
Journal of Software Engineering and Applications, 2016, 9, 452-478
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2016.99030 September 30, 2016

Specification and Verification of Dynamically
Reconfigurable Systems Using Dynamic Linear
Hybrid Automata

Ryo Yanase1, Tatsunori Sakai1, Makoto Sakai1, Satoshi Yamane2

1Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, Japan
2Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan

Abstract
A dynamically reconfigurable system can change its configuration during operation,
and studies of such systems are being carried out in many fields. In particular, medi-
cal technology and aerospace engineering must ensure system safety because any de-
fect will have serious consequences. Model checking is a method for verifying system
safety. In this paper, we propose the Dynamic Linear Hybrid Automaton (DLHA)
specification language and show a method to analyze reachability for a system con-
sisting of several DLHAs.

Keywords
Formal Method, Model Checking, Hybrid Automata, Embedded Systems,
Dynamically Reconfigurable Systems

1. Introduction

Dynamically reconfigurable systems can change their configuration during operation.
Such systems are being used in a number of areas [1]-[4] of an apparatus that involves
human lives or expensive manufactured goods (e.g., in medical or aerospace engineer-
ing). Here, it is very important to guarantee safety. The major methods of checking
system safety include simulation and testing; however, it is difficult for them to ensure
safety precisely, since large systems can have infinite state spaces. In such a case, model
checking that performs exhaustive searches is a more effective method.

In this paper, we propose the Dynamic Linear Hybrid Automaton (DLHA) specifica-
tion language for describing dynamically reconfigurable systems and provide a reacha-

How to cite this paper: Yanase, R., Sakai,
T., Sakai, M. and Yamane, S. (2016) Speci-
fication and Verification of Dynamically
Reconfigurable Systems Using Dynamic
Linear Hybrid Automata. Journal of Soft-
ware Engineering and Applications, 9, 452-
478.
http://dx.doi.org/10.4236/jsea.2016.99030

Received: July 15, 2016
Accepted: September 27, 2016
Published: September 30, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.99030
http://www.scirp.org
http://dx.doi.org/10.4236/jsea.2016.99030
http://creativecommons.org/licenses/by/4.0/

R. Yanase et al.

453

bility analysis algorithm for verifying system safety.

1.1. Our Proposal

The target of our research is an embedded system in which a CPU and dynamically re-
configurable hardware, e.g., DRP (Dynamically Reconfigurable Processor) or dynami-
cally reconfigurable FPGA (Field-Programmable Gate Array) [5] [6] operate coopera-
tively. The DRP is a coarse-grained programmable processor developed by NEC Cor-
poration [4], and it manages both the power conservation and miniaturization. The
DRP is used to accelerate the computations of a general purpose CPU through coopera-
tive operations, and it has the following features:
• Dynamic creation/destruction of functions: when a process occurs, the DRP consti-

tutes a private circuit for processing it. The circuit configuration is released after the
process finishes.

• Hybrid property: the operation frequency changes whenever a context switch occurs.
• Parallel execution: the DRP executes several processes on the same board at the

same time.
• Queue for communication: the DRP asynchronously receives processing requests

from the CPU.

1.1.1. Specification
We devised the following new specification techniques for dynamically reconfigurable
systems consisting of CPUs and DRPs:
• We use linear hybrid automata [7] describing changes in the operating frequency.
• We use linear hybrid automata that have creation/destruction events describing dy-

namic creations and destructions of configuration components.
• We use FIFO queues describing asynchronous communication.

We developed a new specification language (DLHA) based on a linear hybrid auto-
maton with both creation/destruction events and unbounded FIFO queues. DLHA is
different from existing research in the following points:
• V. Varshavsky and J. Esparza proposed the GALA (Globally Asynchronous - Locally

Arbitrary) modeling approach including timed guards [8]. This approach cannot
describe hybrid systems since it is the specification language based on discrete sys-
tems. Thus, GALA cannot represent changes in operating frequency.

• S. Minami and others have specified a dynamically reconfigurable system using li-
near hybrid automata and have verified it by using a model checker, H YT ECH [9].
Since linear hybrid automata cannot describe changes to the configuration and asyn-
chronous communications, the system has been specified as a static system. Therefore,
the specification presented in their work is unsuitable for representing dynamically
reconfigurable systems. Moreover, they verified only the schedulability property of the
system, whereas we have verified several other properties in our work.

1.1.2. Verification Method
The originality of our work on the verification method is twofold:

R. Yanase et al.

454

• Our method targets systems that dynamically change their configurations, which is
something the existing work, such as H YT ECH, has studied. We extend the syntax
and semantics of linear hybrid automata with special actions called creation actions
and destruction actions. We define a state in which an automaton does not exist and
transitions for creation and destruction.

• Our method is a comprehensive symbolic verification for hybrid properties, FIFO
queues and creation/destruction of tasks.

1.1.3. Experiments on Verifying Dynamically Reconfigurable Systems
For the experiments, we specified a dynamically reconfigurable embedded system con-
sisting of a CPU and DRP, and verified some of its important features. This is the first
time that specification and verification of dynamic changes have been tried in a practic-
al case.

1.2. Related Work

Here, we describe related work and how it differs from our work.
• P. C. Attie and N. A. Lynch specified systems whose components are dynamically

created/destroyed by using I/O automata [10]. I/O automata cannot describe
changes in variables, for example, changes in the clock and operating frequency.

• H. Yamada and others proposed hierarchical linear hybrid automata for specifying
dynamically reconfigurable systems [11]. They introduced concepts such as class,
object, etc., to the specification language. However, as the scale of the system to be
specified increases, the representation and method of analysis in the verification
stage tend to be complex.

• B. Boigelot and P. Godefroid specified a communication protocol in terms of fi-
nite-state machines and unbounded FIFO buffers (queues), and they verified it [12].
Since the finite-state machine also cannot describe changes in variables, it is un-
suitable in our case.

