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Abstract 
This paper describes the effect of the composition of the oxide films on the proper-
ties of electrodes Ti/MxTiySnzO2 (M = Ir or Ru) prepared by the polymeric precursor 
method. XRD studies showed that the anodes are formed by solid solutions. The 
electrodes containing IrO2 exhibit lower activity for the oxygen evolution reaction. 
The doping of the electrode surface with SnO2 improves the catalytic properties of 
the anodes. However, it should be held in appropriate compositions, because the 
change in the atomic ratio of this element shows a marked effect on the stability of 
the oxides. Electrode Ti/Ir0.2Ti0.3Sn0.5O2 has lower lifetime, i.e. 6 hours. The 20% de-
crease in the stoichiometric amount of SnO2 increases the time to a value above 70 
hours, as observed for Ti/Ir0.3Ti0.4Sn0.3O2. Electrode Ti/Ru0.3Ti0.4Sn0.3O2 shows lifetime 
of 11 hours; therefore IrO2 is more stable than RuO2 under the conditions investi-
gated. These results suggest that electrode Ti/Ir0.3Ti0.4Sn0.3O2 is promising for differ-
ent applications, such as water electrolysis, capacitors and organic electrosynthesis. 
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1. Introduction 

Oxide electrodes have been technologically important since the discovery of dimensio-
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nally stable anodes (DSA®) by Beer [1] and their applications in chlor-alkali industries. 
These electrodes constitute a mixture of oxides frequently prepared by standard ther-
mal decomposition (SD) of metallic precursor salts in aqueous or alcohol solution, 
supported by metallic titanium [2]. 

The electro-catalytic properties of metal oxides are associated with electronic and 
geometric factors [3]. The electronic factor is related to the chemical composition of the 
film, hence the physico-chemical properties of the constituent oxides, affecting the ad-
hesion strength surface/intermediate. The geometric factor is directly related to the 
morphology of the film. 

Research has been conducted to find new materials and procedures to improve the 
performance of DSA, for example, thermal decompositon of iridium and/or ruthenium 
precursor salts [4] [5], thermal decomposition of hydroxo-aceto-chloro-based precur-
sors [6], Ti/TiO2 nanotubes prepared by anodization method [7] spin coating deposi-
tion technique [8]. The total or partial deactivation of thin films prepared by SD can be 
observed when they operate under drastic conditions and in a short period of time [4] 
[9] [10]. Electrodes as Ti/RuO2 and Ti/IrO2, prepared by the decomposition of poly-
meric precursors (Pechini method) [11], have shown better electrochemical activity, i.e. 
longer life and higher active area than those prepared by the method of chlorides 
[12]-[14]. Moreover, the chemical or mechanical stability of oxide electrodes can be 
enhanced by incorporating/doping other metal ions into the films [3]. 

The polymeric precursor method consists in the formation of chelates between metal 
cations and carboxylic acid and subsequent polymerization by a polyesterification reac-
tion with polyalcohol [15]. The central idea is to distribute the cations throughout the 
polymeric structure. Heat treatment causes the release of organic matter and the forma-
tion of crystallites duly ordained [16]. This result is particularly interesting when the 
aims are to obtain materials with high crystallinity and controlled distribution of the 
constituents in the crystalline lattice. 

This study investigates the morphological and electrochemical properties of oxide 
electrodes Ti/Ir0.3Ti0.4Sn0.3O2; Ti/Ir0.2Ti0.3Sn0.5O2 and Ti/Ru0.3Ti0.4Sn0.3O2 prepared by the 
thermal decomposition of polymeric precursors. 

