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Abstract 
Recent measurements have shown that gravitational waves and thus the gravitational 
interaction propagate with the speed of light. The propagation delay of the gravita-
tional interaction in orbiting systems couples the orbital and center of mass motions. 
This causes the orbits to spiral out and the center of mass to accelerate. It is one of a 
number of small effects modifying the Kepler orbits. The calculations show that the 
analytical describable expansion of the semimajor axis started at a time that is less 
than the age of the systems. This could be caused by a collision of a system compo-
nent in the past. The effect of this propagation delay on the motion of the Earth 
Moon and the Brown Dwarf 569Bab binary star system is analyzed. These systems 
were chosen because a considerable amount of measured astronomical data is availa-
ble. The calculated results are in excellent agreement with the measured data. In ga-
laxies, too, the energy transfer from the orbit of the star cloud to the center of mass 
motion causes the galaxies to accelerate. If galaxies are considered to be molecules of 
the universe, then the acceleration of the galaxies will cause the molecular gas to heat 
and expand. Alternatively, the loss in orbital internal energy of the galaxies should be 
included in the mass and energy in the calculation of the expanding Universe. 
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1. Introduction 

The small effect of the propagation delay of the gravitational interaction on the motion 
of the Earth Moon and the Brown Dwarf 569Bab binary star system is analyzed. The 
calculated values are in very good agreement with observed values. 
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Recent measurements have shown that gravitational waves and thus the gravitational 
interactions propagate with the speed of light. This is described by B. P. Abbott et al. [1] 
in an article in Physical Review Letters. 

The gravitational propagation delay exists whether the interaction is modeled by the 
deformation of the four dimensional space due to the mass of the bodies, or it is mod-
eled by a gravitational interaction that is propagating between objects. In each case a 
change in position of one object takes time to be sensed by the other object. 

Neither Newtonian Classical Mechanics nor the General Theory of Relativity consid-
ers delayed interactions [2] [3]. 

The systems considered here are neither extremely massive, by astronomical stan-
dards, nor do they move with velocities that are a substantial portion of the speed of 
light. For such systems the Kepler-Newtonian Mechanics [2] gives fairly accurate re-
sults. This calculation is for small changes in the various parameters of the Kepler orbits. 
The calculation performed here is only valid for a gravitational propagation delay time 
that is much smaller than the orbital period. 

The finite propagation delay of the gravitational interaction couples the orbital and 
center of mass motions. The main effect of the delay in the gravitational interaction is 
that the orbits grow very slowly. The loss in orbital energy is transferred to the center of 
mass motion. This causes the center of mass to accelerate. The acceleration is not linear 
since part of the orbital angular momentum is transferred to the center of mass motion. 

In galaxies, too, the average propagation time of the gravitational interaction between 
the star cloud and central black hole is much smaller than the orbital period of the star 
cloud. Thus, the effect of the gravitational propagation delay on galaxies should also 
exhibit a growth of the distributed star cloud and an acceleration of the center of mass. 

One can consider the very large number of star systems, galaxies, and galactic clus-
ters as molecules of the universe. The transfer of internal orbital energy to the molecu-
lar motion will cause the universe gas to heat and expand. Alternatively, one should in-
clude the loss in orbital internal energy of the galaxies and other orbiting objects in the 
mass and energy of the universe when considering its accelerating expansion [4]. Con-
ventionally Magic Dark Matter has been used to explain the accelerating expansion of 
the Universe [5]. 

After completing its final run, scientists at the extremely sensitive Large Under-
ground Xenon (LUX)–Zeplin [6] experiment announced they have found no trace of 
Magic Dark Matter particles. Dark Matter is postulated to be carried by Weakly Inter-
active Massive Particles (WIMP) s. Measurements with the very Large Hadron Collider 
at CERN has verified with increasing accuracy the so called Standard Model of sub 
atomic physics. But it has failed to detect any particle, such as Neutralino, associated 
with Magic Dark Mass. Thus, all attempts to measure Dark Mass or Dark Energy [6] [7] 
[8] have failed to produce any evidence of their existence to date. 

Perhaps Dark Mass is like the Ether of the end of the 19th century through which 
electromagnetic waves were supposed to propagate. The Michelson Morley experiment 
showed in 1887 that the aluminiferous Ether does not exist. These experiments were 
repeated with greater and greater accuracy until 1920 without detecting an aluminifer-
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ous Ether. In 1905 Einstein showed that the aluminiferous Ether was not necessary for 
electromagnetic wave propagation. 

There are a number of small corrections to the Kepler Newton model:  
For the Earth Moon system there are interactions with the sun and the other planets. 

This effect mainly results in a small change of the orbit and in the Apsidal precessions 
of the orbits [9]. 

There is an increase in the orbits explained by tidal effect [10] [11] due to flexing of 
the interacting bodies. The periodically flexing of the orbiting bodies due to tidal effects 
converts some of the orbital energy to heat.  

There are small effects due to the curvature of space near masses explained by the 
General Relativity Theory [3] [12]. The General Relativistic model mainly provides a 
small correction to the precession of the orbits.  

Here the small contribution to the orbital motion due to the finite propagation delay 
of the gravitational interaction is calculated. The calculated values are in very good 
agreement with observed values.  

Another result is that the analytically describable spiraling out of the semimajor axis 
starts at a time that is much less than the age of the system. This probably can be caused 
by a collision of one of the system components that obscured the previous analytical 
describable motion. The time of the past collisions is calculated. The spiraling out of the 
Lunar orbit, analyzed here, starts in the Pliocene and Miocene epochs, long after the 
Dinosaurs have disappeared.  

The gravitational interaction is an attractive force. In this case the force points in a 
direction opposed to the direction it travels. It can be demonstrated that the delayed 
gravitational interaction is completely causal as shown in Figure 1. 

A force FR that was radiated by the Earth in the past is 
received currently by the Moon. This is a Retarded force. 