• A. Bouajjani and others proposed a reachability analysis for pushdown automata
and a symbolic reachability analysis for FIFO-channel systems [13] [14]. However,
since their analysis don’t provide for continuous changes in variables, in languages
cannot be used for designing hybrid systems.

2. Dynamic Linear Hybrid Automaton
2.1. Preliminaries

Definition 1 (Constraint). Let V be a finite set of variables. A constraint φ on V is
defined as

1 2:: | ~ | ~ | ,true x e x y eφ φ φ= − ∧
where ,x y V∈ , e∈ , 1φ and 2φ are constraints on V, and ~ { , , , , }∈ = < > ≤ ≥ .
()VΦ denotes the set of all constraints on V.
Definition 2 (Flow condition). Let { }1, , nV x x=  be a finite set of (real-valued)

variables. A flow condition f on V is defined as

R. Yanase et al.

455

1 1 1:: ,nf x d x d= = ∧ ∧ = 


where 1, , nd d ∈  . ()F V is the set of all flow conditions.
For each variable x, we use the dotted variable x , to denote the first derivative of x.
Definition 3 (Update Expression). Let V be a finite set of variables. An update ex-

pression upd on V is defined as

:: : | : ,upd x c x x c= = = +
where x V∈ and c∈ . ()UPD V is the set of all update expressions can be writ-
ten.

2.2. Syntax

A dynamic linear hybrid automaton (DLHA) is a tuple ()0, , , , , , , dL V Inv Flow Act T t T ,
where
• L is a finite set of locations.
• V is a finite set of (real-valued) variables.
• ():Inv L V→Φ is a function that assigns a constraint to each location.
• ():Flow L F V→ is a function that assigns a flow condition to each location.
• in outAct Act Act Actτ= ∪ ∪ is a finite set of actions.

- inAct is a finite set of input actions, and each input action has the form ?a . An
input action ?m denotes receiving the message m.

- outAct is a finite set of output actions, and each output action has the form !a .
An output action !m denotes sending the message m to each DLHA.

- Actτ is a finite set of internal actions that denote changing a state of a DLHA.
Moreover, we formalize the following special actions:
- A creation action that has the form _ ?Crt ′ or _ !Crt ′ denotes a message for

creation of DLHA ′ . _ ? inCrt Act′ ∈ is an input action, and it represents that ′
has been created. _ ! outCrt Act′ ∈ is an output action, and represents a request for
creating ′ .

- A destruction action that has the form _ ?Dst ′ or _ !Crt ′ denotes a message
for a destruction of DLHA ′ . _ ? inDst Act′ ∈ is an input action that indicates ′
has been destroyed.

- An enqueue action that has the form !q m denotes enqueueing of message m into
a queue q. This action is an internal one, that is, !q m Actτ∈ .

- A dequeue action that has the form ?q m denotes dequeueing of message m from
the top of q.

• () ()2UPD VT L V Act L⊆ ×Φ × × × is a finite set of transitions. A constraint

()Vφ ∈Φ is called a guard condition.

• () ()
0 2UPD V

int L Act Actτ∈ × ∪ × is an initial transition.
• ()d outT L V Act⊆ ×Φ × is a finite set of destruction-transitions.

2.3. Operational Semantics

A state σ of a DLHA ()0, , , , , , dL V Inv Flow T t T is defined as

R. Yanase et al.

456

():: | , ,lσ ν= ⊥
where l L∈ is a location, :Vν →  is an assignment called evaluation of variables,
and ⊥ denotes an undefined value.

We define the semantics  of the DLHA by ()0, ,σΣ ⇒ , where
• Σ is a set of states.
• ⇒ is a set of time transitions and discrete transitions.
• 0σ is the initial state.

The following rules define time and discrete transitions:
Definition 4 (Time transition of a DLHA). For any 0δ ≥∈ ,

• δ⊥ ⇒ ⊥
• () (), ,l lδν ν ′⇒ if () ()Flow l Inv lν ν δ′ = + ⋅ ∈
where ()Flow lν ν δ′ = + ⋅ denotes an evaluation such that

() () ().x V x x x Flow lν ν δ′∀ ∈ = + ⋅ ∧ , and ()Inv lν ′∈ denotes that ()xν ′ satisfies
the constraint ()Inv l for any x V∈ .

Definition 5 (Discrete transition of a DLHA). For an evaluation ν and update
expressions ()2UPD Vλ ∈ , []ν λ denotes an evaluation updated by λ , that is, for any
x V∈ ,

[]()
()

() ()
() ()

:

: , :

otherwise

c x c

x x c x c x x c

x

λ

ν λ ν λ λ

ν

= ∈


= + = ∈ = + ∈/



• For any transition (), , , ,l a l Tφ λ ′ ∈ , () [](), ,al lν ν λ⇒ if ν φ∈ and
[] ()Inv lν λ ′∈ .

• (Creation of a DLHA) For the initial transition ()0 0 0 0, ,t l a λ= , []()0 0 0,0a l λ⊥⇒


,
where 0



 is an evaluation such that ().0 0x V x∀ ∈ =


.
• (Destruction of a DLHA) For any destruction-transition (), , dl a Tφ ∈ , (), al ν ⇒ ⊥

if ν φ∈
For the initial transition ()0 0 0, ,l a λ , the initial state 0σ is defined as

()
[]() ()

0
0

0 0, 0 otherwise .
ina Act

l
σ

λ

⊥ ∈= 




3. Dynamically Reconfigurable Systems

To describe an asynchronous communication among DLHAs in a dynamically recon-
figurable system (DRS), we use a queue (unbounded FIFO buffer) as a model of the
communication channel. We assume that the system performs lossless transmission, so
we can let the queue be unbounded.

3.1. Syntax of DRS

A dynamically reconfigurable system (DRS)  is defined by a tuple (),A consist-
ing of a finite set { }1, , AA =   of DLHAs and a finite set { }1, ,q q=   of
queues.

R. Yanase et al.

457

3.2. Semantics of DRS

A state s of a DRS (),A=  is a tuple , wσ  , where
• 1 Aσ ∈Σ × ×Σ



 is a vector of the states of DLHAs.
• 1w M M∗ ∗∈ × ×



  is a vector of the content of the queues, where each iM is the
set of all messages that can be stored in queue iq .

