bine with sA K A′ = , 

GA
EI
′

Ω =                              (88) 

the ratio of shear and flexural stiffness has now been defined. 
We can substitute Equation (88) into Equation (87) yields, 

2

2
d d 0
d d

Tw
x x

φ φΩ − +Ω =  

( )2

2
d d 0
d d

T q xw
x GAx
φ
+ + =

′
                       (89) 

Next, ponder a Timoshenko beam has jump discontinuities in the slope, deflection, 
shear stiffness, and flexural stiffness at 0x x=  on its length L. We refer to the heavy- 
side function as used for the Euler-Bernoulli beam to initiate the two Equations of def-
lection and rotation of the Timoshenko beam, we can write 

( ) ( ) ( ) ( ) ( )1 2 1 0
T T T Tw x w x w x w x H x x = + − −   

( ) ( ) ( ) ( ) ( )1 2 1 0x x x x H x xφ φ φ φ= + − −                     (90) 

Because deflection and rotation both have jump discontinuities at 0x x= , we write 

( ) ( ) ( ) ( )2 0 1 0 2 0 1 0,T T T Tw x w x x xφ φ θ− = ∆ − =               (91) 

It is known that 

( ) ( ) ( ) ( )1 0 2 0
1 0 1 2 0 2

d d
,

d d
x x

M x EI M x EI
x x

φ φ
= =              (92) 

and 

( ) ( ) ( ) ( ) ( ) ( )1 0 2 0
1 0 1 0 2 0 2 0

d d
,

d d
w x w x

V x GA x V x GA x
x x

φ φ
   
′ ′= + = +   
   

    (93) 

Also, for an infinitesimal element including the discontinuity point at equilibrium 
implies 

( ) ( )1 0 2 2
T

rM x M x K θ= =  

( ) ( )1 0 2 2
T

tV x V x K= = ∆                         (94) 

As we can see from Equation (94), tK  and rK  are the stiffness of the translational 
and rotational springs at 0x x= . So after reviewing and comparing Equation (92), Eq-
uation (93) and Equation (94), 

( ) ( )2 0 1 0d d 1 1
d d

T
rx x K

x x EI
φ φ θ

α
 − = − 
 

 

( ) ( )2 0 1 0d d 1 1
d d

T
Ttw x w x K

x x EI
θ

β
∆  

− = − − 
 

              (95) 
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where 

1 2,EI EI EI EIα= =  

1 2,GA GA GA GAβ′ ′ ′= =                       (96) 

Differentiating Equation (90), we obtain 

( ) ( )1 2 1
0 0

d d dd
d d d d

T t tT
Tw w ww H x x x x

x x x x
δ

 
= + − − + ∆ − 

 
                         (97) 

( ) ( ) ( )
2 2 22

11 2 1
0 02 2 2 2

d d dd 1 1
d d d d

TT t tT
T TtKw w ww H x x x x

GAx x x x
θ δ

β
   ∆  

= + − − + − − + ∆ −    ′     
 (98) 

and 

( ) ( )1 2 1
0 0

d d dd
d d d d

TH x x x x
x x x x

φ φ φφ θ δ = + − − + − 
 

                      (99) 

( ) ( ) ( )
2 2 22

11 2 1
0 02 2 2 2

d d dd 1 1
d d d d

T
TrKH x x x x

EIx x x x
φ φ φ θφ θ δ

α
   = + − − + − + −   

  
    (100) 

The deflection and rotation of each beam segment have continuous derivatives and 
hence they are governed by Equation (84), thus 

2
1 1

1 1 12
d d 0
d d

Tw
x x

φ φΩ − +Ω =                       (101) 

( )2
1 1

2
d d 0
d d

T q xw
x GAx
φ
+ + =

′
                        (102) 

and 
2

2 2
2 2 22

d d 0
d d

Tw
x x

φ φΩ − +Ω =                      (103) 

( )2
2 2

2
d d 0
d d

T q xw
x GAx
φ

β
+ + =

′
                       (104) 

Now if we let 1Ω = Ω  and 2
β
α

Ω = Ω  we can obtain the governing system of equi-  

librium Equations for the beam from Equation (97) through Equation (104), 

( ) ( )

( ) ( ) ( )

2
2

0 2 02

1
0 0

dd d 1 1
d dd

1 1

T

T
T Tr

ww H x x H x x
x xx

K x x x x
EI

φ β βφ φ
α α

θ δ θ δ
α

   Ω − + Ω + − Ω − + − Ω −   
   

  = Ω∆ − − − − −  
  

   (105) 