2. Experimental 
2.1. Preparation of Electrodes 

Thin film electrodes of nominal compositions Ir0.3Ti0.4Sn0.3O2, Ir0.2Ti0.3Sn0.5O2 and 
Ru0.3Ti0.4Sn0.3O2 were prepared by the thermal decomposition of a polymeric precursor 
solution (DPP) [11]. This method consists in synthesizing resins of metallic precursors 
by mixing citric acid (CA) in ethylene glycol (EG). The Ru, Ir, Sn, and Ti resins were 
prepared separately. First, 8 g of citric acid (Merk) were dissolved in 9 mL ethylene 
glycol (Merk) at 60˚C - 65˚C. After the dissolution of the acid, a solution of the precur-
sor metal in isopropanol with 0.1 mol∙L−1 concentration (RuCl3∙xH2O, IrCl3∙xH2O, 
TiCl2∙6H2O all purchased from Aldrich and C6H5O7Sn2 synthesized from SnCl2 (Al-
drich), as described in [17]), was added to the CA/EG solution. The temperature was 
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then raised up to 85˚C - 90˚C and the solution under was kept under rigorous stirring 
(300 rpm) for 1 - 2 hours for esterification and total isopropanol evaporation. 

The precursor solutions were deposited on both sides of the pretreated metallic tita-
nium (2.5 × 2.5 cm) by brushing, as described in the literature [12]. After the applica-
tion of the coating, the electrodes were dried at 130˚C for 5 minutes and then calcined 
at 450˚C for 5 minutes. This procedure was repeated until the desired mass (125 
mg∙cm−2) had been achieved. The layers were finally annealed at 450˚C for 1 hour un-
der air flow. 

2.2. Morphological and Electrochemical Characterizations 

This measurement and others are deliberate, using specifications that anticipate your 
paper as one part of the entire journals, and not as an independent document. Please do 
not revise any of the current designations. The crystalline structures were physically 
characterized by X-ray diffraction (XRD) using an XRD-6000 diffractometer (Shimad-
zu) with a CuKα radiation source (λ = 1.5406 Å) operating in the continuous scan 
mode (4˚ min−1) from 10˚ to 90˚. 

The surface morphology and microstructure of the deposited oxide films were ana-
lyzed through optical microscopy and scanning electron microscopy (SEM). Photomi-
crographs were obtained by a Zeiss LEO model 440 SEM coupled to an OXFORD oper-
ating with electron beam of 15 kV. The average composition was analyzed by PGT 
PRISM energy dispersive X-ray spectrometer (EDX) coupled to the SEM instrument. 

2.3. Electrochemical Measurements 

Electrochemical experiments were conducted with AUTOLAB model PGSTAT30 in-
strumentation. Voltammetric curves were recorded at scan rate of 50 mV∙s−1 using 0.5 
mol∙dm−3 of H2SO4 as the supporting electrolyte. A platinum foil served as the auxiliary 
electrode and the KCl saturated calomel electrode (SCE) was used as the reference. The 
cell was thermostated at 25˚C. 

Impedance spectra were recorded at constant potential between 0.3 and 1.4 V vs Ag/ 
AgCl. Electrochemical impedance spectroscopy (EIS) measurements were obtained in 
the 5 mHz - 10 kHz frequency interval using the “single sine” method and a sine wave 
amplitude of 5 mV (p/p). An AUTOLAB software program (FRA analyzer) was used 
for the analysis of the impedance data.  

The stability of the electrodes was assessed based on their lifetime (LT) under galva-
nostatic conditions at a high current density (400 mA∙cm−2) in 0.5 mol∙dm−3 of H2SO4. 
The electrode lifetime was considered the time necessary for the electrode potential to 
achieve a value of 8.0 V. 

3. Results and Discussion 
3.1. Morphological and Chemical Characterizations 

Figure 1 shows the XRD patterns for different compositions of electrodes prepared at 
450˚C. In the electrodes containing iridium, characteristic diffraction peaks were  
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Figure 1. XRD patterns obtained for the oxide electrodes with different 
nominal compositions (a) Ti/Ir0.3Ti0.4Sn0.3O2; (b) Ti/Ir0.2Ti0.3Sn0.5O2; (c) 
Ti/Ru0.3Ti0.4Sn0.3O2. 

