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Abstract 
 
A new form of Dirac equation of a second order partial differential equation is found. With this wave equa-
tion the quivering motion (Zitterbewegung) is satisfactorily explained. A quaternionic analogue of Dirac 
equation is presented and compared with the ordinary Dirac equation. The two equations become the same if 
we replace the particle rest mass, m0, in the latter by im0. New space and time transformations in which these 
two equations represent a massless particle are found. The invariance of Klein-Gordon equation under these 
transformations yields the Dirac equation. The electron is found to be represented by a superposition of two 
waves with a group velocity equals to speed of light in vacuum.  
 
Keywords: Dirac Equation, Zitterbewegung, Universal Quantum Wave Equation, Quaternion Quantum 

Mechanics  

1. Introduction 
 
In 1928 Dirac introduced his relativistic wave equation 
[1]. He had wanted to find an equation for the electron 
that would be consistent with special relativity and de-
scribe the known fine structure frequency spectrum of 
hydrogen. In technical terms the equation was Lor-
entz-covariant. It correctly described the fine structure of 
hydrogen. When Dirac examined the solutions to his 
equation, he found that, much to his surprise, it also pre-
dicted the electron’s spin and its magnetic moment. Per-
haps even more surprising, his equation also suggested a 
positively charged particle with the mass of the electron 
could exist. Based on his equation, in 1931 Dirac pre-
dicted what he called the anti-electron (a positron) and 
confirmed experimentally in 1932. In 1933 he shared 
with Schrodinger the Nobel Prize for physics for his 
work in quantum mechanics. 

In developing his equation, Dirac assumed that the 
electron was a point-like particle with an electric charge 
equal to the experimentally measured charge of the elec-
tron. Dirac however did not try to develop visualizable 
physical models as aids to picturing or understanding his 
mathematical results. 

There are several results of Dirac’s equation which 
were problematical, despite the equation’s general suc-
cess. It was mentioned that Dirac did not in this period 
attempt to make a physical model of the electron and did 
not support such attempts. However, many of the proper-

ties of the Dirac electron, including these problematical 
properties, lend themselves to a physical modeling ap-
proach, which may help resolve some of these problem-
atical properties. 

The Zitterbewegung is a theoretical rapid motion of 
elementary particles, in particular electrons, that obey the 
Dirac equation. The existence of such motion was first 
proposed by Erwin Schrodinger in 1930 as a result of his 
analysis of the wave packet solutions of the Dirac equa-
tion for relativistic electrons in free space, in which an 
interference between positive and negative energy states 
produces what appears to be a fluctuation (at the speed of 
light) of the position of an electron around the median, 
with a circular frequency of 2

02m c  , or approximately 
. This very rapid motion of the electron 

means we cannot localize the electron extremely well 
and gives rise to the Darwin term. This motion never 
been observed for a free electron, but the behavior of 
such a particle has been simulated with a trapped ion, by 
putting it in an environment such that the non-relativistic 
Schrodinger equation for the ion has the same mathe-
matical form as the Dirac equation (although the physical 
situation is different) [2,3]. Thus, if we measure the ve-
locity component in any direction, we should either get 
plus or minus c. This seems quite surprising, but we 
should note that a component of the velocity operator 
does not commute with momentum, the Hamiltonian, or 
even the other components of the velocity operator. If the 
electron were massless, velocity operators would com-
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mute with momentum. In more speculative theories of 
particles, electrons are actually thought to be massless, 
getting an effective mass from interactions with particles 
present in the vacuum state. Barut and Bracken [4] ana-
lyzed Schrodinger’s Zitterbewegung results and pro-
posed a spatial description of the electron where the Zit-
terbewegung would produce the electron’s spin as the 
orbital angular momentum of the electron’s internal sys-
tem, while the electron’s rest mass would be the elec-
tron’s internal energy in its rest frame. The states of 
definite momentum are not eigen-states of velocity for a 
massive electron. The velocity eigen-states mix positive 
and “negative energy” states equally. 

Thus, while momentum is a constant of the motion for 
a free electron and behaves as it did in non-Quantum 
Mechanics, the velocity behaves very strangely in the 
Dirac theory, even for a free electron. While Dirac equa-
tion is a first-order differential equation in space and 
time, Klein-Gordon equations is a second-order in space 
and time. The two equations are invariant under Lorentz 
transformations. 