5.1. Auxiliary Beam Method 

This section shows the similarities between the Euler-Bernoulli method and the Timo-
shenko methods by providing a Timoshenko method example. You can compare it to 
the Euler-Bernoulli method from earlier. The auxiliary beam is defined for a Timo-
shenko beam with internal jump discontinuities. The deflection and rotation of the 
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beam are defined below: 

( ) ( ) ( ) ( ) ( )0 0 0

1 1T
t

T T T T
K

w x w x H x x x x H x x
GA
β

θ

  
∆ −  

  = − ∆ − − − − −
 ′
 
 

 

( ) ( ) ( ) ( ) ( )0 0 0

1 1T
t

T T T T
K

x x H x x x x H x x
GA

θ
αφ φ θ θ

  −    = − − − − − −
′ 

  

   (106) 

Substitution Equation (106) into Equation (105) yields, 

( ) ( )
2

0 02
d d 1 11 1
d d

T TT
T rK Kw x x H x x

x GA GAx
φ φ

β α
 ∆   ∆  Ω − + Ω = − − − − −   ′ ′    

 

( ) ( ) ( ) ( )
2

0 02
d d 1 11 1

dd

TT
rq x q x Kw H x x H x x

x GA GA EIx
θφ

β α
  −  + + + − − = − −  ′ ′   

  (107) 

The boundary conditions for this beam can be found by using the relations shown 
below: 

( ) ( ) ( ) ( ) ( )0
10 0 , 1

T
T T T T T TtKw w w L w L L x

GA
θ

β
 ∆  

= = − ∆ − − − −  ′   
 

( ) ( ) ( ) ( )d 0 d 0 d d 1, 1
d d d

T T T T T
Ttw w w L w L K

x x x dx GA
θ

β
 ∆  

= = − − −  ′   
         (108) 

and 

( ) ( ) ( ) ( ) ( )0
10 0 , 1

T
T TrKL L L x

GA
θφ φ φ φ θ

α
  = = −Θ − − − −  ′   

 

( ) ( ) ( ) ( )d 0 d 0 d d 1, 1
d d d d

T T
TrL L K

x x x x GA
φ φ φ φ θ θ

α
  = = − − −  ′   

          (109) 

The continuity condition may be expressed as 

( ) ( ) ( )0 0
0

d d
,

d d

TT
trx w x KK x

x EI x GA
φ θ φ ∆

= + =
′

              (110) 

The next section will provide an example to clarify the method shown. 

5.2. Timoshenko Beam Example 

Suppose the beam used in Example 1 is now a Timoshenko beam, from Equation (107) 
and Equation (37) we obtain, 

2

2
d d 0
d d
w
x x

φ φΩ − +Ω =                      (111) 

2
0

2
d d 0

dd
qw

x GAx
φ

− + =
′

                      (112) 

The boundary and continuity conditions for this beam can be written as, 
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( ) ( ) ( ) ( ) ( )d
0 0, 1 , 0 0, 0

d
T T T L

w w L L
x

φ
θ λ φ= = − = =  

( )d
0

d
L

x
φ λ

=                                              (113) 

After solving this system and applying the boundary and continuity conditions we 
obtain 

( ) ( )3 2 20 2 3 1 6
12

qx x Lx x
EI

φ λ λ = − + +                         (114) 

( ) ( ) ( )4 3 2 2 20 122 1 6 1
24

T qw x x Lx L x x Lx
EI

λ λ λ  = − − + − − +  Ω 
    (115) 

( )
3

0 121 4
24 1

T L q
EI

λθ λ
λ

 = − − + + − Ω 
                           (116) 

From Equation (106) we obtain 

( ) ( ) ( ) ( )T T Tw x w x x L H x Lθ λ λ= − − −               (117) 

( ) ( ) ( )Tx x H x Lφ φ θ λ= + −                         (118) 

Hence, 

( ) ( ) ( ) ( )

( ) ( ) ( )

4 3 2 2 30

3
2

4 12 1 6
24 1

12 1
1

T qw x x Lx x L x L H x L
EI

Lx Lx x L H x L

λλ λ λ λ
λ

λλ λ λ
λ

− = − − + + − − − − 
 

− − + − − − Ω − 

    (119) 

