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Abstract 
Computer intensive methods have recently been intensively studied in the field of 
mathematics, statistics, physics, engineering, behavioral and life sciences. Bootstrap 
is a computer intensive method that can be used to estimate variability of estimators, 
estimate probabilities and quantile related to test statistics or to construct confidence 
intervals, explore the shape of distribution of estimators or test statistics and to con-
struct predictive distributions to show their asymptotic behaviors. In this paper, we 
fitted the classical logistic regression model, and performed both parametric and 
non-parametric bootstrap for estimating confidence interval of parameters for logis-
tic model and odds ratio. We also conducted test of hypothesis that the prevalence 
does not depend on age. Conclusions from both bootstrap methods were similar to 
those of classical logistic regression. 
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1. Introduction 

Knowing the distribution of test statistic of random sample drawn from population of 
interest provides clues as to the methods to be employed in analyzing such data. Statis-
ticians normally have to make decision on the nature of the distribution for the popula-
tion of which the sample was obtained. A good guess of the nature of the population 
distribution leads to powerful test. However, high price is paid if the assumption of the 
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distribution is wrong. Under normal circumstances it is not possible to validate the dis-
tribution of sample by re-sampling from given population due to high cost of imple-
mentation. It is very important to consider other methods of analyzing data, which are 
flexible with the choice of the distribution and based on this, bootstrap methods was 
introduced. 

Bootstrap methods are computer-based methods for assessing measures of accuracy 
to statistical estimates like sample mean and standard errors (Efron and Tibshirani, 
1994 [1]). The general idea is based on re-sampling from a given sample. There are 
three types of bootstrap: non-parametric bootstrap which does not assume any distri-
bution of the population; semi-parametric bootstrap, which partly has an assumption 
on the distribution on parameter and whose residuals have no distributional assump-
tion; and finally parametric bootstrap which assumes a particular distribution for the 
sample at hand. In this paper parametric and non-parametric bootstrap are considered 
for the given dataset. 

Objectives 

The aims of this paper are to formulate a logistic regression model and estimate the 
probability of infection as function of age using a Generalized Linear Model for binary 
data, construct 95% confidence intervals for the unknown parameters of the model and 
test the hypothesis that the prevalence does not depend on age using both classical and 
bootstrap (non-parametric and parametric) methods. 

2. Methodology 
2.1. Data 

The dataset Keil (see Appendix), is a serological data of Hepatitis A from Bulgaria. It 
contains information about the age of the subject (in age group of one year), the num-
ber of seropositive (number of infected by hepatitis A), and sample size at each are 
group. 

2.2. Logistic Regression Model 

Bootstrapping is rapidly becoming a popular alternative tool to estimate parameters 
and standard errors for logistic regression model (Ariffin and Midi, 2012 [2]). Fitrianto 
and Cing (2014) [3] asserts that logistic regression is a popular and useful statistical 
method in modeling categorical dependent variable. Logistic regression is a statistical 
modeling approach used to investigate the relationship between the independent varia-
ble(s) and dichotomous dependent variable (Kleinbaum and Klein, 2010 [4]). In this 
section, the response variable of interest is the number of infected ( iY ) with Hepatitis A 
where ( )~ ,i i iY Bin n π . ( )Age x  is considered as covariate. The logistic regression 
model for binary response variable takes the form 

[ ] 0 1logit , 1, 2, ,i iAge i nπ β β= + =                    (1) 

where iπ  is the proportion of Hepatitis A infection and 1β  is the effect of Age  on 
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the log odds of prevalence of infection. The 0β  and 1β  are unknown parameters to 
be estimated with 95% confidence intervals and a test of hypothesis 0 1: 0H β =  by 
classical (Agresti and Kateri, 2011 [5]) and bootstrap methods are performed. 

2.3. Parametric Bootstrap 

In applications where the standard asymptotic theory does not hold, the null reference 
distribution can be obtained through parametric bootstrapping (Reynolds and Tem-
plin, 2004 [6]). Here a parametric model is fitted to the data, often by maximum like-
lihood, and random samples are drawn from this fitted model. Then the estimates of 
interest are computed from these data. This sampling process is repeated many times. 
The use of a parametric model at the sampling stage of the bootstrap methodology 
leads to procedures which are different from those obtained by applying basic statistical 
theory to inference for the same model. 

