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Abstract 
Linear mixed model (LMM) approaches have been widely applied in many areas of 
research data analysis because they offer great flexibility for different data structures 
and linear model systems. In this study, emphasis is placed on comparing the prop-
erties of two LMM approaches: restricted maximum likelihood (REML) and mini-
mum norm quadratic unbiased estimation (MINQUE) with and without resampling 
techniques being included. Bias, testing power, Type I error, and computing time 
were compared between REML and MINQUE approaches with and without Jack-
knife technique based on 500 simulated data sets. Results showed that MINQUE and 
REML methods performed equally regarding bias, Type I error, and power. Jackknife- 
based MINQUE and REML greatly improved power compared to non-Jackknife based 
linear mixed model approaches. Results also showed that MINQUE is more time- 
saving compared to REML, especially with the use of resampling techniques and 
large data set analysis. Results from the actual cotton data analysis were in agreement 
with our simulated results. Therefore, Jackknife-based MINQUE approaches could 
be recommended to achieve desirable power with reduced time for a large data anal-
ysis and model simulations. 
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1. Introduction 

Linear mixed models (LMM) are a generalization of various linear models covering 
simple linear regression models, ANOVA models, and complex genetic models. LMM 
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approaches including maximum likelihood (ML) [1], restricted maximum likelihood 
(REML) [2], and minimum norm quadratic unbiased estimation (MINQUE) [3] are 
among the most commonly used ones for variance component estimation and random 
effect prediction. Numerical comparisons of the statistical properties among these 
LMM approaches could help users choose appropriate approaches for various data 
analyses. 

ML and REML approaches have been integrated into SAS [4] and into R such as 
lme4 [5] [6] and ASReml [7]. Due to their popularity and long-term availability, a wide 
range of applications in various areas, has occurred. For example, based on a recent 
google scholar search in May, 2016, more than 43,000 publications were available. Both 
ML and REML approaches are based on the assumption that data are normally distri-
buted (Laird and Ware, 1982) and require iterations [8]. Compared to ML and REML, 
MINQUE approaches were less popular. However, MINQUE approaches do not re-
quire normally distributed data nor iterations [3] [9]. Thus, they could offer more flex-
ibility with reduced computational intensity. Since 1989, MINQUE approaches have 
been widely used in quantitative genetics studies [10]-[19]. 

Though LMM approaches are currently widely used, a potential issue associated with 
LMM is low power in statistical tests for variance components and random effects. 
With the use of jackknife methods, statistical powers could be significantly improved 
[20]-[22]. On the other hand, with resampling techniques, it is possible to generalize 
statistical tests for various parameters of interest. Resampling techniques including 
jackknife and permutation methods have been integrated in linear mixed model ap-
proaches and two R packages, minque and qgtools, which are currently available online 
[23] [24].  

The aim of this study was to compare statistical properties between REML and 
MINQUE approaches with and without a jackknife technique [25] through Monte 
Carlo simulations. A cotton data set [25] including 24 genotypes under two environ-
ments was used for both simulations and actual data analyses. These methods were 
compared regarding statistical power, Type I error, and computational time. Results in-
cluding variance components and genotypic effects from actual data analysis were also 
compared. Results could provide statistical information on appropriate use of these 
LMM approaches.  

2. Materials and Methods 
2.1. Materials 

Various data structures and related linear mixed models can be used for our simula-
tions and actual data analysis. Without losing our focus of this study, we employed a 
cotton data set including 24 cotton genotypes under two locations each following a 
randomized complete block design with six replications [25]. The data were collected 
on the two sites at the research farm at Mississippi State University, Starkville, MS. The 
data structure was used for simulation study using the model detailed below (Equation 
(1)). Two agronomic traits: lint yield (LY), and lint percentage (LP), were included and 
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used for our actual data analysis. The data set, cot, is currently available in the R pack-
age, minque [23].  

