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Abstract 
Although tropical high ambient temperature and humidity severely reduced the 
productivity of temperate plants, temperate vegetable crops such as lettuce have been 
successfully grown in Singapore by only cooling its root-zone. In this paper, a cool 
Meditteranean vegetable, Eruca sativa, was studied to understand how different 
RZTs can impact its shoot productivity, photosynthesis and nutritional quality. All 
plants were cultivated using aeroponic systems in a tropical greenhouse under hot 
ambient conditions where roots were subjected to four different root-zone tempera-
tures (RZTs) of 20˚C-RZT, 25˚C-RZT, 30˚C-RZT and fluctuating ambient tempera-
tures ranged from 25˚C to 38˚C [25˚C/38˚C (ambient)]-RZT. Parameters studied in-
clude shoot fresh weight (FW), photosynthetic gas exchange, midday chlorophyll 
(Chl) fluorescence Fv/Fm ratio, Chl fluorescence photochemical quenching (qP), 
non-photochemical quenching (qN) and electron transport rate (ETR), total phenol-
ic compounds and mineral content such as potassium (K), calcium (Ca), magnesium 
(Mg) and iron (Fe). Among the 4 different RZT treatments, E. sativa plants grown 
under ambient-RZT (25/38˚C-RZT) had the lowest shoot and root FW while those 
plants grown under 20˚C-RZT had highest productivity of shoot and root. However, 
there were no significant differences in shoot and root FW in plants grown at 25˚C- 
and 30˚C-RZT. Compared to plants grown under 25˚C/38˚C (ambient-RZT), light- 
saturated photosynthetic CO2 assimilation rate (Asat) and stomatal conductance (gssat) 
were similarly higher in 20˚C-, 25˚C- and 30˚C-RZT. All plants had midday Chl flu-
orescence Fv/Fm ratio lower than <0.8 ranged from 0.785 to 0.606 with the highest 
and lowest ratios recorded in 20˚C-RZT and ambient-RZT plants, respectively. These 
results indicate that cooling the RZ of E. sativa plants protected their PS II from 
photoinactivation during midday in the greenhouse. There were no significant dif-
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ferences observed in photochemical quenching (qP), non-photochemical quenching 
(qN) and electron transport rate among plants grown under 20˚C-, 25˚C- and 
30˚C-RZT. However, plants grown under ambient-RZT had lower qP, qN and ETR 
compared to all other plants. E. sativa at 20˚C-RZT with the best developed roots had 
the highest dietary mineral (K, Mg, Ca and Fe) contents but lower total phenolics 
content. In contrast, ambient-RZT, plants with poorly developed roots had the low-
est mineral content but highest total phenolic content. The results of this study sug-
gest that cooling of roots is a feasible method for the cultivation of E. sativa in the 
tropic, which enhances the content of dietary minerals in shoots. 
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1. Introduction 

A leafy vegetable characterized by its strong distinctive flavours, Eruca sativa, com-
monly known as rocket, is well known for their antioxidant and medicinal properties. 
As such, they are widely consumed by people or researched as alternative medications 
to synthetic drugs [1]-[3]. However, E. sativa are mediterranean plants which require 
cool temperatures for optimum growth and development. Dolezalova et al. [4] reported 
that E. sativa is best grown at temperatures from 10˚C to 25˚C. In contrast, tempera-
tures in the tropical greenhouse can fluctuate from 26˚C to 38˚C. Temperate crops are 
vulnerable to heat stress when grown under these temperatures due to the poor root 
development and mineral deficiency [5]-[9] and limitation of photosynthesis [10]-[15]. 
Other effects of heat-stress were scorching of shoots, abscission and senescence of 
leaves, growth inhibition and decreased plant productivity [10] [11] [16]. 