( ) ( ) ( )
3

3 2 20 124 6 1 12 1 4
24 1

q Lx x Lx L x H x L
EI

λφ λ λ λ λ
λ

  = − + + − − + + −  − Ω  
  (120) 

As the shear stiffness approaches infinity the effect of shear deformation diminishes 
until it disappears entirely. From Equation (47) and Equation (116), it is seen that 

lim Tθ θΩ→∞ = −                          (121) 

6. Dirac-Delta Function in the Static Analysis of Multi-Cracked 
Euler-Bernoulli Beams 

Structural analysis of multi-cracked beams is of greater engineering interest. Research 
in this area has been mainly concentrated on two classes of problems: 
• definition of appropriate linear and non-linear models for representing the effects of 

cracks under static and dynamical loadings and 
• detection of position and severity of the damage by using either static or dynamic 

tests. 
Here we will study an effective and physically based linear modeling of multi-cracked 

beams subject to the static loading. This result is useful for treating any type of concen-
trated damage occurring in slender and short beams, e.g. corrosion of steel bars in 
reinforced concrete members, defects of material and attacks of biotic agents in timber 
elements etc. 
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The idea of treating multi-cracked beams with equivalent linear springs at the crack’s 
position is based on the portion of each member into undamaged pieces between two 
consecutive cracks. For slender Euler-Bernoulli beam, the governing 4th order differen-
tial Equation of bending can be written for each subsystem, but it is necessary to im-
pose the pertinent continuity conditions between adjacent subsystems to obtain the 
static response of the whole beam. 

As a result, the computational effort increases with the number of cracks, i.e for n 
cracks along the beam, ( )4 1n +  algebraic Equations have to be solved to compute 
( )4 1n +  integration constants. But this method is inefficient for identifications pur-

poses, when analysis are repeated until position and severity of the damage are found. 
So one can use finite element method (FEM) in which stiffness matrix and load vector 
of the non-cracked Euler-Bernoulli beam are modified with some dimensionless coeffi-
cients with effects of internal cracks. 

Here we will be using generalized functions to handle static and kinematical discon-
tinuities along the beam. Here we require the enforcement of continuity conditions at 
each jump, and hence additional integration constants are needed. This issue can be 
tracked in the formulation of “rigidity modeling”, which consists of singularities in the 
flectual stiffness represented by Dirac’s delta functions, which in turn are equivalent to 
internal hinges with rotational linear-elastic springs. 

In this work, a non-trivial generalization to multiple discontinuities in the curvature 
and the slope functions of the integration procedure is presented. The case of Eu-
ler-Bernoulli beams under static loads is treated; discontinuities in the curvature and 
the slope function are modeled as unit step distributions and Dirac’s delta, respectively, 
in the flectural stiffness of the beam. Moreover, the presented procedure is also ex-
tended to cases of discontinuities in the axial displacement and in the vertical deflection 
modeled as Dirac’s deltas in the axial stiffness and the shear stiffness, respectively. 

6.1. Solution of Euler-Bernoulli Beam with a Flectural Stiffness Model 
with Multiple Singularities 

The well known static governing Equations of Euler-Bernoulli beam with variable 
Young modulus ( )E x  and moment of inertia ( )I x  are given by 

( ) ( ) ( ) ( )d d0; 0,
d d
v x q x M x V x
x x

+ = − =                (122) 

( ) ( )
( ) ( )

;
M x

x
E x I x

χ =                                  (123) 

( ) ( ) ( ) ( )d d; ;
d d

x x x u x
x x

χ φ φ= = −                    (124) 

where ( )q x  is the external load, ( )V x  and ( )M x  are the shear force and the 
bonding moment, respectively, ( )u x , ( )xφ , and ( )xχ  are the deflection, slopes 
and curvature functions, respectively, and prime denotes differentiation where the spa-
tial coordinate x spanning from 0 to the length L of the beam. Since Equation (124), 
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( ) ( )
2

2
d
d

x u x
x

φ = −                           (125) 

By Equation (123), 

( )
( ) ( ) ( )

2

2
d
d

M x
u x

E x I x x
= −  

( ) ( ) ( ) ( )
2

2
d
d

m x E x I x u x
x

= −                      (126) 

Also, from Equation (123), 

( ) ( )d
d

M x V x
x

=  

( ) ( )
2

2
d d

dd
M x V x

xx
=                        (127) 

and by Equation (122) we get, 

( ) ( )d
d

V x q x
x

= −                          (128) 