Parametric bootstrap confidence interval 
Using an algorithm by (Zoubir and Iskander, 2004 [7]; Carpenter and Bithell, 2000 

[8]), a parametric bootstrap confidence interval is obtained as follows: 
1) Estimate parameters ( 0β̂  and 1̂β ) of logistic model (1) using the observed data 

and estimate π : 

( ) ( )( )0 1 0 1
ˆ ˆ ˆ ˆˆ exp 1 exp , 1,2, , .i i iAge Age i nπ β β β β= + + + =          (2) 

2) Draw bootstrap sample ( ) ( ) ( )( )* * *
1 1, , , , ,n nb

x y x y x y=   where ( )* ˆ~ ,i i iy B n π  
for ( 1, ,b B=  ). 

3) For each 1, ,b B=   estimate the bootstrap sample statistics * *
1̂

ˆ, , Bθ θ  where 

( )* *
0 1

ˆ ˆ* * *
0 1

ˆ ˆ ˆ, , e ,eb
β βθ β β=  by refitting model (1). 

4) Estimate the bootstrap mean and standard error of ( )0 1
ˆ ˆ

0 1
ˆ ˆ ˆ, , e ,eβ βθ β β= . 

( ) ( )* * * *

1 1

1 1ˆ ˆ ˆˆand
1

B B

b b
b b

se
B B

θ θ θ θ θ
= =

= = −
−∑ ∑               (3) 

5) Estimate ( )1 100%α−  bootstrap confidence interval by finding quantile of boot-
srap replicates 

( ) ( ) ( )

* * 1
2 2ˆ ˆ ˆ ˆ, ,L U b b

α α

θ θ θ θ
   −   
   

 
 =
 
 

                       (4) 

2.4. Non-Parametric Bootstrap 

The non-parametric bootstrap belongs to the general sub-field non-parametric statistics 
that is defined by (Dudewicz, 1976 [9]) as the sub-field of statistics that provides statis-
tical inference procedures, which rely on weaker assumptions (or no assumptions at all) 
about the underlying distribution of the population. Statistical practitioners should use 
non-parametric procedures only in so far as the assumptions about the underlying dis-
tribution are seriously doubtful in their validity. Efron (1979) [10] states that the boot-
strap is a way to pull oneself up (from an unfavorable situation) by ones bootstrap, to 
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provide trustworthy answers despite of unfavorable circumstances. However, when as-
sumptions are not violated, non-parametric procedures will usually have greater va-
riance (in point estimation), less power (in hypothesis testing), wider intervals (in con-
fidence interval estimation), lower probability of correct selection (in ranking and se-
lection) and higher risk (in decision theory) when compared to a corresponding para-
metric procedure (Efron and Tibshirani, 1994 [1]). 

The idea called substitution principle or the plug-in rule gives explicit recognition of 
the fact that frequentist inference involves replacement of an unknown probability dis-
tribution by an estimate. In the simplest setting a random sample is available and the 
nonparametric estimate is the empirical distribution function, while a parametric mod-
el with a parameter of fixed dimension is replaced by its maximum likelihood estimate 
(Davison et al., 2003 [11]). 

Non-Parametric bootstrap confidence interval 
Using a procedure proposed by (Zoubir and Iskander, 2004 [7]; Carpenter and Bi-

thell, 2000 [8]), an algorithm for non-parametric confidence interval can be written as 
follows: 

1) Make a new dataset for binary response with covariate(s) ( ),x y  from group data. 
2) Draw bootstrap sample by sampling the pairs with replacements from new the da-

taset ( ) ( ) ( )( )** *
1 1, , , , ,n nbx y x y x y=   for ( 1, ,b B=  ). 

3) For each 1,2, ,b B=   estimate the bootstrap sample statistics * *
1̂

ˆ, , Bθ θ  where 

( )* *
0 1

ˆ ˆ* * *
0 1

ˆ ˆ ˆ, , e ,eb
β βθ β β=  by refitting model (1). 

4) Estimate the bootstrap mean and standard error of ( )0 1
ˆ ˆ

0 1
ˆ ˆ ˆ, , e ,eβ βθ β β= . 