2.2. Statistical Model and Methods 

Given the data structure, the observation ijky  standing for the genotype j under the kth 
block in the environment i can be expressed by using the following linear mixed model: 

( )ijk i j ij ijkk iy E G GE B eµ= + + + + +                    (1) 

where iE  is an environmental effect and treated as fixed effect; jG  is a genotypic ef-
fect and treated as random; ijGE  is a genotype-by-environment interaction effect and 
random; ( )k iB  is a random block effect within environment; and ijke  is the random 
error.  

Two linear mixed model approaches, MINQUE and REML [2] [3] [9], were applied. 
In addition, a randomized 10-fold Jackknife technique [21] was integrated with these 
two linear mixed model approaches. Therefore, four combinations of methods in total 
were used for both simulation and actual data analysis. To simplify our description, we 
defined these four combinations of methods as: M1 = MINQUE without jackknife; M2 
= REML without jackknife; M3 = MINQUE with jackknife; and M4 = REML with 
jackknife. Regarding simulation studies, there could be numerous parameter settings, 
however, we only considered two representative parameter settings because the major 
aim of this study was to compare statistical properties among these four methods. The 
first setting was to preset all variance components to 20 (interested users may use other 
settings), targeting power and bias. The second setting was to preset all variance com-
ponents to zero except the random error variance which was 20, targeting Type I error 
and bias for all variance components except random error variance. For each parameter 
setting, five hundred simulated data sets [26] [27] were generated and analyzed by each 
combination of these four methods. Statistical properties including bias, and testing 
power/Type I error were calculated for each method [28] [29]. Type I error is the false 
significance rate for a preset variance component being zero while testing power is the 
true significance rate for a positive preset variance component over 500 simulations. 
The bias is for each variance component is the deviation of mean estimated variance 
component from the preset variance component (0 or 20 in this study) which is given 
by Equation (2): 

0
ˆBias θ θ= −                             (2) 

where, 0θ  is a preset variance component and θ̂  is mean estimated variance com-
ponent. We briefly defined the following terms. The standard error (SE) is defined by 

( )ˆSE θ , a standard error for a mean estimated variance component. In addition, com-
putational time (in seconds) was recorded for every 100 simulations out of 500 simula-
tions (Table 3). 

For actual data analysis, variance components were estimated by REML and 
MINQUE approaches and genotypic effects were predicted by the adjusted unbiased 
prediction method [30]. All simulations and data analyses were conducted using the 
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functions that are available in the R package minque [23] under the R Studio environ-
ment [31]. The computational time recorded for simulation was based on HP Z440 
with 32G ram under Windows 7 64-bit operation system. 

3. Results and Discussion 
3.1. Simulation Results 

Bias, standard error, power, Type I error, and computational time based on 500 simu-
lated data for four methods are summarized in Table 1 and Table 2. Results showed 
that bias for each variance component was similar among the four methods (M1-M4) 
(Table 1 and Table 2). Standard errors (SE) for each variance component among 500 
estimates were also similar for the four methods (Table 1 and Table 2). Non-Jackknife 
based MINQUE and REML methods (M1 and M2) had similar power (at the probabil-
ity level of 5%). However, Jackknife based REML and MINQUE methods (M3 and M4) 
had improved power for variances of genotypic and block effects compared to 
non-Jackknife based methods(M1 and M2) (Table 1). All four methods yield acceptable 
Type I error (around 5% or lower) for all variance components except the random error 
variance component (Table 2). Overall, both MINQUE and REML performed equally 
well regarding bias, power, and Type I error for variance component estimation. How-
ever, jackknife based MINQUE and REML could greatly improve power with accepta-
ble Type I error compared to non-jackknife based methods.  

Computational time in seconds used for each 100 simulations for each method and 
parameter setting is given in Table 3. Though other tasks were possible active during 

 
Table 1. Estimated bias, standard error (SE), and power (at 0.05) for four preset components 
based on 500 simulated data sets with four methods.  