Definition 6 (Time Transition of a DRS). For an arbitrary 0δ ≥∈ , the time tran-
sition is defined as

, , . .i iw w iδ δσ σ σ σ′→ ⇐∀ ⇒
   

 
Definition 7 (Discrete Transition of a DRS). Let , , wσ σ ′  

 and w′ be

()1, , Aσ σ σ=




, ()1, , Aσ σ σ′ ′ ′=




, ()1, ,w w w=


 
, and ()1, ,w w w′ ′ ′=



 
.

• For any output action !a , , ,aw wσ σ ′→
   

 

()()()! ? ?ifi a i j a j j j a j j ji j iσ σ σ σ σ σ σ σ σ′ ′ ′ ′∃ ⇒ ∧ ∀ ≠ ⇒ ∨ ¬∃ ⇒ ∧ =

An output action is broadcasted to all DLHAs, and a DLHA receiving the action
moves by synchronization if the guard condition holds in the state.
• For an internal action aτ ,

- in the case of !ka q wτ = , !, ,
kq ww wσ σ ′ ′→

  

  ,

()!if . . ł . ,
ki q w i j j k k k ki j i w w w k w wσ σ σ σ′ ′ ′ ′∃ ⇒ ∧∀ ≠ = ∧ = ∧∀ ≠ =

- while in the case of ?ka q wτ = , ?, ,
kq ww wσ σ ′ ′→

   

  ,

()?if . . . ,
ki q w i j j k k l li j i w ww l k w wσ σ σ σ′ ′ ′ ′∃ ⇒ ∧∀ ≠ = ∧ = ∧∀ ≠ =

- otherwise, , ,aw w
τ

σ σ ′→
   

  if . .i a i j ji j i
τ

σ σ σ σ′ ′∃ ⇒ ∧∀ ≠ = .
A run (or path) ρ of the system  is the following finite (or infinite) sequence

of states.
0 11
0 1 10 1: i i

i ia a a i as s sδ δ δδρ −
−

→ → → → 

where i

ia
δ→ between is and 1is + is defined as

1 1. .i
i i ii a i i i i i a is s s s s s sδ

δ+ +′ ′ ′→ ⇐ ∃ → ∧ →

The initial state 0s of a dynamically reconfigurable system is

() ()01 0 01 0, , , , ,A w wσ σ   where each 0iσ is the initial state of DLHA i and
each 0 jw is empty; that is, 0. jj w ε∀ = .

Example 1 (DLHA and DRS). A DLHA is represented by a directed graph, where
each node represents a location and each edge represents a transition. Figure 1 shows a
dynamically reconfigurable system  consisting of three DLHAs and one queue.

()1 1 1 1 1 1 1 01 1, , , , , , , ,dL V Inv Flow Act T t T=
()2 2 2 2 2 2 2 02 2, , , , , , , ,dL V Inv Flow Act T t T=
()3 3 3 3 3 3 3 03 3, , , , , , , ,dL V Inv Flow Act T t T=

{ } { }()1 2 3, , , q=   

R. Yanase et al.

458

Figure 1. Example of DRS consisting of three DLHAs and one queue.

where

{ }
{ }
{ }
{ }
{ }

{}() { }(){ }
{ }()

{}
{ }
{ }

1

1

1

1

1 3 1 3

1 3 3

01 1

1

2

2

2

,

10,

1, 0

_ ?, , !

, 10, ! , , , , , _ ?, : 0 ,

, , : 0

,

,

d

L Run Wait

V x

Inv Run x Wait true

Flow Run x Wait x

Act Dst start q

T Run x q Wait Wait true Dst x Run

t Run start x

T

L Idle Create

V y

Inv Idle true Create y

=

=

= ≤

= = =

=

= ≥ =

= =

=

=

=

= ≤

 

 
 

 

 

 

{ }
{ }
{ }

{ }() {}(){ }
{ }()

{}
{ }

2

2 3 2 3

2 3 3

02 2

2

3

0

1, 1

_ !, , ?

, , ? , : 0 , , , 0, _ !, ,

, , : 0

d

Flow Idle y Create y

Act Crt start q

T Idle true q y Create Create y Crt Idle

t Idle start y

T

L Execute

= = =

=

= = ≥

= =

=

=

 
 

 

 

R. Yanase et al.

459

{ }
{ }
{ }
{ }
{}

{ }()
(){ }

3

3

3

3 3 3

3

03 3

3 3

50

1

_ ?, _ !

, _ ?, : 0

, 50, _ !d

V z

Inv Execute z

Flow Execute z

Act Crt Dst

T

t Execute Crt z

T Execute z Dst

=

= ≤

= =

=

=

= =

= ≥






 





This system runs as follows:
1) 1 requires 3 to be created from 2 by enqueueing a message, and it waits

for the message to return from 3 .
2) When 2 receives the message, it creates 3 .
3) After 3 finishes processing the job, it sends the message to 1 and is destroyed.
4) This system infinitely repeats steps 1) to 3).
For example, (1) shows a run ρ of this system is shown.

() ()() ()
() ()() ()
() ()() ()
() () ()() ()
() ()() ()

3

3

3

3

10
! 3

0
?

0
_

50
_

: , 0 , , 0 , ,

, 10 , , 0 , ,

, 10 , , 0 ,),

, 10 , , 0 , , 0 ,

, 0 , , 0 , ,

q

q

Crt

Dst

Run x Idle y

Wait x Idle y

Wait x Create y

Wait x Idle y Execute z

Run x Idle y

ρ ε

ε

ε

ε

= = ⊥

→ = = ⊥

→ = = ⊥

→ = = =

→ = = ⊥

→











 (1)

4. Reachability Analysis
4.1. Reachability Problem

We define reachability and the reachability problem for a DRS as follows:
Definition 8 (Reachability). For a DRS (),A=  and a location tl ,  reaches

tl if there exists a path such that
0 1
0 10

t
ta a ts sδ δ −
−

→ →

() ()1, , , , . ,t k tAs w k loc lσ σ σ∧ = ∃ =


 
where

() ()()
() ()

,

undefined

l l
loc

σ ν
σ

σ

 == 
⊥ = ⊥

Definition 9 (Reachability Problem). Given a DRS (),A=  and a location tl ,
we output “yes” if  can reach tl , and “no” otherwise.