By combining Equation (127) and Equation (128), we get 

( ) ( ) ( ) ( ) ( )
2 2 2

2 2 2
d d d
d d d

m x E x I x u x q x
x x x

 
= − = − 

 
 

( ) ( ) ( ) ( )
2 2

2 2
d d
d d

E x I x u x q x
x x

 
⇒ − = − 

 
 

( ) ( ) ( ) ( )
2 2

2 2
d d
d d

E x I x u x q x
x x

 
⇒ = 

 
                      (129) 

The flexural stiffness model with a single singularity described by means of a suitable 
distribution as follows: 

( ) ( ) ( )0 0 0,
1

1
n

i i
i

E x I x E I D x xα
=

 = − −  
∑                 (130) 

The same model is reconsidered and extended to the case of multiple singularities. 
Equation (130) describes a constant flexural stiffness 0 0E I  with n-variations of in-

tensity iα  and abscissas 0,ix , modeled by means of n distributions here indicates as 

( )0,iD x x− . Two types of distribution, such as unit step distribution ( )0,iU x x−  and 
Dirac’s delta ( )0,ix xδ −  are considered in Equation (130) for the Euler-Bernoulli 
beam, which leads to two different models as follows 

( ) ( ) ( )0 0 ,
1

1
n

i r i
i

E x I x E I rU x x
=

 = − −  
∑  

( ) ( ) ( )0 0 ,
1

1
m

j j
j

E x I x E I U x xββ
=

 
= − − 

 
∑                (131) 

The flexural stiffness provided by Equation (131) describes a beam showing concen-
trated jumps in the Young modulus ( )E x  and the inertia moment ( )I x  of the cross 
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section (Figure 7). In this case, for the flexural stiffness ( ) ( )E x I x  to be non-negative, 
the only constraints to be imposed on jump intensities ir  for the model described by 
Equation (131) are 1 1; 1,2, ,k

ii r k n
=

≤ =∑  . On the other hand, if the flexural stiffness 
is given by Equation (131) for the case of a single Dirac’s delta, the slope function will 
show n concentrated jumps induced by the presence of internal hinges endowed with 
rotational springs, as depicted in (Figure 8(a)). For this case, constraints on jβ  will be 
discussed later. 

Now we will study two different flexural stiffness models given by Equation (131) 
using the theory of distributions. Further, we present the model with the presence of 
two different singularities. 

6.2. Solution of Euler-Bernoulli Beams in Presence of Multiple 
Curvature Discontinuities 

Here we study the case of multiple jump discontinuities in the flexural stiffness, pro-
vided by Equation (131). Such case has been discussed for single (Yavari et al., 2000) [7] 
and double jumps (Yavari and Sarkani, 2001) [8]. But in those procedures enforcement 
of continuity conditions (where jumps appear) is required. We provide closed form so-
lution for any number and position of the discontinuities. 
 

 
Figure 7. Beam with discontinuities in the Young modulus ( )E x  and in the moment of inertia 

( )I x . 

 

 
(a) 

 
(b) 

Figure 8. (a) A beam with Dirac’s delta singularities in the flexural stiffness which corrosponds to 
Figure 8(b). (b) A beam with internal hinges and rotational springs with stiffness ,ikφ . 
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In the case of flexural stiffness, Equation (131), the governing Equation (129) takes 
the following form, 

( ) ( ) ( )0 0 ,
1

1
n

i r i
i

E I rU x x u x q x
=

′′  ′′− − =  
  

∑  

( ) ( ) ( ) ( )2
0 0 , 2 1

1
1

n

i r i
i

E I rU x x u x q x b x b
=

  ′′− − = + +  
  

∑  

( )
( ) ( )

( )

2
1 2

0 0 ,
1

1
n

i r i
i

b b x q x
u x

E I rU x x
=

+ +
′′⇒ =

 − − 
 

∑
                       (132) 

where 1b  and 2b  are constants of integration and ( ) ( )kq x  indicates a primitive of 
order k of the external load function ( )q x . 