  M1Ɨ M2 

 Parameter Bias SE Power Bias SE Power 

GV ǂ 20 0.041 0.461 0.664 0.033 0.461 0.666 

GEV  20 0.022 0.319 1.000 0.013 0.318 1.000 

BV  20 −0.263 0.505 0.786 −0.263 0.505 0.788 

eV  20 0.024 0.080 1.000 0.026 0.080 1.000 

  M3 M4 

 Parameter Bias SE Power Bias SE Power 

GV  20 0.044 0.461 0.944 0.044 0.462 0.934 

GEV  20 0.016 0.319 1.000 0.007 0.318 1.000 

BV  20 −0.260 0.505 0.998 −0.263 0.505 0.998 

eV  20 0.025 0.080 1.000 0.027 0.080 1.000 

Ɨ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife 
ǂ: GV  = variance component for genotype effects; GEV  = variance component for genotype and environment inte-

raction effects; BV  = variance component for block effects; and eV  = variance component for random error. 
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Table 2. Estimated bias, standard error (SE), and Type I error (at 0.05) for four preset compo-
nents based on 500 simulated data sets with four methods.  

  M1Ɨ M2 

 Parameter Bias SE Type I error Bias SE Type I error 

GV ǂ 0 0.041 0.461 0.012 0.033 0.461 0.002 

GEV  0 0.022 0.319 0.006 0.013 0.318 0.000 

BV  0 −0.263 0.505 0.000 −0.263 0.505 0.000 

eV  20 0.024 0.080 1.000 0.026 0.080 1.000 

  M3 M4 

 Parameter Bias SE Type I error Bias SE Type I error 

GV  0 0.044 0.461 0.058 0.044 0.462 0.048 

GEV  0 0.016 0.319 0.034 0.007 0.318 0.040 

BV  0 −0.260 0.505 0.024 −0.263 0.505 0.042 

eV  20 0.025 0.080 1.000 0.027 0.080 1.000 

Ɨ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife 
ǂ: GV  =variance component for genotype effects; GLV  = variance component for genotype and environment inte-

raction effects; BV  = variance component for block effects; and eV  = variance component for random error. 

 
Table 3. Computational time (seconds) recorded each 100 simulations out of 500 simulations for 
each method and parameter setting. 

 Parameter setting 1Ɨ Parameter setting 2 

 M1ǂ M2 M3 M4 M1 M2 M3 M4 

1st 100 14.8 17.6 18.4 157.8 10.7 20.7 10.6 189.6 

2nd 100 13.0 15.9 18.1 153.6 10.8 20.6 10.7 188.4 

3rd 100 13.1 16.0 18.1 154.2 10.7 19.5 10.3 184.2 

4th 100 13.1 16.1 17.9 154.8 10.9 20.6 10.8 193.8 

5th 100 12.9 15.9 18.5 154.2 10.8 21.2 11.6 198.6 

Total 66.9 81.5 91.0 774.6 53.9 102.6 54.0 954.6 

Ɨ: Parameter settings 1: all variance components were preset as 20; Parameter settings 2: all variance components 
were preset as 0 except the error variance component being set to 20. 
ǂ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife. 

 
the simulation process, computational time among five 100-simulations was similar 
given a particular parameter setting and method. Among four methods, M1, M2, and 
M3 were time-saving (less than two minutes) while M4 took much longer (over 10 mi-
nutes) than the other three methods. For parameter setting 1, M2 (REML without 
jackknife) took 14.6 seconds longer than M1 (MINQUE without jackknife) and M3 
(MINQUE with jackknife) was only 24.1 seconds longer than M1 over 500 simulations 
(Table 3). For parameter setting 2, M2 (REML without jackknife) was little longer than 
M1 and M3, which had similar computing time. M1 and M3 appeared more time-saving 
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for the parameter setting 2 compared to the parameter setting 1. Our repeated simula-
tions showed the same pattern (results not shown). One possible reason is that REML 
may need more iterations to converge for zero or negative variance components than 
for positive variance components. M4 was over eight-fold slower compared to M3 for 
the parameter setting 1 while 17 times slower for the parameter setting 2. Therefore, the 
results showed that MINQUE approach with or with jackknife was very time-saving yet 
yielded almost identical results compared to REML approach especially integrated with 
resampling process. 