We would like in this paper to write Dirac equation as 
a second - order differential equation in space and time 
mimicking the standard wave equation. In doing so, we 
have found new space and time transformations under 
which Dirac equation represents a particle with zero 
mass. Moreover, the ordinary Dirac equation is invariant 
under these transformations. Interestingly, the invariance 
of Klein-Gordon equation under these transformation 
yields Dirac equation. The new Dirac equation has many 
interesting consequences. As in the de Broglie theory, 
the electron is described by a wavepacket whose group 
velocity is equal to the speed of light in vacuum. The 
nature of this wave may explain the Zitterbewegung ex-
hibited by the electron as found by Schrodiner.  
 
2. Quaternionic Quantum Mechanics: 

Dirac-Like Equation 
 
Consider a particle described by the quaternion wave-  

function 0= ,
i

c
 

 
ψ

 . This is equivalent to spinor  

representation of ordinary quantum mechanics which we 
have recently developed [5]. The evolution of this qua-
ternion wavefunction is defined by the three equations 
[5]  

0 0
02

1
= 0,

m

tc





  

 
ψ           (1) 

2
0

0 = 0,
m c

t
 

 
 
ψ

ψ            (2) 

and  

= 0.ψ                  (3) 

Equations (1) - (3) yield the two wave equations  
22

2 0 0
2 2

1
2 =

m m c

tc t

              
ψ ψ

ψ ψ 0,   (4) 

and  
22

20 0 0 0
0 02 2

1
2 = 0

m m c

tc t

 
 

              
.  (5) 

Using the transformation  
2

0=
m c

t
 


  

,              (6) 

Equations (1) and (2) become  

0
02

1
= , =

c


 .

 
 


 

ψ
ψ         (7) 

Employing Equation (6), Equations (4) and (5) are 
transformed into the wave equations  

2
2 2 2

0 2 2

1
= 0, = 0, = .

c



 2   


ψ     (8) 

The physical meaning of the vector  is still not 
clear. But I argue that it can be associated with funda-
mental particles (eg., quarks) that making up all hadrons, 
since it has three components. In this way 0

ψ

  may rep-
resent a scalar particle (boson). Notice that Equations (4) 
and (5) can be obtained from the energy equation 

, where ,  is the total en-
ergy of the particle, and using the familiar quantum me-
chanical operator replacements, viz., 

2 2=E p c 2 2
0=E E im c  E

ˆ =p i   and  

ˆ =E i
t


. =E cp  is an energy equation for a massless  


particle. Thus, it is interesting that a massive particle can 
be transformed into a massless particle using Equation 
(6). Since energy is a real quantity, this equation is 
physically acceptable if it describes a particle with 
imaginary mass. In this case the energy equations split 
into two parts; one with  and the other 
with energy 0 . Such energies can describe 
the state of a particle and antiparticle. A hypothetical 
particle with an imaginary mass moving at a speed 
higher than speed of light in vacuum is known as 
tachyon [6]. Hence, our above equation can be used to 
treat the motion of tachyons. This implies that our equa-
tions, Equations (4) and (5), can be applied to tachyons. 
Some scientists propose that neutrino can be a tachyonic 
fermion [7]. This is in favor of the experimental finding 
that the squared mass of neutriono is negative [8]. We 
know that Cherenkov radiation is emitted from a particle 
moving in a medium with speed greater than speed of 
light in vacuum. When the speed exceeds the speed of 

2
0=E E m c 

2c=E E m 
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light in vacuum, the extra energy acquired by the particle 
is transformed in radiation. This can happened momen-
tarily for a particle keeping its total energy conserved. 
Thus, the excess energy (speed) is such that it compen-
sate the dissipations.  
 
3. Ordinary Quantum Mechanics: Dirac’s 

Equation 
 
Dirac’s equation can be written in the form [1]  

01
= 0.

im c

c t

  
  

 
          (9) 

where , ,  and  
1 0

0 1


 
   

0

0


 
  
 

σ

σ
2 2= =  1

σ  are the Pauli matrices. From Equation (9) one has  

0 1im c

c t

       
 

 . Squaring this equation yields, 

22
2 0 0

2 2

1
2 =

m i m c

tc t

                
0.  (10) 

Employing Equation (9) once again yields,  
22

2 0 0
2 2

1
2 = 0.

m ci m c

c t

                   
α  (11) 

This can be written as  
2

2
2 2

1
= 0,

c t

  


           (12) 

where  

0=
m c

i .
 