Using the properties of unit step function, Equation (132) can be rewritten as, 

( ) ( )
( ) ( )

( ) ( )

2
1 2

0 0 ,
1 0 0 0 0 0 0

2

3 4
0 0

2 61
2 6

= 2 6

n

i r i
i

q xb b xu x E I rU x x
E I E I E I

q x
c c

E I

=

 ′′ − − = + + 
 

+ +

∑
 

( )
( ) ( ) ( )
2

3 4 ,
10 0

2 6 1
n

i r i
i

q x
u x c c r H x x

E I =

   ′′⇒ = + + + −       
∑  

( ) ( )
( ) ( ) ( )
2

3 4 1 ,
10 0

2 6 1
n

i i i r i
i

q x
x u x c c r H x x

E I
χ µ µ +

=

   ′′= − = − + + + −       
∑     (133) 

where 

1 2
3 4 1

0 0 0 0 1

1; ;
2 6 1

i i
kk

b bc c
E I E I r

µ −

=

= = =
−∑

              (134) 

Equation (133) show that the flexural stiffness model given by Equation (131) pro-
vides a curvature function with jump discontinuities at ,r ix ; 1, 2, ,i n= 

 of the cur-
vature function are dependent on the discontinuity intensities at ,r kx ; 1, 2, , 1k i= − . 

Integration of Equation (131) provides the slope function as follows: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 3 1 , ,
1

2
4 1 , ,

1

3 33
,

1 ,
10 0 0 0

2

3

n

i i i r i r i
i

n

i i i r i r i
i

n
r i

i i i r i
i

x u x c c x r x x H x x

c x r x x H x x

q x q xq x
r H x x

E I E I

φ µ µ

µ µ

µ µ

+
=

+
=

+
=

 ′= − = − − + − −  
 − + − −  

 −
 − − −
 
 

∑

∑

∑

   (135) 

Integration of Equation (135) provides the following closed form expression for the 
deflection function 
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( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

22
1 2 3 1 , ,

1

33
4 1 , ,

1

4 4 34
, , ,

1
10 0 0 0

n

i i i r i r i
i

n

i i i r i r i
i

n
r i r i r i

i i i
i

u x c c x c x r x x H x x

c x r x x H x x

q x q x q x x xq x
r

E I E I

µ µ

µ µ

µ µ

+
=

+
=

+
=

 = + + + − −  
 + + − −  

 − − −
 + +
 
 

∑

∑

∑

   (136) 

Equation (135) and Equation (136) represents the generalization of multiple flexural 
stiffness discontinuities, of the type Equation (131), of the closed form expressions for a 
single discontinuity. 
• The bending moment function is obtained by multiplying the curvature function, 

Equation (133) by Equation (131), as follows: 

( ) ( ) ( ) ( )
( ) ( )2

0 0 3 4
0 0

2 6
q x

M x E x I x x E I c c x
E I

χ
 

= = − + +  
 

          (137) 

• The shearing force function is obtained by differentiating Equation (137) as follows: 

( ) ( )
( ) ( )1

0 0 4
0 0

6
q x

V x M x E I c
E I

 
′= = − +  

 
                 (138) 

Equation (137) and Equation (138) are for a single singularities and show that the flex-
ural stiffness discontinuities do not appear explicitly. In fact, it is expected that bending 
moment ( )M x  and shear force ( )V x  are independent of the flexural stiffness (for 
statically determinate beams). But, the discontinuity intensities ir  and positions ,r ix  
appear explicitly in the integration constants 3c , 4c  (for statically determinate beams.) 

7. Solutions of Euler-Bernoulli Beams in Presence of Multiple 
Slope Discontinuities 

For the case of multiple slope discontinuities, we adopt a new technique of integration. 
In the case of flexural stiffness provided by Equation (131), the governing Equation 

(129) takes the following form: 

( ) ( )0 0 ,
1

1
m

j j
j

E I x x u xββ δ
=

  
′′− −  

   
∑                       (139) 

( ) ( )
( ) ( )2

2 1
,

1 0 0

1
m

j j
j

q x b x b
x x u x

E Iββ δ
=

  + +
′′− − = 

 
∑  

( )
( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )

2
2 1

0 0
,

1

2
2 1

,
10 0

2
2 1

,
10 0

1

1

1

m

j j
j

m

j j
j

m

j j
j

q x b x b
u x

E I x x

q x b x b
x x

E I

q x b x b
x x

E I

β

β

β

β δ

β δ

β δ

=

=

=

+ +
′′⇒ =

− −

 + +
= + − 

 

+ +
= + −

∑

∑

∑

           (140) 
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To solve the product of two Dirac’s delta distributions, we will rely on the technique 
proposed by Bagarello (1995; 2000) [9]. Bagarello indicates that the product of two Di-
rac’s deltas both centered at 0x  can be reduced to a singe Dirac’s delta multiplied by a 
constant A as follows: 

( ) ( ) ( ),
, ,

;

0;
j

j k

A x x j k
x x x x

j k
β

β β

δ
δ δ

 − =− − = 
≠

           (141) 

where ( )1

1

1 dk
x

A x
A xk

φ
−

= ∫ ; and ( )xφ  is a test function. 