3.2. Actual Data Analysis 

With the same model, two agronomic traits: cotton lint yield (LY) and lint percentage 
(LP), were analyzed by the same four methods used in our simulation studies. Esti-
mated variance components for these two traits are summarized in Table 4 and Table 5 
while predicted genotypic effects are presented in Table 6 and Table 7. Results showed 
that estimated variance components were similar for four methods for each of two traits 
while M3 and M4 yielded smaller standard error compared to M1 and M2 (Table 4 and 
Table 5). On the other hand, all four methods yielded similar predicted genotypic ef-
fects while M3 and M4 had lower standard errors compared to M1 and M2 (Table 6 
and Table 7). The results in Tables 4-7 showed that Jackknife technique integrated 

 
Table 4. Estimated variance components for lint yield (LY) by four methods. 

Parameter 
M1Ɨ M2 M3 M4 

Est SE Est SE Est SE Est SE 

GV  52,068 16,220 50,356 16,031 52,395 1567 50,548 1137 

GLV  333 1230 2379 2105 502 538 2322 681 

BV  838 890 848 890 803 324 806 335 

eV  25,168 2296 24,799 2275 25,312 888 24,904 833 

Ɨ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife 
ǂ: GV  = variance component for genotype effects; GLV  = variance component for genotype and location interac-

tion effects; BV  = variance component for block effects; and eV  = variance component random error. 

 
Table 5. Estimated variance components for lint percentage (LP) by four methods. 

Parameter 
M1Ɨ M2 M3 M4 

Est SE Est SE Est SE Est SE 

GV  9.661 2.977 9.299 2.877 9.720 0.247 9.296 0.252 

GLV  0.460 0.242 0.509 0.260 0.513 0.276 0.537 0.176 

BV  0.129 0.103 0.128 0.103 0.132 0.036 0.128 0.016 

eV  1.798 0.166 1.805 0.166 1.774 0.159 1.790 0.085 
Ɨ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife 
ǂ: GV  = variance component for genotype effects; GLV  = variance component for genotype and location interac-

tion effects; BV  = variance component for block effects; and eV  = variance component random error. 
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Table 6. Predicted genotypic effects for lint yield (LY, kg/ha) by four methods. 

 M1Ɨ M2 M3 M4 

Genotype Pre SE Pre SE Pre SE Pre SE 

1 −249.93 217 −247.035 211 −250.06 15.07 −246.80 11.76 

2 −269.19 217 −266.164 211 −268.78 26.76 −264.52 12.60 

3 −28.47 217 −27.174 211 −28.77 15.36 −27.45 13.86 

4 −366.26 217 −362.525 211 −365.41 11.11 −360.95 12.13 

5 −251.01 217 −248.111 211 −250.99 9.19 −247.62 13.16 

6 −34.13 217 −32.793 211 −33.67 23.36 −32.02 22.83 

7 84.73 217 85.208 211 83.92 10.31 83.97 12.85 

8 3.56 217 4.628 211 2.44 11.19 4.30 9.09 

9 −11.85 217 −10.675 211 −12.21 24.11 −8.97 23.65 

10 −126.61 217 −124.611 211 −126.88 21.16 −126.25 16.76 

11 −24.49 217 −23.229 211 −25.97 21.13 −23.45 10.85 

12 97.13 217 97.522 211 95.42 33.32 96.34 30.43 

13 −2.94 217 −1.828 211 −3.80 11.92 −2.50 17.69 

14 −180.68 217 −178.291 211 −179.72 16.40 −177.87 15.22 

15 −164.55 217 −162.271 211 −163.10 21.15 −162.73 30.91 

16 95.21 217 95.609 211 94.91 10.76 94.96 12.99 

17 −215.73 217 −213.082 211 −215.76 9.57 −213.91 10.96 

18 −1.98 217 −0.872 211 −2.14 8.10 −1.00 9.87 

19 −11.37 217 −10.197 211 −11.28 8.60 −10.52 7.38 

20 −5.35 217 −4.219 211 −6.09 13.77 −4.29 12.89 

21 416.95 221 408.480 215 417.84 13.54 408.76 11.41 

22 353.75 221 346.741 215 354.41 7.83 346.95 11.44 

23 538.03 221 526.777 215 539.68 8.87 527.17 11.65 

24 355.16 221 348.114 215 356.03 9.18 348.39 17.90 

Ɨ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife. 

 
with two LMM approaches could significantly reduce standard errors for these esti-
mated variance components and predicted effects and thus statistical power for these 
parameters increased considerably with the use of jackknife method, as shown in Table 1. 
The results from actual data analysis were highly consistent with the simulated results. 