The Moon radiates a force FA currently that the Earth might 
or might not receive in the future. This is an advanced force. 

By Newton’s law of action and reaction the Moon experiences 

a recoil force FRecoil 
equal in magnitude and opposed in 

direction to the force FA it radiated. The recoil force is 
independent whether or not the Earth receives the radiated 

force in the future. The forces are continually radiated and 

received. 

Two forces act on the Moon. The force FR radiated by the Earth 
in the past and the recoil force FRecoil. These two forces are 
equal to the mass of the Moon times its acceleration. Thus, 

the formulation is causal. 

S. Carlip [13], I J. Good [14], and A. P. Lightman et al. [15], state: “It is certainly true, 
although perhaps not widely enough appreciated, that observations are incompatible  
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Figure 1. A gravitational force FR was radiated in the past by the Earth shown in turquoise and is 
sensed currently by the Moon shown in gray. A gravitational force FA is radiated currently by the 
Moon shown in gray that might or might not be sensed in the future by the Earth shown in pink. 
By Newton’s law of action and reaction the Moon experiences a recoil force FRecoil currently equal 
in magnitude and opposed to the force FA that the Moon radiated. The Moon will experience the 
recoil force FR ecoil whether or not the force FA that the Moon radiated will arrive at its destina-
tion. The recoil force is causal. Thus, the forces that the Moon experiences currently FR and FRecoil 
are causal. 
 
with Newtonian gravity with a light-speed propagation delay added in. .... it is known 
that Solar System orbits would shift substantially on a time scale on the order of a hun-
dred years.” The calculations that led to this erroneous conclusion only used the re-
tarded part of the interaction. To correctly calculate the motion of a system where the 
interaction propagates with a finite velocity between objects both the retarded and re- 
coil parts of the equation of motion have to be used. The recoil force is equal in magni-
tude to the advanced force. In the delayed gravitational interaction the recoil terms 
cancel the first order terms of the retarded terms leaving only small second order terms. 
Thus, a few percent shifts in the orbits occur in the order of 107 years. As discussed 
above, the apparent non causal advanced term is actually equal to a causal recoil term 
by Newton’s principal that states that for every action there is an equal and opposed 
reaction.  

The use of both retarded and advanced terms also preserve the time inversion sym-
metry of Newtonian mechanics. Indeed, references discussed below [16] [17] [18] [19] 
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[20] use both advanced and retarded terms of the interaction.  
A delayed interaction central force problem for electrical charges has been discussed 

by many eminent scientists including Carl Friedrich Gauss (1845), K. Schwarzschild 
(1903), W. Ritz (1908), H. Tetrode [16] (1922), A. D. Fokker (1929), P. A. M. Dirac [17] 
(1938), J. H. Wheeler and R. Feynman [18] (1945), R. V. Kamat [19] (1970), A, Lande 
[20] (1950), K and M Imaeda (1982), etc. All have used both advanced and retarded in-
teraction components in their calculations.  

Carl Friedrich Gauss in 1845 was the first scientist recorded to discuss interactions at 
a distance that propagate with a finite velocity. 

Electromagnetic Theory texts discuss the force on an accelerating charged particle 
due to the radiation emitted by it [21] [22] [23]. It is only necessary to use one part of 
the interaction, if there are no other charges that radiated interactions in the past that 
the particle is currently sensing. The radiation generated by the accelerating particle is 
described by the advanced term of the model used here. Panofsky and Phillips mention 
an advanced interaction but discard it on the grounds that it is non causal [23]. 

Newtonian Mechanics works exceedingly well in providing a mathematical model for 
a very large number of physical phenomena. However, there are physical phenomena 
where the Newtonian mathematical model is insufficient [24]. Various attempts were 
made to provide modified mathematical models. One such model was proposed by 
Mordehai Milgrom [24] [25] of the Weizmann Institute in Rehovot, Israel in 1983. He 
proposed a Modified Newtonian Dynamics (MOND) as an alternative explanation to 
“Dark Matter” to explain the motion of galaxies and galaxy clusters. 

2. Equation of Motion 
2.1. Reference Frame 

For the calculations of the motion of the components of our machines made by humans 
and robots we use the surface of the Earth as an inertial reference. The acceleration of 
the surface of the Earth is small compared to accelerations of the machine components. 
The Earth surface moves because the Earth spins about its axis, it orbits about the Sun, 
the Sun orbits about the galactic center which also is not stationary. There is no abso-
lute stationary reference in the universe.  

The center of mass of most systems orbit about some other object such as a star for a 
moon planet system or the center of a galaxy for star systems. One can approximate this 
parent system as being an inertial reference frame. The orbital velocity of this parent 
system is assumed to be constant and uniform for the duration of one cycle of the sys-
tem whose motion is being analyzed.  

For the calculation of the Moon Earth system the center of mass of the Earth Sun 
system is used as the approximate inertial reference coordinate system. The center of 
mass velocities of the Earth Sun system are assumed to be approximately constant. It is 
further assumed that the center of mass of the Earth Sun system moves slowy compared 
to the orbital motion of the Moon Earth system. This is similar to the Born Oppenhei-
mer approximation [26]. 
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2.2. Derivation of the Equation of Motion 

The motion of the objects with a delayed interaction can be derived from a method 
similar to the Euler Lagrange model. One can develop a causal Lagrangian Lk that con-
tains the effect of the delayed gravitational interaction. Since the propagation time of 
the gravitational interaction is very short compared to the orbital period one can extend 
the Lagrangian L of the centrally symmetric Kepler problem [2] to include the propaga-
tion delay effect. 
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             (2.1) 

where summation over repeated Greek indices is implied. The Latin subscripts label 
discrete times. The single gravitational potential of the Kepler formulation is split into 
two potentials. The first potential describes a gravitational interaction that was radiated 
by the Planet in the pastat time tk-2 and is sensed currently at time tk by the Moon. The 
second potential describes a gravitational interaction that was radiated by the Moon in 
the past at time tk-1 and is sensed currently at time tk by the Planet. Thus the Lagrangian 
Lk is causal. As described by Dirac [17], half of each of these potentials is used.  