4.2. Reachability Analysis
4.2.1. Convex Polyhedra
Our method introduces convex polyhedra for the reachability analysis in accordance

R. Yanase et al.

460

with [15].
A polyhedron is convex if it can be defined by a formula which is a conjunction of

linear formulae. For a set { }1, , nV x x=  of variables, a convex polyhedron ζ on V
is a n-dimensional real space. In particular, we define true and false as ntrue =  and
false = ∅ .

Example 2 (Convex Polyhedron). The formula 1 1 2 1 2. 5 1 1x x x x x true∃ ≥ ∧ ≤ ∧ − = ∧
is a convex polyhedron. From linear formula, the existential quantifier can be elimi-
nated effectively. Therefore, we obtain

1 1 2 1 2

1 1 2 1 2

2 2

. 5 1 1
. 5 1 1

1 4
.

x x x x x true
x x x x x

x x
false

∃ ≥ ∧ ≤ ∧ − = ∧
= ∃ ≥ ∧ ≤ ∧ − =
= ≤ ∧ ≥
=

4.2.2. Algorithm of Reachability Analysis
We define a state s in the reachability analysis as (), ,L wζ 

 , where
• L is a finite set of locations.
• ζ is a convex polyhedron.
• w is a vector of the content of the queues.

Figure 2, Figure 3 and Figure 4 show the algorithm of the reachability analysis.
Figure 2 is an overview of the reachability analysis, and this algorithm is performed

using the expanded method of [16] with a set  of queues. The analysis is performed
as follows:

1. Compute an initial state 0s of the system  (ll.1-3).
2. Initialize a traversed set Visit and a untraversed set Wait of states by ∅ and

{ }0s (line 4).
3. While Wait is not empty, repeat the following process (ll.5-16).
(a) Take a state (), ,L wζ 

 from Wait and remove the state from Wait (ll.6-7).

Figure 2. Reachability analysis.

R. Yanase et al.

461

Figure 3. Subroutine Succ.

(b) If the set L of locations contains the target location, return “yes” and terminate

(ll.8-10).
(c) If the state has not been traversed yet ((), ,L w Visitζ ∈/



) (line 11),
i. add the state into Visit (line 12),
ii. compute the set postS of successors by using the subroutine Succ (line 13), and
iii. add all components of postS to Wait (line 14).
Subroutine Succ Figure 3 shows the subroutine Succ to compute the successors of

a state. In this algorithm, we make the following assumptions.

() { } { }()1 1, , , , , , ,AA q q= =      

1
,

A

s k
k

Inv Inv
=

=


where

()0, , , , , , , is a DLHA,i i i i i i i i d iL V Inv Flow Act T t T=
()0 0 0 0, , .i i i it l a λ=

R. Yanase et al.

462

Figure 4. Subroutine Syncs.

Let the initial state of  be ()01 0 0, , A wσ σ 

  ; 0s is ()0 0 0, ,L wζ 

 , where

() ()()
()

,
zone

,

l

true

ν σ ν
σ

σ

 == 
= ⊥

() { }{ }0 0 0loc | , 1, , ,i iL i Aσ σ= ≠ ⊥ ∈ 

()0 0
0
zone .

A

i
i

ζ σ
=

= ∧

Here, ()zone σ is a function that assigns a convex polyhedron to each state.
()Tsucc ,L ζ is a function that returns a convex polyhedron after performing a time

transition on a given set L of locations and a convex polyhedron ζ (line 4). We define
this function in accordance with [15] as follows:

Let the set of all variables in the system and their derivatives be

{ }1
1

, ,
A

s k n
k

V V x x
=

= = 



 and { }1, ,s nV x x=  
 .

() 1 0 1Tsucc , , , . . , , .n s n sL x x V x x Vζ δ ≥= ∃ ∈ ∃ ∈ ∃ ∈ 

 
 

R. Yanase et al.

463

() and rename as ,
sx V

Flow L x x x x xζ δ
∈

′ ′∧ ∧ = +∧ 

where

1
,

A

s k
k

Flow Flow
=

=


().s

l L
Flow Flow l

∈
= ∧

For a convex polyhedron ζ and a set λ of update expressions, []ζ λ denotes

the convex polyhedron updated by λ for ζ . Let the set of reset variables and set of
shifted variables be { } { }1| : , ,r r r mV x x c x xλ= = ∈ =  and

{ } { }1| : , ,a a anV x x x c x xλ= = + ∈ =  . []ζ λ can be computed as

[] () ()1, , . ,
r

r r m r a r
x V

x x V x m xζ λ ζ
∈

= ∃ ∈ ∧ =∧

where

{ }| : ,rm x c x c λ= = ∈
{ }| : ,am x c x x c λ= = + ∈

()

1, , .

and rename variables as .
a

a a an a
x V

a

x x V x

x m x x x

ζ ζ
∈

′= ∃ ∈ ∧

′= +

∧

Given a state (), ,L wζ 

 and a system, the successors are computed using the pro-
cedure described below.

1. For each transition (), , , ,l a lφ λ ′ (or destruction-transition (), , !ll aφ) outgoing
from a location l L∈ , the set postS of post states is computed as follows (ll.5-31):

(a) Compute the convex polyhedron for the time transition (line 4).