A study on Brassica albogabra also showed detrimental effects of high temperatures 
on root morphology, such as total root length and mineral nutrition [9]. Berry (1975) 
studied on Atriplex glabriuscula, a cool marine climate plant, and found that photo-
synthetic capabilities decrease as a trade-off to adapt to higher temperatures [15]. He et 
al. reported that temperate crops grown in a tropical greenhouse exhibited both 
stomatal and non-stomatal limitation of photosynthesis [12]. Thus, a Mediterranean 
plant such as E. sativa is not suitable for cultivation in Singapore under natural condi-
tions due to the negative impacts of high tropical temperature on its growth and pho-
tosynthesis. However, the cultivation of E. sativa in Singapore is possible through the 
use of aeroponic systems by cooling the root zone. We have previously reported that 
subtropical and temperate vegetable crops could be grown in the tropics with the cool-
ing of root zones, even though aerial parts were exposed to ambient tropical tempera-
tures [14]. Our previous results showed that cooling of RZ reduced depression of pho-
tosynthesis during periods of bright sunlight, mitigated stomatal limitations on photo-
synthesis due to water deficit and alleviated non-stomatal limitation resulting from 
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protecting leaves from photo inactivation, and improved overall plant growth and de-
velopment [12] [13]. 

This study aimed to invest if photosynthetic capabilities, productivity and nutritional 
qualities of E. sativa were affected under tropical conditions with different RZTs, 
namely at 20˚C-, 25˚C-, 30˚C- and 25˚C/38˚C (ambient)-RZT. Fresh weights (FW) of 
root and shoot were measured to determine productivity of plant at harvest. Light- 
saturated photosynthetic CO2 assimilation rate (Asat), stomatal conductance (gs sat) and 
midday chlorophyll (Chl) fluorescence Fv/Fm ratio were measured in the greenhouse to 
investigate the effects of RZT on stomatal and non-stomatal limitations of photosyn-
thesis [12]. Light response curves of photochemical quenching and non-photochemical 
quenching were determined to study the impacts of RZT on photosynthetic utilization 
of radiant energy [13]. Effects of RZT on nutritional qualities were also analysed by the 
comparison of total phenolic compounds and various minerals such as K, Ca, Mg and 
Fe. 

2. Materials and Methods 
2.1. Plant Material and Cultural Methods 

E. sativa seeds were germinated on moist Whatman filter papers in petri dishes under 
laboratory conditions. Three days after germination, the seedlings were inserted into 
polyurethane cubes soaked in water for adaptation. After nine days of adaptation, these 
seedlings were transplanted into four aeroponic troughs of different temperatures. To 
maintain the different RZTs, all troughs were insulated using aluminum-laminated po-
lyethylene sheets. Three water tanks were regulated using chillers to maintain the dif-
ferent constant RZTs at 20.1˚C ± 0.1˚C, 25.0˚C ± 0.1˚C, 29.6˚C ± 0.1˚C while one of 
them was kept at ambient temperature range from 25˚C to 38˚C. Full nutrient solution 
was supplied by misting roots at a frequency of 30 seconds at every three min. The 
electrical conductivity and pH of nutrient solutions were maintained at 2.0 ± 0.2 mS 
and pH 6.5 ± 0.5 respectively. The aerial parts of the plants were subjected to prevailing 
greenhouse conditions, where temperatures fluctuate from 25˚C to 38˚C and maximal 
photosynthetic photon flux density (PPFD) was about 600 µmol photon m−2∙s−1. 

2.2. Measurements of Shoot and Root FW  

Four weeks after transplant, random plants from each treatments were harvested at 
0700 h. Shoot and roots were separated for FW measurement. The roots of each plant 
were washed and dabbed dry before weighing.  

2.3. Measurements of Asat and gs sat 

Three weeks after transplanting, readings were taken between 0900 h to 1100 h in the 
greenhouse with an open infrared gas analysis system with a 6 cm2 chamber (LI-6400, 
Biosciences, US). Readings were taken with a LED light source, which supplied 1000 
µmol∙m−2∙s−1 of PPFD. The light source emitted in the wavelength ranged between 420 
to 510 nm and 610 nm to 730 nm. The spectral output of the light source has one peak 
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centred at about 465 nm and second peak centred at about 670 nm. Average ambient 
[CO2] and relative humidity in the chamber were 400 ± 3.5 µmol∙mol−1 and 70% re-
spectively. Measurements were recorded when both Asat and gs sat were stable.  