The Euler Lagrange [2] variational method was used for the derivation of the equa-
tions of motion. 

The Euler Lagrange [2] method for the derivation of the equations of motion is most 
readily implemented using tensor notation. Here m is the mass and xµk is a component 
of the position vector xk of the Moon at time step tk and M is the mass and yµk is a 
component of the position vector yk of the Planet at time step tk. The time differences 
such as 1k kt t −−  are propagation delays. The 1k kt t −−  are finite time durations. The 
time steps such as tk−2, tk−1, tk, tk+1, and tk+2 are not necessarily consecutive. They are just 
time step labels. The time steps are not integer related. Bold letters such as u denote  

vectors, single superior dots such as d
d
xx
t

=  denote time derivatives and double supe-

rior dots such as 
2

2
d
d

xx
t

=  denote second time derivatives. 

To include the effect of both finite and infinitesimal time increments in the deriva-
tion of the equation of motion a sum S of Lagrangians Lk is used. The method used here 
is similar to the discrete Nagumo equation [27].  

k

k
k

S L
=∞

=−∞

= ∑                               (2.2) 

The equations of motion are obtained by inserting the sum of Lagrangians into the 
Euler Lagrange equations of motion for the Moon and the Planet. 

) )d da 0                  b 0
d dk k k k

S S S S
x x y yµ µ µ µτ τ
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− = − =
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          (2.3) 



P. Kornreich 
 

1915 

By using the Lagrangians Lk of Equation (2.1) in the sum of Lagrangians in Equation 
(2.2) and substituting this sum into Equation (2.3) one obtains the following discrete 
Nagumo like equation of motion [20] for the Moon and Planet respectively: 
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 (2.4) 

In Equation (2.4) the second terms are the Retarded forces and the third terms are 
the Recoil forces. By Newton’s principle of action and reaction the Recoil forces are 
equal in magnitude to the Advanced forces. Note that the second and third forceterms 
of Equation (2.4) have the same sign and are, therefore in the same direction. Observe 
that the true Advanced force FA shown in pink in Figure 1. points in a different direc-
tion than the Retarded force FR. Thus the third terms of Equation (2.4) are the Recoil 
force FRecoil. Recall that the Recoil force FRecoil is equal in magnitude to the Advanced 
force FA. Thus these forces can be mathematically formulated now in terms of future 
coordinates. Reformulating Equation (2.4) in the more compact vector notation: 
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where bold font denotes vectors. The equations of motion contain one half of the Re-
tarded and one half of the Recoil terms as described by Dirac [17]. As stated above the 
equations of motion are causal, even though the coordinate vectors 1k+x  and 2k+y  
are occurring in the future. 

The conventional transformation of variables used in the Kepler problem is as fol-
lows [2]: 

) )a         b  k k k k k k
m M

m M m M
= − = +

+ +
u x y W x y          (2.6) 

where uk is only approximately the orbital coordinate vector and Wk is, only approx-
imately, the center of mass coordinate vector. By inverting Equation (2.6) one obtains 
for the current Lunar and Planetary coordinate vectors: 

) )a            b  k k k k k k
M m

m M m M
= + = −

+ +
x W u y W u         (2.7) 

The propagation time of the gravitational interaction between the objects is very 
short compared to the orbital period. Since the bodies move only small distances dur-
ing the propagation time of the gravitational interaction the motion of the objects dur-
ing this time can be approximated by the product of the current object velocity vectors  

kx  or ky  times the interaction propagation time u
c

. Here u is the Earth Moon dis-
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tance and c is the speed of light. 
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By substituting the transformation of variables of Equation (2.7) into Equation (2.8) 
one obtains the following approximation for the retarded and recoil vector differences: 
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For example, the difference in position vectors 1k k−−x x  of the Moon between 
times tk and tk−1, is approximated by the center of mass velocity vector W  plus the 

Lunar orbital velocity vector M
m M+

u  about the center of mass, times the delay time 

u
c

. The Moon radiated an interaction at time tk-1 that the Planet is sensing now, at the 

present, at time tk.  
Because of the form of the approximation of the delayed position differences of Equation 

(2.9) the time step describing subscripts became unnecessary. By substituting the transfor-
mation of variables of Equations (2.6), (2.8) and (2.9) into Equation (2.5) one obtains:  
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(2.10) 

and 
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Since the effects of the delayed interactions are assumed to be small, Equations (2.10) 
and (2.11) can be expanded to second order in small parameters.  
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and 
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The first three terms of Equations (2.12) and (2.13) are the conventional terms of the 
Kepler problem. The justification for the expansion in small parameters is that the re-
maining terms of Equations (2.12) and (2.13) are multiplied by the ratios of the  

Schwarzschild radii [28] 2
3
2
mG
c

 or 2
3
2
MG
c

 divided by the orbital radius u. This ratio is 

an exceedingly small number. 

2.3. Equation of Motion of Orbital Radius 

The radial equation of motion can be calculated by subtracting Equation (2.13) from 

Equation (2.12) and dot multiplying the resulting expression by 
u
u . 
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where R
mMm

M m
=

+
 is the reduced mass and the Schwarzschild radii rssR and rssT are: 
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The first two terms of Equation (2.14) are the conventional Kepler terms and the re-
maining terms multiplied by the Schwarzschild radii are due to the delayed interaction.  

The angular equation of motion is obtained by taking the cross product of the orbital 
radius u with the difference of Equation (2.13) minus Equation (2.12) 
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u u
× ⋅× ⋅

× + − =
u W u Wu u u u

u u
 

 

         (2.16) 

The orbital coordinate vector u can be expressed in the form of cylindrical coordi-
nates. It is assumed that the center of mass motion is much slower than the orbital mo-
tion. Therefore, for the calculation of the orbital motion the center of mass velocity can 
be approximated by the almost constant velocity V of the reference frame. 