() ()Tsucc , .
p

s p
l L

L Inv lδζ ζ
∈

= ∧ ∧

(b) If a is an internal action, postS is computed as follows:
i. Compute the set of locations (line 8)

{ }() { }\ .L L l l′ ′= ∪

ii. Compute the convex polyhedron for the discrete transition (line 9)

()[] ().
p

s p
l L

Inv lζ ζ φ λ
′ ′∈

′ ′= ∧ ∧ ∧

iii. If a is an enqueue action !kq w (ll.11-15),

(){ } ()
()

, ,

otherwise ,
post

L w false
S

ζ ζ ′ ′ ′ ′ ≠= 
∅





where

()1 1 1, , , , , , .k k kw w w w w w w− +′ = ⋅


  
iv. If a is a dequeue action ?kq w (ll.16-20),

R. Yanase et al.

464

(){ } ()
()

, , , , .

otherwise .
k k j j

post

L w false w w w j k w w
S

ζ ζ ′ ′ ′ ′ ′ ′= = ⋅ ∀ = =/ /= 
∅





v. If a is another internal action (line 22),

(){ } ()
()

, ,

otherwise .
post

L w false
S

ζ ζ ′ ′ ′ ≠= 
∅





(c) If a is an output action !la , postS is computed with the subroutine Syncs (line 26

and 29).
(d) If a is an input action, postS = ∅ .
Subroutine Syncs Figure 4 shows the subroutine Syncs of Succ to compute succes-

sors by using the transition that has an output action. Given a state (), ,L wζ 

 , a tran-
sition (or destruction-transition) (), , !, ,s g lt l a lφ λ ′= , and a system (),A=  , a set

postS of successors is computed as follows:
1. Initialize postS as ∅ (line 1).
2. Compute a convex polyhedron δζ for the time transition (line 2).

() ()Tsucc , .
p

s p
l L

L Inv lδζ ζ
∈

= ∧ ∧

3. For each i in the system  , compute the set siT of transitions that are out-
going from the state by using an input action ?la (ll.3-5),

() { }(){ }, , ?, , | \ .si i i l i i i iT l a l T l L lφ λ ′= ∈ ∈

4. Compute the set ∆ of combinations of siT (line 6).

{ }{ }| , 1, , .si siT T i A∆ = ≠ ∅ ∈∏ 

5. For each combination ()1, , nT t t= ∈∆ , the successor (), ,T TL wζ′ ′  is com-

puted as follows (ll.7-29):
(a) Compute the set syncT of transitions (line 9).

{ }1max , ,sync nT t t
′∆

′= ∆ ⊆ 

(){ }1 2s.t. | , , ?, , .s s l sl a l falseδζ φ φ φ λ ′∧ ∧ ∈∆ ≠∧

(b) Compute the set TL′ of locations (ll.9-14, line 21).

()\ ,T pre postL L L L′ = ∪

where

(){ }1 1 2| , , ?, , ,sync s l s syncL l l a l Tφ λ= ∈

(){ }2 2 2| , , ?, , ,sync s l s syncL l l a l Tφ λ′ = ∈

{ }pre syncL l L= ∪

{ } ()
()

{ } ()

0, _ ,

_

otherwise .

j sync l j j

post sync l j

sync

l l L a Crt L L

L L a Dst

l L

 ′ ′∪ = ∩ = ∅
 ′= =
 ′ ′∪





R. Yanase et al.

465

(c) Compute the update expression syncλ (ll.9-14).

()
()
()

0 _ ,

_

otherwise ,

j in l j j

sync in l j

in

a Crt L L

a Dst

λ λ λ

λ λ

λ λ

 ∪ ∪ = ∩ = ∅
= =
 ∪





where

(){ }1 2| , , ?, , .in s s l s syncl a l Tλ λ φ λ= ∈


(d) Compute the conjunction of guard conditions (ll.9-14).

(){ }1 2| , , ?, , .sync s s l s syncl a l Tφ φ φ φ λ= ∧ ∈∧

(e) Compute the convex polyhedron Tζ ′ (ll.22-24).

()
()

1, , . _

otherwise ,
jj j j l jV

T

x x V a Dstζ
ζ

ζ

 ′∃ ∈ =′ = 
′

 

where

() ().
p

sync sync s p
l L

Inv lδζ ζ φ λ
′ ′∈

′ ′ = ∧ ∧  ∧

(f) If falseTζ ′ ≠ , the successor is added to postS (ll.26-27).
The correctness of this algorithm is implied by Lemma 1 and Lemma 2.
Lemma 1. If the algorithm terminates and returns “ tl is not reachable”, the system

 has the safety property.
Lemma 2. If this algorithm terminates and returns “ tl is reachable”, the system 

does not hold the safety property.
By definition, all linear hybrid automata are DLHAs. Our system dynamically

changes its structure by sending and receiving messages. However, the messages stati-
cally determine the structure, and the system is a linear hybrid automaton with a set of
queues. It is basically equivalent to the reachability analysis of a linear hybrid automa-
ton. Therefore, the reachability problem of DRSs is undecidable, and this algorithm
might not terminate [16].

Moreover, in some cases, a system will run into an abnormal state in which the length
of a queue becomes infinitely long, and the verification procedure does not terminate.

5. Practical Experiment
5.1. Model Checker

We implemented a model checker of DRSs consisting of DLHAs in Java (about 1600
lines of code) by using the LAS, PPL, and QDD external libraries [12] [17]-[19]. For the
verification, we input the DLHAs of the system, a monitor automaton, and the error
location to the model checker, and it output “yes (reachable)” or “no (unreachable)”
(Figure 5). The monitor automaton had a special location (we call it the error location),
and checked the system without changing the system’s behavior [15]. The monitor au-
tomata had to be specified to reach the error location if the system didn’t satisfy the

R. Yanase et al.

466

properties.
For the specification of the input model, we extended the syntax and semantics of

DLHA as follows:
• A transition between locations can have a label asap (that means “as soon as possi-

ble”). For a transition labeled asap, a time transition does not occur just before the
discrete transition.

• Each DLHA can have constraints and update expressions for the variables of anoth-
er DLHA in the same system. That is, for each DLHA, invariants, guard conditions,
update expressions and flow conditions can be used by all DLHAs.

For example, Figure 6 shows the input file for checking whether the system in Fig-
ure 1 reaches the location Execute.