 
observed and attributed to IrO2, according to JCPDS PDF #15-0870. Ti/Ru0.3Ti0.4Sn0.3O2 
showed two peaks, one at 2θ = 43.7˚ and another at 2θ = 53.6˚, which correspond to 
RuO2 JCPDS PDF #40-1290. However, by comparing the positions of the peaks in the 
XRD obtained with the respective pure oxide, it is possible to observe that Sn-rich elec-
trode composition displays peaks shifted toward the pure SnO2 pattern JCPDS PDF 
#46-1088, indicating that Ir and/or Ti atoms may be incorporated into the SnO2 crystal-
line reticule. The opposite trend is observed for Ru-electrode composition, which have 
their peaks shifted toward the pure RuO2 pattern due to the incorporation of Sn and/or 
Ti atoms into the RuO2 crystalline reticule. All samples displayed typical crystalline 
characteristics of tetragonal, with space group P42/nm. All those evidences suggesting 
the formation of a saturated solid solution for all the compositions investigated, one for 
Ir/Ti/Sn and other for Ru/Ti/Sn compositions. The XRD patterns show that all mate-
rials synthesized contained the Ti phase attributed to the Ti metallic subtract. 

The average crystallite sizes of the oxide particles were estimated by the Debye- 
Scherrer equation [18] at crystalline planes ((210): 2θ = 43.7˚) for Ti/Ru0.3Ti0.4Sn0.3O2, 
and ((101): 2θ = 34.5˚) for Ti/Ir0.2Ti0.3Sn0.5O2 and Ti/Ir0.3Ti0.4Sn0.3O2. The values obtained 
were approximately 4 and 5 nm, respectively. 

The roughness of the oxides Table 1 was estimated from the optical microscopy 
analyses Figure 2 performed in random areas of the film (average of five analyses). The 
electrode with nominal composition of Ti/Ru0.3Ti0.4Sn0.3O2 showed the lowest rough-
ness, which suggests that the morphology of the oxide layers is highly dependent on the 
physicochemical properties of the oxides and the nature of the precursors. 

Figure 3 shows some representative SEM images of the oxide films. Films containing  
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Table 1. Roughness estimated for the oxide films prepared by the polymeric precursor method. 

 Roughness estimated (μm) 
Ti/Ir0.3Ti0.4Sn0.3O2 13.9 
Ti/Ir0.2Ti0.3Sn0.5O2 12.6 
Ti/Ru0.3Ti0.4Sn0.3O2 8.3 

 

 
Figure 2. Optical microscopy of the oxide electrodes, original magnification 350× (a) 
Ti/Ir0.3Ti0.4Sn0.3O2; (b) Ti/Ir0.2Ti0.3Sn0.5O2; (c) Ti/Ru0.3Ti0.4Sn0.3O2. Beside each picture is displayed 
the scale in μm. 
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Figure 3. SEM surface image of the oxide electrodes, original magnification 
4000× (a) Ti/Ir0.3Ti0.4Sn0.3O2; (b) Ti/Ir0.2Ti0.3Sn0.5O2; (c) Ti/Ru0.3Ti0.4Sn0.3O2. 

 
IrO2 (a, b) show uniform and continuous structures with cracks, i.e., mud-cracked-type 
morphology which are typical of thermally prepared oxide layers [10] [12]. Moreover, 
one observe that due to the increase in the amount of SnO2 in the electrode composi-
tion, cracks become larger (b), however the surface becomes less rough (see Table 1). 
However, the SEM image of the films containing RuO2 (c) indicate a distinct morphol-
ogy, and in this case, the morphology change severally where the amount of fissures 
and cracks increase. The oxide surface morphology shows a clear relationship with the 
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coating compositions investigated. 
Table 2 shows the EDX analyses of the micrographs Figure 3. The EDX analysis of 

the electrodes indicated a good correlation between experimental and nominal compo-
sitions. The control of the composition of the films can be explained by the method 
used, since this polymer is formed before the calcination and the metal atoms are 
trapped in the matrix, which hinders its evaporation and consequent loss. All electrodes 
exhibited a homogenous distribution of particles on the electrode surface. 

3.2. Electrochemical Characterizations 

Figure 4 shows the j/E curve obtained in the cyclic voltammetric experiments. This 
profile is typical of thermally prepared oxide layer electrodes [19] [20] and characteris-
tic of DSA® electrodes [21]. The figure also shows a blurred peak at around 0.5 V asso-
ciated with the Ru (III)/Ru(IV) redox transition [22] for the Ti/Ru0.3Ti0.4Sn0.3O2 elec-
trode. The voltammograms of the electrodes containing IrO2 showed a peak typical of 
the Ir(III)/Ir (IV) transition in the region between 0.4 and 0.8 V [6].  