( ) ( )* * * *

1 1

1 1ˆ ˆ ˆˆand
1

B B

b b
b b

se
B B

θ θ θ θ θ
= =

= = −
−∑ ∑              (5) 

5) Estimate ( )1 100%α−  bootstrap confidence interval by finding quantile of boot-
strap replicates  

( ) ( ) ( )

* * 1
2 2ˆ ˆ ˆ ˆ, ,L U b b

α α

θ θ θ θ
   −   
   

 
 =
 
 

                       (6) 

2.5. Bootstrap Test 

In many applications, significance testing can be used to assess the plausibility of cer-
tain hypothesis. The likelihood ratio test, the score test and the Wald test are three 
asymptotically equivalent test procedures. For regular cases, their null distribution is a 

2χ  distribution with the appropriate degrees of freedom. This 2χ  distribution is an 
approximate null distribution. The true null distribution converges to the 2χ  distri-
bution as the sample size tends to infinity. It is not always clear whether this approxi-
mation is accurate enough or even valid in all cases. The bootstrap can offer an alterna-
tive way to determine an approximate null distribution. The bootstrap based null dis-
tribution also improves as the sample size increases, but there are theoretical and simu-
lation results showing that it is often at least as accurate as its 2χ  counterpart (Davi-
son and Hinkley, 1997 [12]). The bootstrap mechanism should reflect the original data 
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generation mechanism and the bootstrap simulation should satisfy the null hypothesis. 
The idea is to generate (repeatedly) new bootstrap data, reflecting the null hypothesis, 
recalculate the test statistic and in this way to simulate the null distribution of the test 
statistic. These bootstrap test values can then be used to compute a p-value. 

2.5.1. Parametric Bootstrap for Test of Hypothesis 
The algorithm for parametric test of hypothesis given by (Fox, 2015 [13]) is as follows: 

1) Estimate parameters ( 0β̂  and 1̂β ) of logistic model (1) using the observed data 
and calculate observed ( obs ) test statistic ( )1 1 1

ˆ ˆobst seβ β β= . Let ( )11
ˆ ˆ , obstβθ β= . 

2) Estimate π  under the 0 1: 0H β =   

( ) ( )( )0 0 0 1
ˆ ˆˆ exp 1 exp , 1, 2, , under : 0i i n Hπ β β β= + = =

 (7) 

3) Draw bootstrap sample ( ) ( ) ( )( )* * *
1 1, , , , ,n nb

x y x y x y=   where ( )*
0ˆ~ , |i i iy B n Hπ  

for ( 1, ,b B=  ). 
4) For each 1, ,b B=   estimate the bootstrap sample statistics * *

1̂
ˆ, , Bθ θ  where 

( )1

* * * *
0 1

ˆ ˆ ˆ, ,b tβθ β β=  by refitting model (1). 
5) Calculate bootstrap P-value by  

( ) ( )1

*

* * *
1

ˆ ˆ1 #
ˆ ˆ-value for ,

1
b

bP t
B β

θ θ
θ β

+ >
= =

+
                (8) 

where # represent the number of times. 

2.5.2. Non-Parametric Bootstrap for Test of Hypothesis 
An algorithm for non-parametric test of hypothesis given by (Fox, 2015 [13]) is as fol-
lows: 

1) Make a new dataset for binary response with covariate(s) ( ),x y  from group data. 
2) Estimate parameters ( 0β̂  and 1̂β ) of logistic model (1) using the observed data 

and calculate observed ( obs ) test statistic ( )1 1 1
ˆ ˆobst seβ β β= . Let ( )11

ˆ ˆ , obstβθ β= . 
3) By fixing x, draw bootstrap sample by sampling from only y with replacements 

form new dataset ( ) ( ) ( )( )* * *
1 1, , , , ,n nb

x y x y x y=   for ( 1, ,b B=  ). This breaks the 
correlation between x and y. 

4) For each 1, ,b B=   estimate the bootstrap sample statistics * *
1̂

ˆ, , Bθ θ  where 

( )1

* * * *
0 1

ˆ ˆ ˆ, ,b tβθ β β=  by refitting model (1). 
5) Calculate bootstrap P-value by 

( ) ( )1

*

* * *
1

ˆ ˆ1 #
ˆ ˆ-value for ,

1
b

bP t
B β

θ θ
θ β

+ >
= =

+
                (9) 

where # represent the number of times. 