              (13) 

Equation (10) can be obtained from Equation (9) by 
squaring it. These forms of Dirac equation, Equations (9) 
and (10), have not been obtained before. They exhibit 
clearly the wave nature of the electron. It can be com-
pared with the Klein-Gordon equation of spin-0 particles  

22
2 0

2 2

1
= 0.

m c

c t

         
     (14) 

Equations (10) and (11) are another form of Dirac’s  

equation exhibiting the wave nature of spin-
1

2
 particles 

explicitly. Using the transformation  
2

0=
m c

i
t

,

 


  

          (15) 

Equation (10) can be written as  
2

2
2 2

1
= 0.

c

 






            (16) 

This is a wave equation for a massless particle. Hence, 
  can also represents a particle with zero mass when 
taken in  —time. Equations (12) and (16) show that the 
particle is in state of continuous creation and annihi-  

lation. This happens after a time of 
2

0m c


 and a dis-

tance of 
0m c


 which is traversed with speed , as evi-  c

dent from Equations (13) and (15). 
It is interesting to see that the invariance of Klein- 

Gordon equation under the transformations defined by 
Equations (13) and (15) yields Dirac equation. Moreover, 
Dirac equation, viz., Equation (9), is also invariant under 
the transformations in Equations (13) and (15). 

Since   is a four components spinor, we can write it  

in terms of two components doublets, viz., .  









 
  
 

Substituting these decomposed spinors in Equation (10), 
one obtains the two equations  

22
2 0 0

2 2

1
2 =

m i m c

tc t

 
  

 

              
0,  (17) 

and  
22

2 0 0
2 2

1
2 =

m i m c

tc t

 
  

 

              
0,  (18) 

Equations (17) and (18) imply two energy solutions, 
one with  and the other with energy 

. Equation (10) can be obtained from Eq- 
uations (4) or (5) by replacing 0  by 0im . Therefore, 
Equations (4) and (5) can represent imaginary massive 
bodies (tachyons). De Broglie hypothesis that all mi-
croparticles exhibit a wave nature. This is possible if we 
describe a particle by a wavepacket. In this way the 
group velocity of the wavepacket will be the velocity of 
the moving particle. However, a single wave can’t de-
scribe a particle. In Dirac’s theory the electron is found 
to move with speed of light and owing to Einstein’s rela-
tivity it must have a zero mass. Hence, this motion is 
problematic in Dirac’s theory. The negative energy equa-
tion, i.e., Equation (18), can be written as 

2
0=E E m c 

2
0m c=E E 

m

22 2 2
2 0

2 2
0 0

= ,
2 22

m c
i

t m m c t

   
   

 
   

which can be seen as a generalized Schrodinger’s equa-
tion. It can thus represent the motion of a positron. It is 
interesting to notice that if we rotate space and time, viz., 

 and , in Equation (4) we will obtain the 
Dirac positive energy equation, i.e., Equation (17). Simi-
larly, for anticlockwise rotation, viz., t  and 

, Equation (4) yields the Dirac negative energy 

t i

ir

t r

it
r

ir


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equation, i.e., Equation (18). Hence, our Equation (4) is 
equivalent to Dirac equation in imaginary space-time. 

The transformation equations, Equations (13) and (15), 
can be compared with the covariant transformation that 
is defined by  

=
i

D ,eA  
               (19) 

where A  is the gauge potential. Hence, one concludes 
that  

0
0,

m c m c
A

e e
0 .  A α         (20) 

This analogy dictates that A  to be a matrix. It is re-
lated to Dirac matrices by the relation  

00
0,

m c m c
A

e e
0 . A γ         (21) 

The plane wave solution of Equation (5) takes the 
form  

   , = , = .i tr t Ae A const  k r       (22) 

Substituting this solution in Equation (10) yields the 
dispersion relation  

2
0=

m c
ck


  


,             (23) 

and in Equations (17) and (18) yield the positive and 
negative frequencies  

2 2
0 0= , =

m c m c
ck ck    

 
,     (24) 

respectively. This implies that this plane wave is a col-
lection of two waves of two different frequencies but 
same wavelength. It is thus a wavepacket. We may as-
sume that a particle is a combination of two states: one 
moving with momentum  in one directions and the 
other with momentum  is the opposite direction 
with velocity of light, . This may imply an internal 
circular motion resulting from the two states. Hence, in 
the electron rest frame the total momentum is zero. Does 
this circular motion give rise to the spin of the electron? 
Does this imply that the electron is not fundamental and 
consists of some substructure? Dirac’s theory of the rela-
tivistic electron did not include a model of the electron 
itself, and assumed the electron was a point-like particle. 
Notice that string theory postulated that the electrons and 
quarks within an atom are not 0-dimensional objects, but 
rather 3-dimensional oscillating lines (strings). The the-
ory advocates that these strings can vibrate, thus giving 
the observed particles their charge, mass and spin. 