The oxygen evolution reaction occurs at a more positive potential for the electrode 
containing the largest amount of SnO2. According to Fukunaga et al. [23], the doping of 
the electrode surface with SnO2 is an effective strategy to improve performance even in  
 
Table 2. Atomic ratios (%) of the oxide films with different nominal compositions. 

 Ti Ir Ru Sn 

Ti/Ir0.3Ti0.4Sn0.3O2 50.8 25.1 - 24.1 

Ti/Ir0.2Ti0.3Sn0.5O2 39.8 11.5 - 48.7 

Ti/Ru0.3Ti0.4Sn0.3O2 40.6 - 36.7 22.7 

 

 
Figure 4. Cyclic voltammograms at 50 mV·s−1 in 0.5 mol·dm−3 of H2SO4 of the oxide electrodes 
vs. SCE (a) Ti/Ir0.3Ti0.4Sn0.3O2; (b) Ti/Ir0.2Ti0.3Sn0.5O2; (c) Ti/Ru0.3Ti0.4Sn0.3O2. 
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the treatment of degradation of organic compounds thus our results are in agreement 
with previous report. 

The comparison between the electrode containing IrO2 and those containing RuO2 
shows the IrO2 exhibits lower activity for the oxygen evolution reaction. 

The impedance behavior of the electrodes was investigated to further characterize the 
different Ti/Ir0.3Ti0.4Sn0.3O2; Ti/Ir0.2Ti0.3Sn0.5O2 and Ti/Ru0.3Ti0.4Sn0.3O2 systems. The Ny-
quist diagram (Z' vs Z") of the electrodes obtained between 0.3 and 1.4 V vs Ag/AgCl is 
shown in Figure 5. In the low frequency domain, electrodes Ti/Ir0.3Ti0.4Sn0.3O2 and 
Ti/Ir0.2Ti0.3Sn0.5O2 formed a straight line parallel to Z", characteristic of an ideally pola-
rizable electrode, and a slight deviation from the straight line along Z", suggesting a 
non-ideally polarizable electrode [24] [25]. The shift from the ideal capacitor behavior 
is a consequence of the material’s porosity [24] [26]. In the low-frequency domain re-
gion a decrease in impedance was found when the applied potentials were positively 
shifted. This result suggests that the EIS responses in this domain region indicate a fa-
radaic process of the bulk redox transitions of the oxide material. The difference ob-
served between the Ir-based electrodes and Ru-based electrodes maybe could be ex-
plained due to the higher electronic conductivity in the Ru-Ti-Sn/solution than in the 
Ir-Ti-Sn/solution interfaces. 

The Bode plot (θ vs. log f) obtained at 0.3 V vs Ag/AgCl for electrodes is shown in 
Figure 6. An analysis of this figure indicates that the main feature of these electrodes is 
the appearance of a well-defined time constant (τ) for the Ti/Ru0.3Ti0.4Sn0.3O2 electrode, 
which is characterized by a maximum phase angle ranging from 1 to 100 Hz. This be-
havior can be ascribed to the large number of RuO2 transition states contributing to the 
charging system [27]. This results corroborated with the Nyquist plot interpretation 
above because the Ru-based electrode shows more pseudo capacitive behavior than the 
Ir-based electrode [10] [24]. 

The stability of the electrodes was assessed based on their lifetime, considering the 
time necessary for the electrode potential to reach 8.0 V. The electrode containing larg-
er amounts of SnO2 (Ti/Ir0.2Ti0.3Sn0.5O2) has a shorter lifetime. The 20% decrease in the 
stoichiometric amount of this oxide as well as the high amount (10%) of IrO2 (Ti/ 
Ir0.3Ti0.4Sn0.3O2) increase the time to a value above 70 hours. Comparing the electrode 
Ti/Ir0.3Ti0.4Sn0.3O2 with Ti/Ru0.3Ti0.4Sn0.3O2, IrO2 has higher stability under drastic condi-
tions of electrolysis than RuO2 (Table 3). 