2.4. Measurement of Midday Chl Fluorescence Fv/Fm Ratio 

Three weeks after transplanting, measurements of midday Fv/Fm ratio were made with 
the Plant Efficiency Analyser, PEA, (Hansatech Instruments Ltd., England). All Fv/Fm 
ratios were taken from the same leaves from which Asat and gssat were recorded. The 
readings were carried out 1230 h to 1330 h. Attached leaves were pre-darkened with 
clips for 15 min prior to measurements. Dark-adapted leaves were placed under the 
light pipe and irradiated with the pulsed lower intensity-measuring beam to measure 
F0, initial chlorophyll fluorescence. Fm, maximum chlorophyll fluorescence was assessed 
by 0.8 s of saturated pulse (>6000 µmol∙m−2∙s−1). The variable fluorescence yield, Fv, was 
determined by Fm-F0. The efficiency of excitation energy captured by open PSII reac-
tion centres in dark-adapted plant samples was estimated by the fluorescence Fv/Fm ra-
tio. 

2.5. Measurements of Photochemical Quenching (qP),  
Non-Photochemical Quenching (qN) and Electron 
Transport Rate (ETR) 

Leaf discs (1 cm diameter) were punctured and placed on moist filter papers in Petri 
dishes. They were pre-darkened for 15 min prior to measurements. Via the Imag-
ing-PAM Chl Fluorometer (Walz, Effeltrich, Germany), images of fluorescence emis-
sion were digitized within the camera and transmitted via a Firewire interface (400 
megabits/s) (Firewire-1394, Austin, TX, USA) to a personal computer for storage and 
analysis. Measurements and calculations of qP, qN and ETR were determined accord-
ing to He et al. [17].  

2.6. Determination of Total Phenolic Compounds 

The concentration of total phenolic compounds was determined in methanol extracts 
using a colorimetric method [18] [19]. To extract the phenolic compounds, 0.5 g of 
fresh shoot tissues were grinded with liquid nitrogen and 5 ml of 80% methanol. The 
extracts were shaken for 30 min at 2000 rpm and centrifuged for 20 min at 3500 rpm. 
The supernatants were transferred to clean tubes. 0.5 ml of extract was diluted with 0.5 
ml of diluted Folin-Ciocalteau reagent and 1 ml of 7.5% Na2CO3 solution. After 20 min, 
the absorbances were measured at 765 nm using UV-2550 spectrophotometer (Shi-
madzu, Japan). Total phenolic compounds of the samples were expressed as gallic acid 
equivalents in micrograms per gram of FW. 

2.7. Determination of Inorganic Dietary Minerals 

Dried shoot tissues of 0.2 g were microwave-digested in 4 ml of 65% HNO3 using Ul-
traWAVE single reaction chamber microwave digestion system (Milestone, US). Di-
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gested samples were diluted with the addition of Milli-Q water to a total volume of 25 
ml. Inductively coupled plasma optical emission spectrophotometry (ICP-OES) was 
performed using Optima 8300 ICP-OES Spectrometer and WinLab 32 (Perkin Elmer, 
US). The data retrieved were then used to calculate the concentrations. 

2.8. Statistical Analysis 

Levene’s test was used to ensure equal variances across samples of the four treatments. 
One-way analysis of variances (ANOVA) and Tukey’s multiple comparison test were 
used to discriminate between means of the different treatments, where means with p < 
0.05 has significant differences. All statistical analyses were performed using MINITAB 
software (MINITAB Inc., US). 

3. Results 
3.1. Shoot and Root Productivity  

Figure 1 shows E. sativa plants that were grown in a tropical greenhouse with aeropon-
ic system at 20˚C-RZT (Figure 1(a)) and other different RZTs for 4 weeks (Figure 
1(b)). Plants grown under ambient-RZT (25˚C/38˚C-RZT) had the lowest shoot FW 
while those plants grown under 20˚C-RZT had highest productivity of shoot (Figure 
2(a)). However, there were no significant differences in shoot FW implants grown at  
 

 
Figure 1. E. sativa plants grown in a tropical greenhouse with aeroponic system at 20˚C -RZT (a) 
and grown under different RZTs for 4 weeks (b). 

(a)

(b)

20   25               30          25/38 (ambient)
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Figure 2. Shoot (a), root (b) FW and shoot/root ratio FW of E. sativa grown under different RZTs. Each bar represents the mean mea-
surements from 5 plants (n = 5). Vertical bars represent standard errors. Means with the same alphabet above the bars are not statistically 
different (p > 0.05) as determined by Tukey’s multiple comparison test. 
 