Figure 5. Model checker for DRSs.

Figure 6. Example input file: description for checking the reachability of the system in Figure 1.

R. Yanase et al.

467

5.2. Specification of Dynamically Reconfigurable Embedded System
5.2.1. A Cooperative System Including CPU and DRP
We have specified a dynamically reconfigurable embedded system consisting of a CPU
and DRP for the model described in our previous research [9]. A DRP is a processor
that can execute exclusive processes at the same time by dynamically changing the cir-
cuit configuration, and it is used to accelerate CPU computations, for example, in im-
age processing and cipher processing. A DRP has computation resources called tiles (or
processing elements), and it dynamically sets the context of a process if there are
enough free tiles. In addition, a DRP can change the operating frequency in accordance
with running processes. In this paper, we assume that the number of tiles and the oper-
ating frequency for each process have been set in advance and that the operating fre-
quency of the DRP is always the minimum frequency of the running co-tasks.

Figure 7 shows an overview of the system. This system processes jobs submitted
from the external environment through the cooperative operation of the CPU and
DRP. The CPU Dispatcher creates a task when it receives a call message of the task
from the external environment. When a task on the CPU uses the DRP, The CPU Dis-
patcher sends a message to the DRP Dispatcher. The DRP Dispatcher receives the mes-
sage asynchronously and creates a co-task (it means “cooperative task”) in a first-come,
first-served manner if there are enough free tiles. Here, we will assume that this system
has two tasks and two co-tasks that have the parameters shown in Table 1 & Table 2.

The system, whose components are illustrated in Figure 8, consists of 11 DLHAs and
1 queue. We show part of the state-transition diagram in Figure 9. The external envi-
ronment consists of EnvA (Figure 10) and EnvB (Figure 11) that periodically create

Figure 7. Overview of the CPU-DRP embedded system.

Table 1. Parameters of tasks.

Task Period Deadline Priority Process

A 70 ms 70 ms high 20 ms, co-task a0,

 10 ms, co-task b0

B 200 ms 200 ms low co-task a1, 97 ms

R. Yanase et al.

468

Table 2. Parameters of co-tasks.

co-task Processing time Deadline Tiles Rate of Frequency

a0, a1 10 ms 15 ms 2 1

b0 5 ms 10 ms 6 1/2

Figure 8. Components of the system.

Figure 9. State-transition diagram of the system.

R. Yanase et al.

469

Figure 10. External environment: EnvA.

Figure 11. External environment: EnvB.

Figure 12. Task: TaskA.

TaskA (Figure 12) and TaskB (Figure 13). That is, EnvA uses Crt_taskA! to create
TaskA every 70 milliseconds, and EnvB uses Crt_taskB! to create TaskB with every 200

R. Yanase et al.

470

milliseconds. The Scheduler (Figure 14) performs scheduling in accordance with the
priority and actions for creation and destruction of DLHAs. For example, when TaskA
is created by EnvA with Crt_taskA! and TaskB is already running, The Scheduler rece-
ives Crt_taskA? from EnvA and sends Act_Preempt! to TaskA and TaskB. Then,
Act_Preempt! causes TaskA to move to RunA and TaskB to move to WaitB.

TaskA and TaskB send a message to The Sender if they need a co-task. The Sender
(Figure 15) enqueues the message to create a co-task to q when it receives a message
from tasks. When TaskA sends Act_Create_a0! and moves to RunA from WaitA, The
Sender receives Act_Create_a0? and enqueues cotask_a0 in q with q! cotask_a0.

The DRP_Dispatcher (Figure 16) dequeues a message and creates cotask_a0 (Figure
17), cotask_a1 (Figure 18), and cotask_b0 (Figure 19) if there are enough free tiles.
The Frequency_Manager (Figure 20) is a module that manages the operating frequency
of the DRP. When a DLHA of a co-task is created, The Frequency_Manager moves to
the location that sets the frequency to the minimum value.

5.2.2. Other Cases
We have the parameters of the model in subsection 5.2.1 and conducted experiments
with it.
• Modified Tasks: We modified the parameters of the tasks on the CPU as shown in

Table 3. Here, the parameters of the co-tasks are the same as those in Table 2.
• Modified co-tasks: We modified the parameters of the co-tasks on the DRP, as

shown in Table 4. The parameters of the tasks are the same as those in Table 1.

Figure 13. Task: TaskB.

R. Yanase et al.

471

Figure 14. CPU Scheduler: Scheduler.

Figure 15. Message sender to DRP: Sender.

Figure 16. DRP_Dispatcher.

Figure 17. Co-task: cotask_a0.

R. Yanase et al.

472

Figure 18. Co-task: cotask_a1.

Figure 19. Co-task: cotask_b0.

Figure 20. Frequency_Manager.

R. Yanase et al.

473

Table 3. Modified parameters of tasks.

Task Period Deadline Priority Process

A 90 ms 80 ms high 20 ms, co-task b0,

 20 ms, co-task a0

B 200 ms 150 ms low co-task a1, 70 ms

Table 4. Modified parameters of co-tasks.

co-task Processing time Deadline Tiles Rate of Frequency

a0, a1 5 ms 10 ms 4 1

b0 10 ms 20 ms 5 1/3

5.3. Verification Experiment

We verified that the embedded systems described in subsection 5.2 provide the follow-
ing properties by using monitor automata (Figures 21-25). The verification experiment
was performed on a machine with an Intel (R) Core (TM) i7-3770 (3.40 GHz) CPU and
16 GB RAM running Gentoo Linux (3.10.25-gentoo).

The experimental results shown in Table 5 indicate that the modified tasks cases and
the modified co-tasks cases were verified with less computation resources (memory and
time) than were used by the original model. This reduction is likely due to the following
reasons:
• Regarding the schedulability of the modified tasks model, the processing time is

shorter than that of the original model since the verification terminates if a counte-
rexample is found.

• In the cases of the modified co-tasks, the most obvious explanation is that the state-
space is smaller than that of the original model since the number of branches in the
search tree (i.e. nondeterministic transitions in this system) is reduced by changing
the start timings of the tasks and co-tasks with the parameters.