Based on the results from our simulation and actual data analysis in this study, sev-
eral clear conclusions could be drawn: 1) MINQUE and REML approaches perform 
equally well (M1 vs M2 and M3 vs M4) regarding variance component estimation and 
random effect prediction); 2) Jackknife based MINQUE and REML approaches could  



N. Nan et al. 
 

821 

Table 7. Predicted genotypic effects for lint percentage (LP, %) by four methods. 

 M1Ɨ M2 M3 M4 

Genotype Pre SE Pre SE Pre SE Pre SE 

1 −4.336 2.97 −4.311 2.91 −4.322 0.199 −4.301 0.124 

2 −3.368 2.97 −3.349 2.91 −3.383 0.216 −3.324 0.259 

3 −2.156 2.97 −2.130 2.91 −2.152 0.097 −2.130 0.047 

4 −5.064 2.97 −5.054 2.91 −5.044 0.235 −5.037 0.124 

5 −1.145 2.97 −1.114 2.91 −1.149 0.101 −1.109 0.111 

6 −0.790 2.97 −0.757 2.91 −0.801 0.301 −0.739 0.388 

7 −0.305 2.97 −0.269 2.91 −0.301 0.191 −0.286 0.188 

8 −0.925 2.97 −0.892 2.91 −0.937 0.165 −0.899 0.198 

9 −0.324 2.97 −0.289 2.91 −0.333 0.123 −0.302 0.151 

10 −1.597 2.97 −1.568 2.91 −1.607 0.092 −1.574 0.284 

11 2.455 2.97 2.505 2.91 2.436 0.232 2.487 0.186 

12 1.590 2.97 1.636 2.91 1.600 0.403 1.630 0.305 

13 0.227 2.97 0.265 2.91 0.219 0.112 0.260 0.154 

14 −2.830 2.97 −2.808 2.91 −2.815 0.258 −2.795 0.180 

15 −0.535 2.97 −0.500 2.91 −0.506 0.557 −0.496 0.410 

16 1.263 2.97 1.307 2.91 1.238 0.160 1.303 0.117 

17 −1.967 2.97 −1.940 2.91 −1.969 0.186 −1.931 0.231 

18 −0.840 2.97 −0.807 2.91 −0.850 0.207 −0.806 0.152 

19 0.541 2.97 0.580 2.91 0.539 0.155 0.561 0.155 

20 −1.462 2.97 −1.433 2.91 −1.465 0.131 −1.416 0.263 

21 5.759 3.00 5.589 2.94 5.773 0.097 5.582 0.096 

22 2.465 3.00 2.413 2.94 2.463 0.122 2.406 0.107 

23 7.824 3.00 7.579 2.94 7.844 0.139 7.573 0.104 

24 5.510 3.00 5.349 2.94 5.522 0.091 5.342 0.145 

Ɨ: M1 = MINQUE approach without Jackknife; M2 = REML approach without Jackknife; M3 = MINQUE approach 
with Jackknife; and M4 = REML approach with Jackknife. 

 
improve test power while maintaining acceptable Type I error (M1 vs M3 and M2 vs 
M4); and 3) MINQUE approaches provide less computational intensity especially inte-
grated with jackknife approaches or for simulation study compared to REML approaches. 

Though, in this study, we only reported results based on a given data set, many other 
results also showed the similar patterns that we have found in this study. The methods 
used for simulations and actual data analysis and example R scripts are available in the 
two R packages, minque and qgtools [23] [24]. Interested readers may follow these R 
scripts to conduct their own statistical data analysis and model comparisons and evalu-
ations. 
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