Hence, 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
1 2

, , ,
10 0

2
1 2

,
1 10 0

1

m

k k j j
j

m m

k j j
j j

b b x q x
u x x x x x u x A x x

E I

b b x q x
x x A A

E I

β β β

β

δ δ β δ

δ β β

=

= =

+ +
′′ ′′− = − + −

 + +
= − + + 

 

∑

∑ ∑
 

( ) ( )
( ) ( ) ( )
2

1 2
, ,

0 0

1
1k k

j

b b x q x
u x x x x x

A E Iβ βδ δ
β

+ +
′′ − = −

−
                (142) 

Substituting Equation (142) into Equation (140) given the following explicit expres-
sion of the curvature for the considered beam model 

( ) ( )
( ) ( )

( ) ( ) ( )

2

3 4
0 0

2
,

3 4 , ,
1 0 0

2 6

2 6
1

m j j
j j

j j

q x
x u x c c x

E I

q x
c c x x x

E I A
β

β β

χ

β
δ

β=

 
′′= − = − + + 

  
 
 − + + −

−  
∑

        (143) 

Integration of Equation (143) provides the following slope function showing discon-
tinuities at the abscissa , jxβ  

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( )

2 3 ,
1

2
4 , ,

1

23
,

,
10 0 0 0

2
1

3
1

1

m
j

j
j j

m
j

j j
j j

m jj
j

j j

x u x c c x H x x
A

c x x H x x
A

q xq x
H x x

E I A E I

β

β β

β
β

β
φ

β

β
β

β
β

=

=

=

 
′= − = − − + −  − 
 

− + −  − 

− − −
−

∑

∑

∑

         (144) 

Further integration of Equation (144) provides the following closed form expression 
for the deflection function of the beam 

( ) ( )( )

( )( )
( ) ( ) ( )

( ) ( ) ( )

12
1 2 3 , ,

1

13
4 , , ,

1

24
1,

, ,
10 0 0 0

2 2
1

6
1

1

m
j

j j
j j

m
j

j j j
j j

m jj
j j

j j

u x c c x c x H x x x x
A

c x x H x x x x
A

q xq x
H x x x x

E I A E I

β β

β β β

β
β β

β
β

β
β

β
β

−

=

−

=

−

=

 
= + + + − −  − 

 
+ + − −  − 

+ + − −
−

∑

∑

∑

     (145) 
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The bending moment and shear force function formally coincide with Equation (126) 
and Equation (128), respectively. In fact, for statically determine beams, ( )m x  and 
( )v x  should not depend on the adopted flexural stiffness. On the contrary, for stati-

cally indeterminate beams, the adopted flexural stiffness model will affect the expres-
sions of the constants 3c , 4c . 

The slope function defined in Equation (144) presents jump discontinuities ( ), jxβφ∆  
at , jxβ  that are explicitly evaluated as follows: 

( )
( ) ( )2

,
, 3 4 ,

0 0

2 6 ; 1, 2, ,
1

jj
j j

j

q x
x c c x j m

A E I
β

β β

β
φ

β

 
 ∆ = − + + =
 −  

     (146) 

and comparison of Equation (146) with the bending moment given by Equation (126) 
evaluated at , jxβ  leads to 

( ) ( ),
,

0 0

; 1, 2, ,
1

jj
j

j

M x
x j m

A E I
β

β

β
φ

β
∆ = =

−
              (147) 

Equation (147) corresponds to the presence of internal hinges at , jxβ ; 1, 2, ,j n=  , 
endowed with rotational springs with stiffness , jkφ  as shown in Figure 8(a), given as 

, 0 0

1
; 1, 2, ,j

j
j

A
k E I j mφ

β
β
−

= = 

                 (148) 

Since rotational spring stiffness can take values from zero (no rotational spring) up 
to infinity (continuous beam at , jxβ , with no internal hinges), discontinuity values jβ , 
in view of Equation (148), can take values from 0 up to 1. 

However, if rotational spring stiffness , jkφ , are assigned to the related value jβ  
have to be obtained by Equation (148) for a value of the quantity A among those pro-
posed by Bagereuo (1995) [9]. 
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