• In cases other than those of the modified tasks, it is considered that the state-space
is smaller than that of the original model because this system is designed to stop
processing when a task exceeds its deadline.

5.3.1. Schedulability
Here, schedulability is a property in which each task of the system finishes before its
deadline. Let AE be the total processing time and AD be the deadline in task A (Figure
13); the remaining processing time is represented as A AE e− , and the remaining time till
the deadline is represented as A AD r− . Therefore, the monitor automaton moves the error
location if the task A is created and it satisfies the condition A A A AE e D r− > − (Figure
21). In the case of Table 1, 30 70 40A A A A A A A AE e D r e r r e− > − ⇔ − > − ⇔ − > since

30AE = and 70AD = . Similarly, the condition for task B is 103B Br e− > .

5.3.2. Creation of Co-Tasks
In the embedded system, each co-task must be created before the remaining time in the

R. Yanase et al.

474

task calling it reaches its deadline. When the message _ 0create a is received from task
A, the monitor automaton starts counting time for co-task a0. If the waiting time ex-
ceeds the deadline of task A before it receives the message _ _ 0Crt cotask a , the monitor
moves to error location. Figure 22 shows The monitor automaton for the case of Table
1 for co-task a0. Monitor automata for co-tasks a1 and b0 can be similarly described.

Figure 21. Monitor automaton for checking schedulability.

Figure 22. Monitor automaton for checking creation of co-task a0.

R. Yanase et al.

475

Figure 23. Monitor automaton for checking destruction of co-task a0.

Figure 24. Monitor automaton for checking frequency management.

Figure 25. Monitor automaton for checking tile management.

5.3.3. Destruction of Co-Tasks
Each co-task must be destroyed before the waiting time reaches its deadline. For the
co-task a0, when the message _ _ 0Crt cotask a is received from the dispatcher DRP_
Dispatcher, the monitor automaton checks the message _ _ 0Dst cotask a . Figure 23
shows the monitor automaton for the case of Table 2.

5.3.4. Frequency Management
Creating or destroying a co-task, the DRP changes the operating frequency corres-
ponding to the co-tasks being processed. Since this system requires that the frequency
is always at the minimum value, the monitor checks whether the frequency manager
(Frequency_Manager) moves to the correct location when it receives a message for
creating a co-task. For example, when co-task a0 and co-task b0 are running on the
DRP, Frequency_Manager must be at location _ _L Freq b . Figure 24 show the moni-
tor automaton for the case of Table 2.

R. Yanase et al.

476

Table 5. Experimental results.

Model Property Satisfiability
Memory

[MB]
Time
[sec]

The number
of states

Original: Schedulability yes 168 180 1220

Creation of co-tasks yes 92 315 1220

Destruction of co-tasks yes 154 233 1220

Frequency Management yes 173 265 1220

Tile Management yes 167 234 1220

Modified tasks: Schedulability no 105 10.2 91

Creation of co-tasks yes 117 145 771

Destruction of co-tasks yes 82 151 771

Frequency Management yes 197 115 771

Tile Management yes 135 107 771

Modified co-tasks: Schedulability yes 83 141 768

Creation of co-tasks yes 85 183 768

Destruction of co-tasks yes 86 191 768

Frequency Management yes 104 141 768

Tile Management yes 119 134 768

5.3.5. Tile Management
When the DRP receives a message for creating of a co-task and the number of free tiles
is enough to process it, the dispatcher creates the co-task. The dispatcher then updates
the number of used tiles. The monitor automaton checks whether the number tiles in
DRP_Dispatcher is always between 0 and the maximum number, 8 in this case (Figure
25).

6. Conclusion and Future Work

We proposed a dynamic linear hybrid automaton (DLHA) as a specification language
for dynamically reconfigurable systems. We also devised an algorithm for reachability
analysis and developed a model checker for verifying the system. Our future research
will focus on a more effective method of verification, for example, model checking with
CEGAR (Counterexample-guided abstraction refinement) and bounded model check-
ing based on SMT (Satisfiability modulo theories) [20] [21].

References
[1] Agirre, A., Parra, J., Armentia, A., Estévez, E. and Marcos, M. (2016) QoS Aware Middle-

ware Support for Dynamically Reconfigurable Component Based IoT Applications. Inter-
national Journal of Distributed Sensor Networks, 2016, Article ID: 2702789.
http://dx.doi.org/10.1155/2016/2702789

[2] Garcia, P., Compton, K., Schulte, M., Blem, E. and Fu, W. (2006) An Overview of Reconfi-
gurable Hardware in Embedded Systems. EURASIP Journal on Embedded Systems, 2006

http://dx.doi.org/10.1155/2016/2702789

R. Yanase et al.

477

Article ID: 056320. http://dx.doi.org/10.1186/1687-3963-2006-056320

[3] Lockwood, J.W., Moscola, J., Kulig, M., Reddick, D. and Brooks, T. (2003) Internet Worm
and Virus Protection in Dynamically Reconfigurable Hardware. International Conferences
on Military and Aerospace Programmable Logic Device (MAPLD), Washington DC, 9-11
September 2003, E10.

[4] Motomura, M., Fujii, T., Furuta, K., Anjo, K., Yabe, Y., Togawa, K., Yamada, J., Izawa, Y.
and Sasaki, R. (2005) New Generation Microprocessor Architecture (2) Dynamically Re-
configurable Processor (DRP). IPSJ Magazine, 46, 1259-1265.