) )
) )

1 2

1 2

a  cos               and        b  sin

c       and      d  0

u r u r

W V W

θ θ= =

≈ ≈ 

          (2.17) 

By substituting Equation (2.17) into Equation (2.16) and multiplying by 22r θ  one 
obtains: 

( ) ( )2 2 4 24 2 2 sin 2 0ssR ssTr r r r r r r Vθ θθ θ θ+ + + =  

         (2.18) 

where V is assumed to be a constant and uniform velocity approximately equal to the 
average velocity of the Earth in its Solar orbit. The “1” direction is taken to be in the di-
rection of this Earth velocity. The Earth Lunar system center of mass moves with re-
spect to this reference frame. 

One can neglect the Schwarzschild radius of the reduced mass rssR compared to the 
orbital radius r in the first term and approximate the radius r in the last term of Equa-
tion (2.18) by the radial amplitude aA. With these approximations, Equation (2.18) be-
comes an exact differential. The radial amplitude aA is not the same as the semimajor 
axis a. 

) ( )

) ( )

4 2 2

4 2 2 2

da  cos 2 0
d

b  cos 2

ssT A

ssT A

r r a V
t

r r a V

θ θ

θ θ

 − ≈ 

− =







             (2.19) 

where 2
  is a constant of integration. Observe that the orbital angular momentum 

density 2r θ  is not conserved as shown in Equation (2.19b). Since the ratio of the 
Schwarzschild radii rssR and rssT to the orbital radius r is very small the orbital angular 
momentum density will differ only very little from the Kepler angular momentum den-
sity 2

Kepler r θ= 

 . 
Equation (2.19b) can be used to express the time derivatives of the orbital radius in 

terms of derivatives with respect to the angle θ to lowest order in small parameters. 
This is standard procedure in the solution of the Kepler problem. 

) ( )

) ( )

) ( ) ( )

2

2 2

2

2

22 2 2

2 2 2 2

a  1 cos 2
2

d 1b  1 cos 2
d2

d 1 d 1 d 1c  cos 2 sin 2
dd d

A ssT

A ssT

A ssT

a r V
r

a r Vr
r

a r Vr
r r rr r

θ θ

θ
θ

θ θ
θθ θ

 
≈ + 

 
   = − +   

  
      = − − −      

     
















    (2.20) 

In returning to the equation of motion of the orbital radius the first step is to substi-
tute the transformation of variables of Equation (2.17) into Equation (2.14). 
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( ) ( )
22

2 2
2 2 2

2 1 3cos 2 0
2

ssT
ssR

M m G r Vrr r r
r r r

θ θ θ
+  

− + + − + + =    
 



 

      (2.21) 

In order to calculate the values of the orbital radius as a function of the angle the 
time derivatives of r were formulated in terms of the derivatives with respect to the an-
gle θ in Equation (2.20). This is common practice at this stage of the calculation. As 
stated before, since the center of mass motion is much slower than the orbital motion, it 
is assumed that for the duration of one orbit, the center of mass velocity remains con-
stant. By substituting Equation (2.20) to lowest order into Equation (2.21) and multip- 

lying the result by 
2

2
r


 one obtains:    

( )

( ) ( ) ( ) ( )

22

2 2 2

2 2

2 2

d 1 1 d 1 12
dd

cos 2 1 3cos 2d 1 d 1cos 2 sin 2 0
d 2d

ssR

A ssT

A

M m G
r

r r r r

a r V
r r r a

θθ

θ θ
θ θ

θθ

 +  − − + + −  
   

 +    − − + − =   
   





 (2.22) 

The first three terms of Equation (2.22) are the familiar Kepler equation of motion. 
The remaining terms, which are multiplied by various Schwarzschild radii, are due to 
the delayed interaction. Assuming the following solution of this differential equation: 

) ) ( )
21 1 cosa       where b  A

A A

q a
r a a M m G

ε θ+
= + =

+
            (2.23) 

The first term of Equation (2.23a) is the solution of the Kepler problem. Here q is 
assumed to be a small dimensionless parameter. aA is the orbital amplitude not the se-
mimajor axis. By substituting Equation (2.23) to lowest order in small parameters into 
Equation (2.22) multiplying by the orbital amplitude aA and collecting terms of equal 
orbital frequency one obtains: 

( ) ( )
2

0 1 2 32

d
  cos cos 2 cos3

d
q

q A A A A
θ

θ θ θ θ
θ

+ = − + +           (2.24) 

where 

) ) )

) )

) )

2 2

2 2

2

0 1

2

2 3

3a            b           c  
2

d  1               e  2
2 2 2

3f                      g  
2 2 2

ssR A ssT

A

r a r V VA B B
a c

BA A A A B

BA A A B

ε εε

ε ε

= = =

 
= − − = + 

 

= − =



          (2.25) 

and where Equations (2.19b) and (2.23b) were used in Equation (2.25b) to obtain Equ-
ation (2.25c). 

Note that A1 in Equation (2.24) is the amplitude of a term oscillating at the resonant 
frequency of the orbital system. The orbital motion pumps the contribution of the mo-
tion due to the delayed gravitational interaction by periodically changing the delay time  
r
c

 as the system orbits. The delay only changes if the orbit is eccentric. Indeed, the  



P. Kornreich  
 

1920 

amplitude A1 is proportional to the eccentricity ε. When the eccentricity is equal to zero 
there is no increase in the orbit. One can use the Laplace transform method to obtain 
the following solution of Equation (2.24): 

( ) ( ) ( )3 31 2 2
0 sin cos cos 2 cos 3

2 3 8 3 8o
A AA A Aq A Aθ θ θ θ θ θ = − + + − − − 

 
   (2.26) 

Substituting Equation (2.26) into Equation (2.23a) and multiplying by aA to obtain a 
solution for the orbital radius as a function of 