25˚C- and 30˚C-RZT. For root FW (Figure 2(b)) and shoot/root ratio FW (Figure 
2(c)), there were no significant differences among E. sativa grown under 20˚C-, 25˚C- 
and 30˚C-RZT and they were significantly higher than plants grown at ambient-RZT.  

3.2. Photosynthetic Gas Exchanges at Different RZTs 

No significant differences in Asat (Figure 3(a)) and gs sat (Figure 3(b)) were observed 
among plants grown under 20˚C-, 25˚C- and 30˚C-RZTs. However, these two parame-
ters were significantly higher than those of ambient-RZT plants (25˚C/38˚C -RZT).  

3.3. Photosynthetic Utilization of Radiant Energy at Different RZTs  

20˚C-RZT and A-RZT plants had the highest and lowest midday Fv/Fm ratio respec-
tively (Figure 4). High midday PPFD induced dynamic photo inactivation, indicated by 
<0.8 Fv/Fm ratios. Decreasing Fv/Fm ratio was observed with increasing RZTs. In fact, E. 
sativa grown under 20˚C-RZT had very mild photo inhibition as midday Fv/Fm ratio 
was very close to 0.8. Figure 5 shows the light response curves of ETR, qP and qN from 
E. sativa grown under different RZTs. For all plants, ETR increased with increasing 
PPFD from 15 to 715 µmol∙m−2∙s−1 and decreased with further increasing PPFD beyond 
715 µmol∙m−2∙s−1 (Figures 5(a)-(d)). Although the light response curves were similar 
for all plants, at a PPFD of 605 µmol∙m−2∙s−1, which was close to their growth PPFD, the 
ETR values indicated by black arrows, for plants grown under 20˚C-, 25˚C- and 
30˚C-RZT were similarly but significantly higher than those of plants grown under am-
bient-RZT. Although qP decreased and qN increased with increasing PPFDs from 15 to 
1585 µmol∙m−2∙s−1 for all plants, under higher PPFDs, the values of qP and qN were 
similarly but significantly higher in plants grown at 20˚C-, 25˚C- and 30˚C-RZTs than 
at ambient-RZT. For instance, the average values of qP and qN measured at a PPFD of 
605 µmol∙m−2∙s−1 (indicated by blank arrows), were 0.767 (Figure 5(e)), 0.782 (Figure 
5(f)), 0.765 (Figure 5(g)), and 0.617 (Figure 5(h)), respectively for 20˚C-, 25˚C- and 
30˚C- and ambient-RZT.  
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Figure 3. Asat (a) and gs sat (b), of E. sativa grown under different RZTs (n = 4). Means with the 
same alphabet above the bars are not statistically different (p > 0.05) as determined by Tukey’s 
multiple comparison test. 
 

 
Figure 4. Midday Fv/Fm ratio of E. sativa grown at different RZTs (n = 8). Means with the same 
alphabet above the bars are not statistically different (p > 0.05) as determined by Tukey’s multiple 
comparison test. 
 

 
Figure 5. Light responses curves of ETR (a, b, c, d), qP (open circle) and qN (solid circle) (e, f, g, 
h) of E. sativa grown at different RZTs (n = 15). Black arrows show the values measured at a 
PPFD of 605 µmol photon m−2∙s−1). Means with the same alphabet above the bars are not statisti-
cally different (p > 0.05) as determined by Tukey’s multiple comparison test. 
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3.4. Nutritional Qualities 

The content of total phenolic compounds was significantly higher in ambient-RZT 
plants as compared to plants of other RZTs, which had similar levels (Figure 6(a)). On 
the other hand, the contents of inorganic minerals such as K, Mg, Ca and Fe in E. sativa 
were different among the different RZT treatments. For example, K and Ca contents 
were highest in E. sativa grown at 20˚C-RZT followed by those grown under 25˚C- and 
30˚C-RZT and E. sativagrown at ambient-RZT had the lowest K and Ca contents (Figure 
6(b) and Figure 6(d)). For Mg, E. sativa grown under 20˚C-, 25˚C- and 30˚C-RZT had 
similar higher content than that of ambient-RZT plants (Figure 6(c)). E. sativa grown 
at 30˚C-RZT had the highest Fe content followed by those grown under 20˚C- and 
25˚C-RZT whereas plants grown under ambient-RZT had the lower Fe content. 

