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Abstract 
We examine how and under what conditions we encounter higher dimensions. This 
would be of relevance to, for example String Theory where indeed we come across 
higher dimensions. 
 

Keywords 
Higher Dimensions 

 

1. Introduction 

We encounter higher dimensions in String Theory and its derivatives. Let us examine 
how and under what conditions we encounter these higher dimensions. Our starting 
point is from the very beginnings of Quantum Theory. 

According to Dirac we cross over from Classical Physics to Quantum Physics once 
we realize that there is no infinite precision in measuring physical quantities [1]. This 
prescription applies to both non relativistic and relativistic Quantum Mechanics. 

Let us now carry over this prescription to a measurement of spacetime coordinates. 
That is we consider the scenario where we cannot go down to spacetime points. In oth-
er words there would be a minimum scale of precision. These ideas were considered 
some decades ago in attempts to overcome infinities and divergences. In this context it 
was shown a long time ago by H.S. Snyder [2] that such a prescription would lead to the 
following noncommutative geometry: 

[ ] ( ) [ ] ( )2 2, , , , .z xx y il L t x il c M etc= =   

( )2 2, 1 ;x xx p i l p= +   
                               (1) 

where l is the minimum infinitesimal length. (1) can be further simplified to 

[ ] ( ) ( ) [ ] ( )2 2 2, 0 , , 1 0 , , 1 0xx y l x p i l t E i τ   = = + = +                (2) 
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(cf. Refs. [2]-[5]). Now τ  is the minimum time scale. 
In other words, as can be concluded from (1) and (2) the coordinates are no longer 

scalars rather they would be susceptible to a quarternionic description, with coordi-
nates being represented by matrices. This can be seen directly from (2) (cf. Ref. [3]). 

2. Non Commutativity 

There is some physics that is hidden in the above—we have to consider time as being 
no longer unidirectional but going backward and forward, as can be modelled by a two 
Wiener process [6]. 

We first define the forward and backward velocities corresponding to having time 
going forward and backward (or positive or negative time increments) in the usual 
manner, 

( ) ( )d d,
d d

.x t b x t b
t t
+

+ −= =                         (3) 

This leads to the Fokker-Planck equations 

( ) ,div b V
t
ρ ρ ρ+
∂

+ = ∆
∂

 

( )div b U
t
ρ ρ ρ−
∂

+ = − ∆
∂

                        (4) 

defining 

; .
2 2

b b b bV U+ − + −+ −
= =                         (5) 

We get on addition and subtraction of the equations in (4) the equations 

( ) 0div V
t
ρ ρ∂
+ =

∂
                           (6) 

ln .U ν ρ= ∆                                (7) 

It must be mentioned that V and U are the statistical averages of the respective veloc-
ities. We can then introduce the definitions 

2 ΔV Sν=                                  (8) 

( )2 ln .V iU iν ψ− = − ∇                        (9) 

We next observe the decomposition of the Schrodinger wave function as 

eiSψ ρ=   

leads to the well known Hamilton-Jacobi type equation 

( )21 ,
2

S S V Q
t m

∂
= ∂ + +

∂
                       (10) 

where 
22

.
2

Q
m

ρ
ρ

∇
=

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From (8) and (9) we can finally deduce the usual Schrodinger equation or (10) [6]. 
We note that in this formulation three conditions are assumed, conditions whose 

import has not been clear. These are [7]: 
(1) The current velocity is irrotational. Thus, there exists a function ( ),S x t  such 

that  

.m S=V ∇  

(2) In spite of the fact that the particle is subject to random alterations in its motion 
there exists a conserved energy, defined in terms of its probability distribution. 

(3) The diffusion constant is inversely proportional to the inertialmass of the particle, 
with the constant of proportionality being a universal constant   (cf. Ref. [7]): 

.
m

ν =


 

We note that the complex feature above disappears if the fractal or non-differential 
character is not present, (that is, the forward and backward time derivatives (5) are 
equal): Indeed the fractal dimension 2 also leads to the real coordinate becoming com-
plex. What distinguishes Quantum Mechanics is the adhoc feature, the diffusion con-
stant ν  in Nelson’s theory and the “Quantum potential” Q of (10) which appears in 
Bohm’s theory [5] as well, though with a different meaning. 

Interestingly from the Uncertainty Principle, 

~xm x
t

∆
∆

∆
  

we get back the equation of Brownian motion. This shows the close connection on the 
one hand, and provides, on the other hand, a rationale for the particular, otherwise ad-
hoc identification of ν  above—its being proportional to  . 

We would like to emphasize that we have arrived at the Quantum Mechanical Schro-
dinger equation from Classical considerations of diffusion, though with some new as-
sumptions. In the above, effectively we have introduced a complex velocity V iU V− =  
which alternatively means that the real coordinate x  goes into a complex coordinate 

.x x ix→ + ′                            (11) 

To see this in detail, let us rewrite (5) as 

dd , ,
d d

ir XX V U
t t
= =                         (12) 

where we have introduced a complex coordinate X with real and imaginary parts rX  
and iX  $, while at the same time using derivatives with respect to time as in conven-
tional theory. 