( ) ( )3 32 1 2
01 cos sin cos 2 cos 3

3 8 2 3 8
A

o
A Aa A A AA A

r
ε θ θ θ θ θ = + + + + − − − − 
 

 (2.27) 

An important result is that the fourth term on the right side with amplitude 1

2
A  of  

Equation (2.27) continually increases with the angle θ. Since the angle θ increases mo-
notonically with time, this term and the orbital radius r increase with time. This is one 
of the main results obtained in this article. It is the contribution to the increase of the 
orbital radius r due to the delayed gravitational interaction. The increase per orbit is 
small, it is of the order of the ratio of the Schwarzschild radius divided by the semima-
jor axis. For example, the Lunar orbit increases by 38 mm per Earth year [29] due to all 
effects, including the tidal effect. Here A2 and A3 are small amplitudes of the second and 
third harmonic terms. Equation (2.27) can also be written as: 

( )
2 2 2

3 32 1 2
0 01 cos cos 2 cos3

3 8 4 3 8
A A Aa A A AA A

r
θε θ φ θ θ = + + + + − + + − −  

 (2.28) 

where 

1

32
tan 22 2

3 4 o

A
AA A

θφ
ε

=
+ + −

                    (2.29) 

The precession angle is the angular change in the position of the major axis of the 
orbital ellipse. This can be calculated from Equation (2.29) 

1
Precession

3 2
0

π

8 3

A
A A A

φ
ε

≈
+ + −

                    (2.30) 

An important result shown in Equation (2.28) is that the second term in the square 
root depends on the square of the orbital angle. Since the orbital angle θ increases mo-
notonically with time the effective eccentricity and the semimajor axis also increase 
with time. This effect is very small since the constants A0, A1, A2 and A3 are very small.  

The constants A0, A1, A2 and A3 can readily be calculated from the knowledge of the 
masses of the objects and the average Earth velocity in its solar orbit. However, there 
are two more constants, the offset angle θoffset, and the constant ε. The offset angle θoffset 
is the present value of the angle θ. The fact that the angle θoffset has a non zero value im-
plies that the current expansion of the Lunar semimajor axis describable by an 
analytical model started a fixed time ago. For the Lunar orbit there is sufficient in-
formation in the form of the change of the semimajor axis per Earth year and the cur-



P. Kornreich 
 

1921 

rent values of the eccentricity from which these values can be calculated. 
The calculations have to be performed numerically. The results of these calculations 

are given in the RESULTS section. Defining the current eccentricity Currentε  from Eq-
uation (2.28) as: 

2 2 2
3 1 offset2

Current 3 8 4o
A AA A θε ε = + + − +  

               (2.31) 

The amplitude A2 and A3 of the second and third harmonics are very small compared 

the eccentricity 
2 2 2

32 1
03 8 4

AA AA θε + + − +  
. Therefore the second and third har-

monic terms are neglected. The current value aC of the semimajor axis a is: 

) )2 2 2 2
132

a        or       b  
1

1
3 8 4

A A
C C

Current offset
o

a aa a
AAA A

ε θ
ε

= =
−  − + + − −  

  (2.32) 

By expanding the semimajor axis of Equation (2.32b) in a Taylor series in θoffset to 

lowest order one can calculate the current change a
a
∆  in the semimajor axis per lunar 

orbit: 

2
1 offset

2
Current

π
1
Aa

a
θ
ε

∆
=

−
                        (2.33) 

The numerical results of these calculations are given in the RESULTS section. 

2.4. Equation of Motion of the Center of Mass Coordinates 

The energy lost by the orbital motion is transferred to the center of mass motion. This 
will cause the center of mass to accelerate. The acceleration of the center of mass can be  

calculated by multiplying Equation (2.12) by m
M m+

 and Equation (2.13) by M
M m+

, 

adding the resulting expressions and dot multiplying the result by 
W
W . Where W is 

only approximately the center of mass position vector. 

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 22

2 2 4 2

2 4 2 2

5 22
2

5
0

ssR
M m ur

W u Wu Wu Wum M

Wu Wu Wu Wu

  − ⋅ ⋅ ⋅ ⋅ ⋅⋅ − − + 
+    

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + − + + =


W u W u u u W u u uW W

W u W u W u u W u u W W u u W u u W



  

   

   

(2.34) 

where Equation (2.15a) was used for the Schwarzschild radius rssR. The center of mass 
coordinates can be expressed in cylindrical coordinates. 

) )1 2a  cos                b  sinW W W Wψ ψ= =                (2.35) 

Equation (2.34) can be expressed in cylindrical coordinates by substituting Equations 
(2.17a), (2.17b) and (2.35) into Equation (2.34). 
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( ) ( ) ( )

( ) ( )

2
2 2

2

2 2 2

2 2 cos 2 sin
2

2 3 3 3cos 2 2 sin 2 2 0

ssR
M m r rW W r
m M rr

W r Wr Wr Wr
r r r

ψ θ ψ θ θ ψ θ

ψ θ ψψ θ ψ θ

   −− + − − + −    +     
−

+ − − − − =


 

 



  

   

  (2.36) 

The term multiplied by the Schwars child radius rssR is very small. One can assume 
that the center of mass velocity changes by a small quantity from its value V which it 
has in its orbit about the sun. Thus, inside the curly bracket of Equation (2.36) one can 
approximate the radial component W  of the center of mass and the component Wψ  
in the direction of the center of mass solar orbit by: 

) )a  0                     b  W W Vψ≈ ≈

                 (2.37) 

By substituting Equations (2.37) into the curly bracket of Equation (2.36) one ob-
tains. 

( ) ( )

( )

2
2 2

2

2

2 cos 2 sin

4 6 sin 2 2 0

ssR
M m r rW W r
m M rr

V Vr
r r

ψ θ ψ θ θ ψ θ

θ ψ θ

   −− + − − + −   +    


+ − − =


 

 







    (2.38) 

Substituting Equation (2.20) for the time derivatives of the orbital radius r in terms 
of the derivative of the orbital radius with respect to the angle θ to lowest order into 
Equation (2.38).  