4. Discussion 

In the present study, the biomass of both shoot and root of E. sativa were significantly 
higher at 20˚C-RZT compared to those grown at ambient-RZT (Figure 1(b) and Fig-
ure 2). The lowest shoot and root FW and shoot/root ratio FW observed in E. sativa 
grown under high ambient-RZTimply that high RZT affected not only the productivity 
of E. sativa grown in the tropical greenhouse but also photoassimilate partitioning be-
tween shoot and root. E. sativa grown under high RZT with more photoassimilates par-
titioned to roots than shoot (Figure 1(c)) and this has been previously reported by our 
team in lettuce [5] [6] and other researchers in other plant species [20] [21]. However, 
similar to temperate lettuce, cooling the RZ of E. sativa could alleviate such adversely 
effects on productivity [5] [6] [22]. Our 14C feeding experiments suggested that the 
younger developing leaves of lettuce grown under cooling-RZT had greater sink 
strength [6]. It was interesting to note that there were no significant differences in root 
FW and shoot/root ratio FW among E. sativa grown under 20˚C-, 25˚C- and 30˚C- 
RZT, indicating that the optimal cool-RZT for E. sativa was much broader that the 
temperate lettuce that had a narrow optimal cool-RZT at about 20˚C [10] [11]. Mature  

 

 
Figure 6. Total phenolic compound (a), ptassium, K (b), calcium, Ca (c), magnesium, Mg (d) and iron, Fe (e) concentrations of E. sativa 
grown at different RZTs (n = 4). Means with the same alphabet above the bars are not statistically different (p > 0.05) as determined by 
Tukey’s multiple comparison test. 
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E. sativa plants (4 weeks after transplanting, Figure 1) showed that ambient-RZT plants 
had much smaller root system with shortest root length but thick root diameter (data 
not shown) compared to that of E. sativa grown under other cooler RZT. These concur 
with the discussion of our various studies where inhibitory effects on root elongation 
and lateral growth but promoting root thickening were observed in plants grown at 
high RZTs [5]-[7] [23]. The root thickening may be due to the synthesis of chemical 
signals such as ethylene [8] [24], that was further confirmed by our team recently [25]. 
Effects of RZTs on ethylene production and root chickening of E. sativa merits our fu-
ture study.  

Contrary to our previous studies on lettuce [10] [11] [14], RZT did not seem to have 
significant impact on photosynthesis of E. sativa from 20˚C to 30˚C although their Asat 
(Figure 3(a)) and gs sat (Figure 3(b)) were significantly lower under hot ambient-RZT. 
Asat of E. sativa grown under different RZTs correlate well with gs sat. Lower gs sat indi-
cated stomatal closure or partially closure when roots were subjected to high RZTs [12] 
[14]. Stomatal closure could deplete CO2 in the intercellular spaces and at the chloro-
plast level, thus reducing Asat [26] and this is termed a stomatal limitation of photo-
synthesis [12] [14] that occurred in E. sativa grown under ambient-RZT. High RZT re-
sulted in stomatal limitation of photosynthesis was also reported in the studies of to-
matoin a greenhouse [27]. Tomato plants that were grown at similar shoot temperature 
of 25˚C but 5 different RZTs of 12˚C, 18˚C, 24˚C, 30˚C and 36˚C showed that photo-
synthetic CO2 uptake, was the highest at 24˚C-RZT but the lowest at 36˚C-RZT [27]. 
We have also reported that temperate lettuce exposed to high solar irradiation (maxi-
mum PPFD circa 1800 µmol∙m−2∙s−1) in the tropical greenhouse accompanied by high 
RZT experienced not only stomatal but also non-stomatal limitations of photosynthesis 
supported by decreases of leaf Chl content and Chl fluorescence Fv/Fm, ratio [12]. In the 
present study, average midday fluorescence Fv/Fm, ratios were 0.785, 0.678, 0.652 and 
0.606, respectively measured from E. sativa grown under 20˚C-, 25˚C-, 30˚C- and am-
bient-RZT (Figure 4). These results indicated that dynamicPSII photo inhibition was 
rather mild or moderate and was not accompanied by decreases of predawn Fv/Fm, ratio 
and leaf Chl content (data not shown). These could be due to the lower solar irradiation 
inside the greenhouse (maximum PPFD circa 600 µmol∙m−2∙s−1) in the present study 
compared to our previous experiment with lettuce discussed earlier [12]. However, 
there was still a significant lower midday Fv/Fm, ratio in E. sativa grown under am-
bient-RZT compared to those grown under cooler RZT (Figure 4). It well known that 
photo inhibition could occur at low and moderate light when other adverse conditions 
such as super- or sub-optimal temperature were present [28]. At optimal growing tem-
perature and low light, the electron flow from PSII does not exceed the capacity of PSI 
electron acceptors to cope with electrons, and PSI remains stable [29]-[31]. Recently, it 
has been reported that PS II photo inhibition was regarded as an ultimate mechanism 
for protecting PSI activity [31]. In the present study, lower ETR (Figure 5(d)) and qP 
(Figure (5h)) in E. sativa grown under ambient-RZT compared to other cooler RZT 
(Figures 5(a)-(c) and Figures 5(e)-(g)) seemed to supported this conclusion. Non- 
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photochemical quenching (qN or NPQ) help to regulate and protect photosynthesis in 
environments in which light energy absorption exceeds the capacity for light utilization 
and thus, avoid over reduction and potential damage to PS II [32] [33]. However, in-
stead of higher qN, lower qN was observed in E. sativa grown under ambient- RZT 
(Figure 5(h)). High levels of qN were typically associated with higher level of carote-
noids [34] [35]. However, in the present study, levels of carotenoids varied little among 
the different RZT treatment (data not shown). 