[5] Amano, H., Adachi, Y., Tsutsumi, S., Ishikawa, K., et al. (2006) A Context Dependent Clock
Control Mechanism for Dynamically Reconfigurable Processors. International Conference
on Field Programmable Logic and Applications, 104, 575-580.
http://dx.doi.org/10.1109/fpl.2006.311269

[6] Vatankhahghadim, A., Song, W. and Sheikholeslami, A. (2015) A Variation-Tolerant
MRAM-Backed-SRAM Cell for a Nonvolatile Dynamically Reconfigurable FPGA. IEEE
Transactions on Circuits and Systems II: Express Briefs, 62, 573-577.
http://dx.doi.org/10.1109/TCSII.2015.2407711

[7] Alur, R., Courcoubetis, C., Henzinger, T.A. and Ho, P. (1993) Hybrid Automata: An Algo-
rithmic Approach to the Specification and Verification of Hybrid Systems. Lecture Notes in
Computer Science, 736, 209-229. http://dx.doi.org/10.1007/3-540-57318-6_30

[8] Varshavsky, V. and Marakhovsky, V. (2002) GALA (Globally Asynchronous-Locally Arbi-
trary) Design. Lecture Notes in Computer Science, 2549, 61-107.
http://dx.doi.org/10.1007/3-540-36190-1_3

[9] Minami, S., Takinai, S., Sekoguchi, S., Nakai, Y. and Yamane, S. (2011) Modeling, Specifi-
cation and Model Checking of Dynamically Reconfigurable Processors. Computer Software,
28, 190-216.

[10] Attie, P.C. and Lynch, N.A. (2001) Dynamic Input/Output Automata, a Formal Model for
Dynamic Systems. Proceedings of the 20th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2154, 314-316. http://dx.doi.org/10.1145/383962.384051

[11] Yamada, H., Nakai, Y. and Yamane, S. (2013) Proposal of Specification Language and Veri-
fication Experiment for Dynamically Reconfigurable System. Information Processing So-
ciety of Japan, 6, 1-19.

[12] Boigelot, B. and Godefroid, P. (1999) Symbolic Verification of Communication Protocols
with Infinite State Spaces Using QDDs. Formal Methods in System Design, 14, 237-255.
http://dx.doi.org/10.1023/A:1008719024240

[13] Bouajjani, A., Esparza, J. and Maler, O. (1997) Reachability Analysis of Pushdown Auto-
mata: Application to Model Checking. Lecture Notes in Computer Science, 1243, 135-150.
http://dx.doi.org/10.1007/3-540-63141-0_10

[14] Bouajjani, A. and Habermehl, P. (1997) Symbolic Reachability Analysis of FIFO-Channel
Systems with Nonregular Sets of Configurations. Lecture Notes in Computer Science, 1256,
560-570. http://dx.doi.org/10.1007/3-540-63165-8_211

[15] Henzinger, T.A., Ho, P. and Wong-Toi, H. (1997) HyTech: A Model Checker for Hybrid
Systems. 9th International Conference on Computer Aided Verification, Haifa, 22–25 June
1997, 460-463. http://dx.doi.org/10.1007/3-540-63166-6_48

[16] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A.,
Sifakis, J. and Yovine, S. (1995) The Algorithmic Analysis of Hybrid Systems. Theoretical
Computer Science, 138, 3-34. http://dx.doi.org/10.1016/0304-3975(94)00202-T

[17] Ono, Y. and Yamane, S. (2011) Computation of Quantifier Elimination of Linear Inequli-

http://dx.doi.org/10.1186/1687-3963-2006-056320
http://dx.doi.org/10.1109/fpl.2006.311269
http://dx.doi.org/10.1109/TCSII.2015.2407711
http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/3-540-36190-1_3
http://dx.doi.org/10.1145/383962.384051
http://dx.doi.org/10.1023/A:1008719024240
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63165-8_211
http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1016/0304-3975(94)00202-T

R. Yanase et al.

478

ties of First Order Predicate Logic. Ieice Technical Report Theoretical Foundations of
Computing, 111, 55-59.

[18] Bagnara, R., Hill, P.M. and Zaffanella, E. (2008) The Parma Polyhedra Library: Toward a
Complete set of Numerical Abstractions for the Analysis and Verification of Hardware and
Software Systems. Science of Computer Programming, 72, 3-21.
http://dx.doi.org/10.1016/j.scico.2007.08.001

[19] Boigelot, B., Godefroid, P., Willems, B. and Wolper, P. (1997) The Power of QDDs (Ex-
tended Abstract). Proceedings of the 4th International Symposium on Static Analysis, Paris,
8-10 September 1997, 172-186.

[20] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. (2000) Counterexample-Guided
Abstraction Refinement. Proceedings of the 12th International Conference on Computer
Aided Verification, 1855, 154-169. http://dx.doi.org/10.1007/10722167_15

[21] Nieuwenhuis, R., Oliveras, A. and Tinelli, C. (2005) Abstract DPLL and Abstract DPLL
Modulo Theories. International Conferences on Logic for Programming, Artificial Intelli-
gence and Reasoning, 3452, 36-50. http://dx.doi.org/10.1007/978-3-540-32275-7_3

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-540-32275-7_3
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Specification and Verification of Dynamically Reconfigurable Systems Using Dynamic Linear Hybrid Automata
	Abstract
	Keywords
	1. Introduction
	1.1. Our Proposal
	1.1.1. Specification
	1.1.2. Verification Method
	1.1.3. Experiments on Verifying Dynamically Reconfigurable Systems

	1.2. Related Work

	2. Dynamic Linear Hybrid Automaton
	2.1. Preliminaries
	2.2. Syntax
	2.3. Operational Semantics

	3. Dynamically Reconfigurable Systems
	3.1. Syntax of DRS
	3.2. Semantics of DRS

	4. Reachability Analysis
	4.1. Reachability Problem
	4.2. Reachability Analysis
	4.2.1. Convex Polyhedra
	4.2.2. Algorithm of Reachability Analysis

	5. Practical Experiment
	5.1. Model Checker
	5.2. Specification of Dynamically Reconfigurable Embedded System
	5.2.1. A Cooperative System Including CPU and DRP
	5.2.2. Other Cases

	5.3. Verification Experiment
	5.3.1. Schedulability
	5.3.2. Creation of Co-Tasks
	5.3.3. Destruction of Co-Tasks
	5.3.4. Frequency Management
	5.3.5. Tile Management

	6. Conclusion and Future Work
	References