( ) ( )

( ) ( )

22 2
2

4 2

2

3 3 2

d 1cos 2 cos  
d

d 1 4 6 d 12 sin sin 2 2 0
d d

ssR
M mW W r
m M rr r

V V
r rr r r

ψ ψ θ ψ θ
θ

θ ψ θ ψ θ
θ θ

 −  − + − − −  +   
    + − + − − =   

     

 





  



    (2.39) 

Substituting Equation (2.23a) to lowest order for the reciprocal radius 1
r

 into Equa-

tion (2.39). 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
42

4

2 32 2

3 2
3

1 cos cos   

2 1 cos sin cos 2 1 cos sin sin

2 2 1 cos 3 1 cos sin sin 2 2 0

ssR
A

A

M m
W W r

m M a

V
a

ψ ε θ ψ θ

ε ε θ θ ψ θ ε ε θ θ ψ θ

ε θ ε ε θ θ ψ θ

 − − + + − +
− + − + + − 

 + + − + − = 









    (2.40) 

Since the orbital motion is much faster than the center of mass motion the average 
value over the orbital angle θ is used to calculate the average center of mass accelera-
tion. 

( )
( )

2 3 2
2

4 3
11 2 3cos 2 cos

4 2ssR
A A

M m VW W r
m M a a

ε εψ ε ψ ψ
 −     − = − + + −    +     







   (2.41) 

where 2W Wψ−   denotes the average value of 2W Wψ−  . 
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Another equation for the acceleration of the center of mass can be obtained by mul-

tiplying Equation (2.12) by M
M m+

 and Equation (2.13) by M
M m+

, adding the re- 

sulting expressions and cross multiplying the result by the center of mass coordinate 
vector W. 

( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( )( ) ( )( )

22

2 3 5 3

3 5 3 3

53
2 2

5
0

R um G M m
M mc u u u

u u u u

  × × ⋅ × ⋅−× + − + 
+    

× ⋅ × ⋅ ⋅ × ⋅ × ⋅ + − + + =


  



   

   

W u W u u u W u u u
W W

W u W u W u u W u u W W u u W u u W
 

(2.42) 

Reformulating Equation (2.42) in cylindrical coordinates by substituting Equations 
(2.17a), (2.17b) and (2.35) into Equation (2.42). 

( ) ( )

( ) ( )

2 2
2

2

2 2 2

2 2 sin cos
2

3 2 3 2sin 2 2 cos 2 2 0
2 2 2

SSR
M m r rWW W r W
M m rr

Wr W r W r Wr W r
r r r

θψ ψ ψ θ θ ψ θ

ψ θ ψ θ ψψ θ ψ θ

   −+ + − − + −   +     
− +

+ − + − − =




 



 

  

    

    (2.43) 

where Equation (2.15a) was used for the Schwarzschild radius rssR. By using the ap-
proximations of Equations (2.37) in the curly bracket of Equation (2.43) one obtains: 

( ) ( ) ( )

( ) ( )

2
2 2

22 2 sin cos
2   

 3 sin 2 2 cos 2 2 0
2

ssR
M m r rWW W r W
M m rr

V r r
r r r

ψ ψ θ ψ θ θ ψ θ

θ ψ θ ψ θ

   −+ + − − + −   +     
 + − + − − =  

 

 

 

 



 (2.44) 

Substituting Equations (2.20) for the time derivative of the orbital radius r in terms 
of its derivative with respect to the angle θ to lowest order into Equation (2.44).  

( ) ( )

( ) ( )

( ) ( )

2
2

4

2 2

2 3

2

2 sin
2

d 1 d 12 sin cos
d 1 d

3 d 1 d 1sin 2 2 cos 2 2 0
d 2 d

ssR
M mWW W r W
M m r

rr r
V
r r r r rr

ψ ψ ψ θ

ψ θ ψ θ
θ θ

ψ θ ψ θ
θ θ

 −+ + − + 
   − − + −    

    
    + − + − − =        





 

 

  

   (2.45) 

Substituting Equation (2.23) to lowest order for the reciprocal radius 1
r

 into Equa-

tion (2.45). 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
4 22 2

4

3 32
3

2
2

2 1 cos sin 2 1 cos
2

sin sin 1 cos sin cos 3 1 cos

1 cos
sin 2 2 1 cos sin sin cos 2 2 0

2

ssR
A

A

M m
WW W r W

M m a
V
a

ψ ψ ε θ ψ θ ε ε θ

θ ψ θ ε ε θ θ ψ θ ε θ

ε ε θ
ψ θ ε ε θ θ θ ψ θ

 − + + + − − + +
 × − + + − + + 

+ × − + + − − =






 

  (2.46) 
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Similar to Equation (2.40), since the orbital motion is much faster than the center of 
mass motion the average value over the orbital angle θ is taken. 

( )
( )

2 3 2
2

4 3
52 sin sin 2 0

4 8 2ssR
A A

M m VWW W r W
M m a a

ε ε εψ ψ ψ ψ
 −  

+ + + + =  +   







   (2.47) 

Multiplying Equation (2.47) by 22W ψ  in order to put Equation (2.47) in the form 
of an exact differential. 

( )
( )

2 3
3 2 4 3

4

2
3

3

4 2 2 sin
4 8

5 sin 2 0

ssR
A

ssR
A

M m
W W W r W

M m a

Vr W
a

ε εψ ψψ ψ ψ

εψ ψ

−  
+ + + +  

+ =





   





       (2.48) 

First using the approximations of Equations (2.37) in Equation (2.48). Then the re-
sulting equation can be reformulated in the form of an exact differential. 