Plant phenolic compounds of plants are essential human diet, and are of considerable 
interest due to their antioxidant properties [36]. It has been reported that low growth 
temperature decreased the content of some phenolic compounds in pea (Pisum sativum 
L.) seedlings [37]. In the present study, while plants grown under other cooler RZTs 
had low total phenolic content, plants grown under ambient-RZT had the highest total 
phenolic content (Figure 6(a)). Bita and Gerats reported that heat stress led to the 
production of reactive oxygen species (ROS). Anti-oxidants such as phenolics com-
pounds are produced by plants in order to resist oxidative stress [38]. Results from this 
study thus indicate that phenolic compounds may produce to counter the oxidative 
stress at ambient-RZT. At other RZTs, the cooler RZTs had alleviated the oxidative ef-
fects of heat stress.  

RZT affects the root morphology and productivity of E. sativa. Would RZT also af-
fects the dietary mineral uptake of E. sativa since high RZT results in poor root devel-
opment, reductions of uptake and transport of mineral and inhibition of nitrogen me-
tabolism [14] [39]? Compared to plants grown at cooler RZT, ambient-RZT plants had 
lower shoot K (Figure 6(b)), Mg (Figure 6(c)), Ca (Figure 6(d)) and Fe (Figure 6(e)) 
concentration. When comparisons made among 20˚C-, 25˚C- and 30˚C-RZT, 20˚C- 
ZT plants had higher K and Ca concentration, indicating that the roots of E. sativa need 
much cooler temperature to absorb and translocate these two elements to the shoot, 
resulting from well-established root systems under cool-RZTs [5] [7]. For Mg, there 
were no significant differences among the plants grown under three cool-RZTs. It was 
surprise to note that Fe concentration was the highest in plants grown under 30˚C- 
RZT. Based on the above results, a general trend was observed, where increase in RZTs 
generally led to increase in total phenolic content and decrease in mineral content. 
These hinted a possible manipulation of organic and mineral nutrient quality and 
productivity in E. sativa using different RZTs. 

5. Conclusion 

In conclusion, the growth of E. sativa plants was adversely affected by hot ambient-RZT 
in a tropical greenhouse. Ambient-RZT led to heat stress effects on E. sativa, such as 
poor growth, midday photo inhibition, stomotal limitation of photosynthesis and gen-
erally low mineral concentrations. 20˚C-RZT would be a suitable RZT for the cultiva-
tion of E. sativa, as plants had enhanced productivity, mild midday photoinhibition, 
high photosynthetic ate and generally high mineral concentrations. However, plants 
growing at 20˚C-RZT have low antioxidants such as total phenolic compounds. As this 
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is a preliminary study to provide a potential method of cultivating E. sativa in the trop-
ics, more studies should be carried out to manipulate the nutritional values by adjusting 
other factors such as light or CO2 levels.  
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