We can now see from (5) and (12) that 

( )d .
d r iW X iX

t
= −                         (13) 

That is, in this non relativistic development either we use forward and backward time 
derivatives and the usual space coordinate as in (5), or we use the derivative with re-
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spect to the usual time coordinate but introduce complex space coordinates as in (11). 
We know that 

T it→  

means that the four dimensional rotational group goes over into the Minkowski for-
mulation [8], as it leads to the invariant Minkowski metric, 

2 2 2 2x y z t+ + −                           (14) 

which is invariant. 
There is another way of looking at this. As has been pointed out by Sachs [9] if we 

generalize (11) to three dimensions we come to not three but four dimensions and a 
quarternionic description 

( )4 1 2 3 4
0 1 2 3 0 .Q i x x i x i x i x x iµ

µσ σ σ σ σ σ= − = − = − = + ⋅ rσ  

Or equivalently 
4 3 1 2

1 2 4 3

ix x x ix
Q i

x ix ix x
 + −

= −  
+ − 

. 

Remarkably the same Minkowski invariant element is recovered, using the algebra of 
the Pauli matrices [4]. Not surprisingly there is a lack of spacetime reflection symmetry 
in this formulation, because the forward backward time of (3) and subsequent equa-
tions are not carrying this symmetry. 

In summary the above two Wiener process leads to a special relativistic formulation. 
This description of time is hidden in Special Relativity. 

There is another way in which we can come to the same conclusion. We first define a 
complete set of base states by the subscript i  and ( )2 1,U t t  the time elapse operator 
that denotes the passage of time between instants 1t  and 2t , 2t  greater than 1t . We 
denote by, ( ) ( )iC t i tψ≡ , the amplitude for the state ( )tψ  to be in the state i  
at time t, and [5] [10] 

( ) ( ), , .ij ij ij ij
ii U j U U t t t H t tδ≡ + ∆ ≡ − ∆


 

We can now deduce from the super position of states principle that, 

( ) ( ) ( )i ij ij j
j

iC t t H t t C tδ + ∆ = − ∆  
∑



                (15) 

and finally, in the limit, 

( ) ( ) ( )d
d
i

ij j
j

C t
i H t C t

t
=∑                      (16) 

where the matrix ( )ijH t  is identified with the Hamiltonian operator. We have argued 
earlier at length that (16) leads to the Schrodinger equation [5] [10]. In the above we 
have taken the usual unidirectional time to deduce then on relativistic Schrodinger eq-
uation. If however we consider a Wiener process in (15) then we will have to consider 
instead of (16) 
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( ) ( ) ( ) ( )t
i i ij ij j

j

iC t t C t t H t C tδ−∆  
  

− + ∆ = − ∆∑


            (17) 

which then in the limit can be seen to lead to the relativistic Klein-Gordon equation, 
rather than the Schrodinger type diffusion equation which comes from (15). 

It is interesting that this same description of the spacetime coordinates in terms of 
the Pauli matrices, as in the quarternionic description above can be recovered from the 
noncommutative relations from (1) and (2). 

It may be remembered that this oscillation of time between positive and negative in-
crement values takes place at the micro scale. This leads to an interesting pictorial de-
scription in terms of modernfield theory: if “ t− ” would describe anti particles, this 
would mean that a particle would essentially be accompanied by a swarm of anti par-
ticles. 

3. Discussion 

It thus appears that the universe in this formulation is multidimensional as in String 
and other Quantum Gravity theories as the coordinates now become multi component 
objects. The question that arises is how or why do we come down to our usual 3 + 1 
dimensions? An answer can be found in the noncommutative formulation given in (2) 
where the coordinates x, y, z, and t turn up in terms of Pauli matrices. This formulation 
in (2) reduces to the usual Quantum theory—though not the relativistic Quantum-
theory—if the order of l2 can be neglected where l is the fundamental length. Retaining 
order of l2 leads to relativity and the description in terms of the Pauli matrices or the 
quarternionic description. From a geometrical point of view as has been discussion in 
detail [3] [4], order of l2 represents a quantum of area of Quantum Gravity approaches. 
When this area becomes a line segment we come down to the usual Minkowski un-
iverse. 

So in summary the higher dimensional quantum of area appears at very high ener-
gies. At these ultra high energies the Dirac and Klein-Gordon equations get modified— 
one way this can be done was worked out by the author (cf. Ref. [4]). At lower energies 
we have the Minkowski world and the Dirac equation and the Klein-Gordon equation 
of Special Relativity and finally at even lower energies we have the usual space and time 
and the Schrodinger equation. 

Finally it may be remarked that at ultra high energies, the Cini-Toushek formulation 
comes into play rather than the Foldy-Wothuysen (lower energy) one. This has been 
considered in detail by the author [11]. The interesting consequence is that these par-
ticles display neutrino like properties—apparent masslessness and handedness. Perhaps 
we can consider some neutrinos to be luminal heavier particles. 
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