3. Results 
3.1. Logistic Regression Model 

The parameter estimates together with standard errors (s.e) and confidence intervals 
(C.I) by logistic model (1) using classical approach are shown in Table 1. It is observed 
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that per year increase in age increases the log odds of infection by 0.0838. This result is 
statistically highly significant with -value 0.0001p <  at 5% level of significance. The 
95% confidence interval for the odds ratio of the effect of age is (1.0735, 1.1015). This 
means the odds of infection increased about 7% to 10%. 

3.2. Parametric Bootstrap 

Results obtained from the logistic model (1) by parametric bootstrap are shown in Ta-
ble 2. This results lead to similar conclusion from classical method. The estimated odds 
ratio obtained is 1.088. The confidence interval depicts the odds of infection increases 
about 7% to 10%. 

3.3. Non-Parametric Bootstrap 

The parameter estimates together with standard errors (s.e) and confidence intervals 
(C.I) of the logistic model (1) by using non-parametric bootstrap approach are pre-
sented in Table 3. These results lead to similar conclusion as in the case of classical and 
parametric bootstrap methods. The estimated odds ratio obtained by this approach is 
also is 1.088. This also means with regards to the confidence interval, the odds of infec-
tion increased about 7% to 10%. 

3.4. Comparisons: Classical and Bootstrap Parameter Estimates 

From Tables 1-3, it can be observed that the parameter estimates are very close. The 
standard errors of estimates for parametric bootstrap were slightly smaller compared to 
that of non-parametric bootstrap but very close to that obtained from classical ap-
proach. This is due to the fact that in both Classical and Parametric bootstrap methods,  

 
Table 1. Parameter estimates of logistic model using GLM. 

Parameter estimate s.e 95% C.I z value Pr(>|z|) 

Intercept ( 0β ) −1.4301 0.1736 (−1.7704, −1.0899) −8.24 <0.0001 

AGE ( 1β ) 0.0838 0.0066 (0.0709, 0.0967) 12.72 <0.0001 

( )1exp β  1.0874 0.0072 (1.0735, 1.1015)   

 
Table 2. Confidence intervals and p-value by parametric bootstrap. 

Parameter estimate s.e 95% C.I P-value 

0β  −1.4412 0.1756 (−1.7988, −1.1119)  

1β  0.0844 0.0066 (0.0722, 0.0981) <0.0001 

( )1exp β  1.0880 0.0072 (1.0748, 1.1031)  

 
Table 3. Confidence intervals and p-value by non-parametric bootstrap. 

Parameter estimate s.e 95% C.I P-value 

0β  −1.4400 0.1813 (−1.8107, −1.1007)  

1β  0.0843 0.0070 (0.0716, 0.9878) <0.0001 

( )1exp β
 1.0880 0.0076 (1.0743, 1.1038)  
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the design matrix for the covariate Age  was fixed. 
The P-values obtained for testing hypothesis 0 1: 0H β =  by both Non-Parametric 

and Parametric methods are shown in Table 2 and Table 3 respectively. It is observed 
that in both situations, the effect of age is highly significant.  

Comparing the length of confidence intervals for the three methods, it was observed 
that the interval length for non-parametric method is wider compared to that of clas-
sical and parametric methods. The classical and that of parametric methods have simi-
lar interval length. 

The 95% confidence intervals for predicted prevalence by using both parametric and 
non-parametric methods are presented in Figure 1 and Figure 2 respectively. It can 
generally be concluded that the probability for infection increases with age. The length 
of the interval reduces with increase in Age. This means prediction for higher age is 
more precise. 

 

 
Figure 1. The 95% point wise confidence intervals for the predicted 
values of the prevalence by using parametric bootstrap. 

 

 
Figure 2. The 95% point wise confidence intervals for the predicted 
values of the prevalence by using non-parametric bootstrap. 
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4. Conclusions 

The bootstrap technique used for estimation and testing produced flexible results. Most 
of the results were similar to the classical results established under probability theory. 

From the classical logistic regression model estimates, it was observed that the pre-
valence of Hepathitis A infection increased with age. Parametric and non-parametric 
methods used to investigate the effect of age gave similar results. 

We conclude that this computer intensive method gives us an idea about the asymp-
totic behavior of estimators and also it is easy in implementation based on simulations. 
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Appendix 

Dataset 
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