The lifetime of oxide electrodes is directly correlated with two factors: passivation 
and dissolution of the coating [21]. The first factor is due to the penetration of the elec-
trolyte through the pores or cracks towards the substrate, resulting in the oxidation of 
the metallic support and forming a non-conductive layer between the substrate and the 
oxide coating [28]-[30]. The second factor involves the loss of electroactive material 
(erosion or dissolution), resulting in a gradual reduction of the voltammetric charge. 
This may occur due to the pores in the layer and the rapid evolution of gas on the sur-
face, inducing the separation of weakly bound parts of the active layer [28] [31] [32]. 

Morphological changes of the electrode surface after the lifetime test can be observed  
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Figure 5. Nyquist diagrams of the oxide electrodes as a function of the applied potential (0.3, 0.7, 
1.0 and 1.4 V) vs. Ag/AgCl (a) Ti/Ir0.3Ti0.4Sn0.3O2; (b) Ti/Ir0.2Ti0.3Sn0.5O2; (c) Ti/Ru0.3Ti0.4Sn0.3O2. 
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Figure 6. Bode plot at 0.3 V vs. Ag/AgCl as a function of the oxide electrodes. (-○-) 
Ti/Ir0.2Ti0.3Sn0.5O2; (-■-) Ti/Ir0.3Ti0.4Sn0.3O2 (--) Ti/Ru0.3Ti0.4Sn0.3O2. 

 
Table 3. Lifetime values obtained for the oxide electrodes under galvanostatic conditions at a 
high current density (400 mA·cm−2) in 0.5 mol·dm−3 of H2SO4. 

 Lifetime (h) 

Ti/Ir0.3Ti0.4Sn0.3O2 >70 

Ti/Ir0.2Ti0.3Sn0.5O2 6.16 

Ti/Ru0.3Ti0.4Sn0.3O2 11.65 

 
through microstructural analysis (Figure 7), which shows worn structures with erosion 
of the active layer. The EDX analysis revealed a decrease in the quantity of Ir and Ru, 
confirming the loss of the electroactive material, well as a decrease of Sn (Table 4). 

The curves obtained for the lifetime showed a slow increase in the potential followed 
by an abrupt increase at the end of the experiment for all compositions investigated. 
This behavior indicates a rise in the electrode structure resistance. Such an increase 
may have resulted from the loss of Ir or Ru in the top layers of the electrode and/or the 
formation and growth of a non-conductive oxide film between the metallic substrate 
and the conductive oxide [9] [31].  

EDX analysis after lifetime revealed a considerable increase in the titanium signal. 
These results suggest that besides the process of erosion, there is also a process of 
anodic passivation of the metallic base due to the formation of an insulating film com-
posed primarily of TiOx. 
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Figure 7. SEM surface image of the oxide electrodes after the lifetime test, original magnification 
4000×. (a) Ti/Ir0.3Ti0.4Sn0.3O2; (b) Ti/Ir0.2Ti0.3Sn0.5O2; (c) Ti/Ru0.3Ti0.4Sn0.3O2. 

 
Table 4. Variation in the atomic ratios (%) of the oxide films after the lifetime test. 

 ΔIr (%) ΔRu (%) ΔSn (%) 

Ti/Ir0.3Ti0.4Sn0.3O2 −10.7 - −20.3 

Ti/Ir0.2Ti0.3Sn0.5O2 −58.3 - −61.2 

Ti/Ru0.3Ti0.4Sn0.3O2 - −72.7 −54.2 
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4. Conclusion 

This study has demonstrated the effect of the composition of oxide films on the proper-
ties of DSA prepared by the thermal decomposition of polymeric precursors. IrO2- 
based electrodes are more stable than RuO2-based electrode under the conditions inves-
tigated and show lower activity for the oxygen evolution reaction, which makes it at-
tractive in the oxidation of organic substances. The introduction of tin oxide in the 
composition film enhances the catalytic properties of the anodes. However, it should be 
held in appropriate compositions, because the change in the atomic ratio of this ele-
ment produces marked effects on the stability of the oxides. The thin films formed are 
composed of a solid solution among the various oxides constituents of the film. The 
procedure employed for the preparation of the anodes is a good alternative to SD, mi-
nimizing the volatilization of the metal. 
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