k
k

c

According to Equation (21) a particle is in a positive 
energy state when its wavelength is greater than the  

Compton wavelength, 
0

=c

h

m c
 , ( > c  ), and in a  

negative energy state (antiparticle) when its wavelength 
is smaller than the Compton wavelength ( < c  ). 
However, a particle existing in the negative energy state 
(antiparticle) having = c   will be in a state of rest 
(trapped). Thus, the particle is in essence a superposition 
between its matter and antimatter states, these two con-
tradictory sides of its personality should interfere, setting 
the particle quivering (Zitterbewegung). However, this 
phenomenon has never been observed experimentally 
because the motion is too small and too fast to detect in 
real quantum systems.  

The group velocity of a (non)-relativistic particle is 
equal to its velocity. Equations (19) and (20) implies that 
the group velocity of the wavepacket is given by  

,= =gv
k

 



.c

c

            (25) 

This implies that not the electron as a whole that os-
cillates but its constituents that having zero mass. Hence 
real particles and tachyons are particles move with speed 
of light. However, the phase velocity of each wave com-
prising the wave packet is less than speed of light in 
vacuum, as evident from Equations (20) and (21). The 
group velocity  does not necessarily require a 
particle to have 0 , as evident from Equation (21). 
It is a transient property of the particle when seen in a 
different time frame (

=gv
= 0m

 ). Hence, the Dirac’s velocity 
dilemma is now resolved.  
 
4. Electromagnetic Wave in Conducting 

Medium 
 
For a conducting medium with conductivity  , Max-
well equations read for electric and magnetic fields, E , 

 the wave equation  B
2

2
2 2

1
= 0,

tc t
 

 


B
B

B
         (26) 

and  
2

2
2 2

1
= 0.

tc t




 
  


E E

E


      (27) 

Comparing this with Dirac equation, Equation (4), one 
obtains the relation  

2 2 2 2 2
0 *

1
=

4
m m    ,           (28) 

defining the effective mass ( * ) of the magnetic field 
when propagating in a medium. This is acceptable if we 
employ the wave-particle hypothesis of de Broglie. It is 
evident that this mass depends on the conductivity of the 

m

Copyright © 2011 SciRes.                                                                                 JMP 



A. I. ARBAB 
 

Copyright © 2011 SciRes.                                                                                 JMP 

1016 

medium. Hence, the magnetic field inside a conducting 
medium behaves like a particle with mass of *m . 
Therefore, we see that when an electromagnetic field 
propagates in a conducting medium, it loses part of its 
energy so that the photon acquires a mass that is directly 
proportional to the conductivity of the medium. More-
over, if one now writes the last term in Equation (27) as  

2 2
0
2

=
m c

 


,E              (29) 

so that Equation (27) will be similar to Equation (17). If 
we take the divergence of both sides of Equation (29) 
and use Gauss law, we will obtain  

2 2
2 *

2
= 0.

m c
  


            (30) 

Consider the reflection of positively charged spin-0 
particle from a high Coulomb barrier for which the 
Klein-Gordon equation is [9]  

2 22
2 0

2 2 2

1
2

m ciV V

t cc t c

 
                       

= 0 ,

(31) 

where the potential  is zero to the left of the barrier 
and a constant to the right. Hence, comparison with 
Equation (17) reveals that when 0  (massless 
boson) in Equation (31) the resulting equation will be  

V

0m 

similar to Equation (17) for spin-
1

2
 particle. In this case, 

one finds the mass of the spin-
1

2
 particle will be 

2
=

V
m

c
. Hence, a massless boson behaves as a massive 

Dirac particle of an effective mass of 
2

=
V

m
c

. Thus, a  

massless meson encountering a potential of 0.511 MeV 
will acquire a mass equals to the electron mass, and 
therefore, will behave as an electron.  
 
5. Concluding Remarks 
 
We have written Dirac equation in terms of a sec-

ond-order wave equation. Specific space and time trans-
formations allow the mass term to disappear. When these 
transformations are applied to Klein-Gordon equation, 
Dirac equation is obtained. The solution of the Dirac 
equation yields two oscillating states with positive and 
negative energies. These states move with a group veloc-
ity equals to the speed of light in vacuum. The existence 
of such states resolved the quivery motion of the electron 
(Zitterbewegung) found by Schrodinger. This is because 
not the electron as a whole that oscillates but its con-
stituents that having zero mass. It is quite interesting to 
notice that the quaternion analogue of Dirac equation 
yields the ordinary Dirac equation if we replace  
with 

0m

0im . 
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