) ( )
( ) ( )

) ( )
( ) ( )

2 3 2
4 2 3 3

4 3

2 3 2
2 4 2 3 3

4 3

d 5a  2 cos cos 2 0
d 4 8 2

5b  2 cos cos 2
4 8 2

ssR ssR
A A

ssR ssR
A A

M m VW W r W r
t M m a a

M m VL W W r W r
M m a a

ε ε εψ ψ ψ

ε ε εψ ψ ψ

 −  
− + − =   +   

−  
= − + − +  













 (2.49) 

where L is a constant of integration. Solving Equation (2.49b) for ψ . 

( )
( ) ( )

22 3 2
2

4 4 2 3
52 cos cos 2

4 8 4ssR ssR
A A

M mL Vr r
W M m a W a W

ε ε εψ ψ ψ
−  
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By substituting Equation (2.50) for ψ  into Equation (2.41) one obtains the equa-
tion of motion of the center of mass. 
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where 
2

3
L

W
 is the centrifugal force associated with the center of mass motion. Equa- 

tion (2.51) for the acceleration of the center of mass W  is another important result. 
For the simple Newton Kepler orbit, the center of mass acceleration is equal to zero. 

3. Results 
3.1. Earth Moon System 

There is sufficient data available to calculate the offset angle and the time period cor-
responding to the offset angle. The annual increase in the orbital radius of the Moon 
has been measured by NASA [29] using a retroreflector left on the Moon by Apollo 11. 
The data from the literature for the calculation of the motion of the Earth Moon system 
is listed in Table 1. The calculated parameters such as the constants A0, A1, A2, and A3, 
etc. are listed in Table 2. The analytically calculable start of the present expansion of 
the semimajor axis started 2.926237 Million years ago. Perhaps the Moon collided with 
a large enough object 2.926237 Million years ago to alter its orbit and obscure its pre- 
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Table 1. Lunar data. 

Mass of Earth = 5.9736 × 1024 kg 

Mass of Moon = 7.349 × 1022 kg 

Reduced mass = 7.25968795 × 1022 

Current semimajor axis of Lunar orbit = 384,399,000 m 

Current eccentricity = 0.0549 

Current change in semimajor axis per Earth year [28] = 0.038 m 

Current change in semimajor axis per Lunar orbit = 3.08260508 × 10−3 m 

Number of Lunar orbits per Earth year = 12.3272359096 

The average orbital velocity of the Moon Earth center of mass  
used here as the center of mass velocity = 29,780 m per second 

Axis amplitude = 383,240,417.57 m 

Offset angle = 15,465,077.8171 rad. 

Offset time = 2,926,237.0636 years. 

 
Table 2. Lunar data constants. 

Reduced mass Schwarzschild radius rssR = 8.08467935 × 10−5 m 

Mass sum Schwarzschild radius rssT = 6.7342817 × 10−3 m 

A = 2.10955812 × 10−13 

B = 1.48012788 × 10−8 

A0 = 7.40085005 × 10−9 

A1 = −4.06271941 × 10−10 

A2 = −2.96025567 × 10−8 

A3 = 4.06295104 × 10−10 

Offset angle = 15,465,077.8171 rad. 

Offset time = 2,926,237.0636 years. 

 
vious analytical motion. The contribution of the delayed gravitational interaction to the 
Apsidal precession of the Lunar orbit is 83.83185072 µarc seconds. 

A plot of the predicted contribution of the delayed gravitational interaction to the 
length of the semimajor axis of the Lunar orbit is shown in Figure 2. Note that the ex-
pansion of the semimajor axis started 2.926237 Million years ago. Perhaps at that time 
an object collided with the moon to effect its orbit enough to obscure its previous ana-
lytical describable motion. 

The contribution of the delayed gravitational interaction to the eccentricity of the 
Lunar orbit is shown in Figure 3. 

The loss of the orbital energy is transferred to the center of mass motion. This will 
cause the center of mass to accelerate. A plot of the center of mass acceleration is shown 
in Figure 4. The predicted current acceleration = 2.51414022 × 10−16 m per second 
squared. 
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Figure 2. This is a plot of the predicted contribution of the delayed gravitational interaction to 
the length of the semimajor axis of the Lunar orbit. Considering only the effect of the delayed 
gravitational axis, the semimajor axis had a length of 384,395,194.9 m 2.926237 Million years ago. 
This analytically describable expansion of the semimajor axis started 2.926237 Million years ago. 
Perhaps at that time something collided with the moon to effect its orbit enough to obscure its 
previous analytical describable motion. 
 

 
Figure 3. The contribution of the delayed gravitational interaction to the eccentricity of the Lu-
nar orbit. 
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Figure 4. A plot of the center of mass acceleration due to the loss of the orbital energy. 

3.2. The Brown Dwarf 569Bab System 

Another interesting system that can readily be analyzed is the Brown Dwarf Binary sys-
tem 569Bab. Lane [30] [31] et al. measured many parameters of this system. Measure-
ments to date show that this system consists of a pair of Brown Dwarfs 569Ba and 
569Bb orbiting about the star 569 A. The system is located 9.8 pc or 3.023964 × 1017 m. 
from us. The radius of the orbit of the Brown Dwarf pair 569B about the star 569A as 
seen from Earth is about 5” or 49 AU or 7.330295635 × 1012 m. The pair 569B orbits 
about the star 569A in 15 years. The Brown Dwarf system 569Ba and 569Bb has a com-
bined mass of 0.123 solar masses and a mass ratio of 0.89. The Brown Dwarfs orbit 
about each other in 25

25892+
−  days at a semimajor axis a of +0.02

0.020.90−  AU. The eccentric-
ity of the orbit of the Brown Dwarfs around each other is +0.02

0.020.32− . The age of this sys-
tem is estimated to be only 3 × 108 years. The data from the literature for the calculation 
of the motion of the Brown Dwarf star pair 569Bab is listed in Table 3. The calculated 
parameters such as the constants A0, A1, A2, and A3, etc. are listed in Table 4. 

There is not sufficient data to accurately calculate the analytically calculable start of 
the expansion of the semimajor axis. The earliest time of the analytically calculable start 
of the expansion of the semimajor axis is 8.9271548613 Million years ago. This is a 
maximum value. It could have started at a later time. Perhaps one of the brown dwarf 
stars collided with a large enough object 8.9271548613 Million years ago or later to alter 
its orbit and obscure its previous analytical motion. 

A plot of the predicted contribution of the delayed gravitational interaction to the 
length of the semimajor axis of the orbit of the 569Bab system is shown in Figure 5. 
Note that the analytically describable expansion of the semimajor axis could have  
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Figure 5. A plot of the predicted contribution of the delayed gravitational interaction to the 
length of the semimajor axis of the 569Bab system orbit. This analytically describable expansion 
of the semimajor axis could have started as early as 8.927154154 Million years ago or at a shorter 
time. Perhaps at that time something collided with the dwarf stars to affect their orbit enough to 
obscure its previous analytical describable motion. 
 
Table 3. Data for 569Bab system. 

Mass of 569Ba = 1.296197162 × 1029 kg 
Mass 569Bb = 1.153615474 × 1029 kg 
Reduced mass = 6.10378558 × 1028 kg 
Semimajor axis = 1.34638083 × 1011 ± 2.9919574 × 109 m. 
Axis amplitude = 1.20851143 × 1011 m 
Eccentricity = 0.32 ± 0.02 
Orbital period = 892 ± 25 days 
Estimated age of system = 3 × 108 years. 

The average orbital velocity of the center of mass of the 569Bab pair  
about the central star 569A is 97,290.506 m per second. 

 
Table 4. 569Bab system data constants. 

Reduced mass Schwarzschild radius rssR = 67.974201624 m 
Mass sum Schwarzschild radius rssT = 272.82095014 m 
A = 5.62462214 × 10−10 
B = 1.57974235 × 10−7 
A0 = 7.95207815 × 10−8 
A1 = −2.49159017 × 10−8 
A2 = −3.15862075 × 10−7 
A3 = 2.52758775 × 10−8 

Offset angle = 25,686,407.307 rad. 

Offset time = 8,927,154.8613 years. 
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started as early as 8.927154154 Million years ago or at a shorter time. Perhaps at that 
time an object collided with one of the two Brown Dwarf stars that effect the orbit 
enough to obscure its previous analytical describable motion. 

The contribution of the delayed gravitational interaction to the eccentricity of the 
orbit of the 569Bab Brown Dwarf stars is shown in Figure 6.  

The loss of the orbital energy is transferred to the center of mass motion. This will 
cause the center of mass to accelerate. A plot of the center of mass acceleration is shown 
in Figure 7. The predicted current acceleration of the center of mass of the Brown 
Dwarf 569Bab system is 5.54963756 × 10−14 m per second squared. 
 

 
Figure 6. The contribution of the delayed gravitational interaction to the eccentricity of the 
569Bab system orbit. 

 
Figure 7. A plot of the center of mass acceleration of the 569Bab system due to the loss of the or-
bital energy. 
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Again, it is assumed that the radius of the orbit of the pair about the star 569A is 
large compared to the orbit of the Brown Dwarfs about each other. Thus, this orbital 
velocity is assumed to be the approximate constant center of mass velocity of the Brown 
Dwarfs. 

4. Conclusions 

The small effect of the propagation delay of the gravitational interaction on the motion 
of the Earth Moon and the Brown Dwarf 569Bab binary star systems were calculated. 
The calculated values are in very good agreement with observed values.  

Recent measurements have shown that gravitational waves and thus the gravitational 
interactions propagate with the speed of light. The gravitational propagation delay ex-
ists whether the interaction is modeled by the deformation of the four dimensional 
space due to the mass of the bodies, or it is modeled by a gravitational interaction that 
is propagating between objects. In each case a change in position of one object takes 
time to be sensed by the other object.  

The delayed interactions between two objects are causal. The single interaction force 
of the model that considers interactions to be instantaneous is split into two forces in a 
model that takes the propagation delay of the interaction in consideration. Object ONE 
senses currently a force radiated by object TWO in the past, see Figure 1. This is the 
Retarded force. Object ONE radiates a force currently that might or might not be 
sensed by object TWO in the future. This is an advanced force. Object ONE expe-
riences a Recoil force currently equal in magnitude and opposed in direction to the ad-
vanced force it radiated. Thus object ONE experiences two forces, the Retarded force 
and the Recoil force both of which are causal. The objects experience the forces conti-
nually. 

The propagation delay of the gravitational interaction couples the orbital and center 
of mass coordinates of orbiting systems. The propagation delay between objects varies 
periodically for systems with eccentric orbits. The periodically changing propagation 
delay pumps the motion of the objects. This causes both the eccentricity and orbits to 
grow and loose energy. The loss in orbital energy is transferred to the center of mass 
motions. Thus, the center of mass accelerates. These effects are very small. The semi-
major axis of the Lunar orbit grows by 38 mm per Sidereal year and the center of mass 
acceleration is a fraction of a pico meter per second squared.  

By using the present astronomical data one obtains that the growth of the orbital axis 
and eccentricity started at a time shorter than the age of the systems. This can, perhaps, 
be explained by one of the system components having had a collision that erased the 
previous analytically describable motion. 

All orbiting systems in the universe convert some of their orbital energy to its center 
of mass motion. The center of mass acceleration of the various orbiting systems is in 
random directions. One can consider the very large number of star systems, galaxies, 
and galactic clusters as molecules in the universe. The transfer of internal orbital energy 
to the molecular motion will increase the entropy, temperature and pressure of the gas. 
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The gas will expand. Alternatively, one should include the change in orbital energy with 
the energy and mass of the Universe in the calculation of the accelerating expansion of 
the Universe.  

It is not known if this contribution is enough to explain the present accelerating ex-
pansion of the Universe [4]. But if correct, the so far undetected Dark Energy and Dark 
Matter would not be necessary. 
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