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Abstract 
Southeastern wildrye (Elymus glabriflorus, Vasey ex L.H. Dewey) is a cool-season, 
perennial grass native to southeastern United States. Recently, there is a growing in-
terest in its development as a grazing and haying forage crop due to its wide area of 
adaptation across this region. Consequently, there is a great need for the evaluation 
of its forage quality by rapid, but accurate analytical methods like Near-Infrared Ref-
lectance Spectroscopy (NIRS). In this study, acceptable NIRS calibration models were 
developed for: dry matter, DM (n = 113, R2 = 0.904, RSCD = 2.54, RSCIQ = 4.65); 
crude protein, CP (n = 113, R2 = 0.974, RSCD = 5.16, RSCIQ = 5.92); acid detergent 
fiber, ADF (n = 116, R2 = 0.896, RSCD = 2.35, RSCIQ = 1.28); neutral detergent fiber, 
NDF (n = 118, R2 = 0.934, RSCD = 2.53, RSCIQ = 3.38); digestible dry matter, DDM 
(n = 116, R2 = 0.895, RSCD = 2.36, RSCIQ = 1.35); dry matter intake, DMI (n = 115, 
R2 = 0.924, RSCD = 2.40, RSCIQ = 2.53); and relative feed value, RFV (n = 114, R2 = 
0.932, RSCD = 2.94, RSCIQ = 2.81). Prediction of independent validation sets 
yielded good agreement between the NIRS predicted values and the laboratory ref-
erence values for each of: DM (n = 53, R2 = 0.831, RPD = 2.45, RPIQ = 4.24); CP (n = 
57, R2 = 0.967, RPD = 5.37, RPIQ = 7.16); ADF (n = 49, R2 = 0.895, RPD = 2.97, 
RPIQ = 1.51); NDF (n = 53, R2 = 0.928, RPD = 3.75, RPIQ = 4.22); digestible dry 
matter, DDM (n = 55, R2 = 0.860, RSCD = 265, RSCIQ = 1.15); dry matter intake, 
DMI (n = 156, R2 = 0.845, RSCD = 2.48, RSCIQ = 2.11); and relative feed value, RFV 
(n = 55, R2 = 0.916, RSCD = 3.45, RSCIQ = 3.04) contents, indicating that all seven 
calibration models had good quantitative information. Therefore, precise, accurate, 
and rapid analysis of these important forage quality attributes of southeastern wild-
rye can be routinely done using the developed NIRS calibration models. 
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1. Introduction 

The southeastern wildrye was originally described as a variety of Canada wildrye (Ely-
mus canadensis L.) [1]. At times, it was also classified as a variety of Virginia wildrye 
(Elymus virginicus L.), but more recently it is recognized as a distinct species (Elymus 
glabriflorus (Vasey ex L.H. Dewey) Scribn. & C.R. Ball) [2]. Southeastern wildrye is a 
native, tall (around 4 foot), cool season, clump-forming, perennial grass. Belt et al. [1] 
described southeastern wildrye as a species that is tolerant of a wide range of growing 
conditions from moist to dry soil, partly shade to full sunlight, coarse to fine textured 
soils, early successional to mature meadow communities, and acid to neutral soil pH. 
Naturally, it is found in woodland edges, open woods, temporary and permanent mea-
dows, thickets and open grasslands, sometimes spreading into old fields and roadsides 
[2]. Recently, this grass has gained a considerable interest in its development as a forage 
crop for the Southeastern USA. Tall fescue (Schedonorus arundinaceus (Schreb.) Du-
mort., nom. cons.) is the only other perennial cool-season forage crop that can be in-
corporated into grazing and haying systems in this region of the country.  

In the southern edges of the southeastern region, annual grasses such as ryegrass 
(Lolium multiflorum L.), oats (Avena sativa L.), and cereal rye (Secale cereal L.) are 
used for cool-season grazing options, whereas tall fescue does not persist. However, 
southeastern wildrye, due to its wide areas of adaptation, grows very well across the 
whole southeastern region of the US.  

Rushing [3] observed southeastern wildrye as a good cool-season forage, with high 
crude protein (13% - 19%), low neutral detergent fiber (45% - 55%), and low acid de-
tergent fiber (255% - 35%) contents with dry matter yields of more than 3 tons per acre 
on unfertilized stands. Rotational grazing is recommended in order to maintain forage 
quality (harvest or graze every 20 - 30 days) and quantity. High innate nutritional con-
tent makes southeastern wildrye a great cool-season option for those interested in a 
year-round grazing system using only native species [1]. In evaluating southeastern 
wildrye as a forage crop, it has become necessary to analyze this species in field trials 
where forage quality attributes (nutritive values) must be quantified. Forage quality 
attributes are essential criteria in the selection, management, and improvement of fo-
rage for livestock consumption [4]. The protein and detergent fiber (ADF and NDF) 
contents are the primary forage quality attributes that determine forage intake and di-
gestibility, which are considered as the two main factors of ultimate forage quality [5].  

As far as abundance of various elements are concerned, C, H, and O constitute about 
99.9% of the dry matter of most plant biomass with H being the most abundant atomic 
species [6] [7]. This indicates that the chemical bonds in organic compounds in plant 
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biomass predominantly involve C, H, and O. Transmittance or reflectance of light in 
the NIR region (700 - 2500 nm) is known to interact with functional groups frequently 
found in plant biomass. These include the groups such as O-H as in water, C-H, C-O, 
C-O-H, N-H, and C=C bonds, which cover most of the covalent bonds of various or-
ganic compounds exist in plant biomass, except for the C-C single bonds in the carbon 
chains [8]. This suggests that NIR spectroscopy (NIRS) can be a viable, non-destructive, 
rapid technique for analyzing various quality attributes of feedstuffs including grasses. 
For example, NIRS has been successfully used to predict the nutritive value of forages 
and hays through direct scanning of the forage samples or the extrusa obtained from 
esophageally fistulated animals [9]-[17]. Several other reports have also demonstrated 
successful application of NIRS in the analysis of anti-quality factors in forage [18]-[20]. 
Vogel et al. [21] developed NIRS calibration models to determine over 20 different quality 
attributes of switchgrass including cell wall and soluble sugars. Thus, a non-destructive 
spectroscopic sensing technique has the potential to be an accurate method to rapidly 
determine the forage quality of southeastern wildrye, which is a potential new forage 
crop for both grazing and haying in the southeastern United States. However, there is 
no such work done on developing useful NIRS calibration models for routine analysis 
of the forage quality of southeastern wildrye, which has a great potential as forage crop 
both in terms yield and quality.  

Like other new crops with specific niches for production, like switchgrass, a properly 
developed and validated NIRS calibration equation for southeastern wildrye would 
provide a very useful tool to rapidly compare the forage quality of different varieties 
grown under various management practices under variable soil and climatic conditions 
and harvested differently with respect to age, cutting/grazing height and others. In this 
study, we successfully developed and validated NIR spectroscopic calibration models 
for dry-matter, crude protein, acid detergent fiber, neutral detergent fiber, digestible 
dry-matter, dry-matter intake, and relative feed value of southeastern wildrye, which 
are considered as the principal attributes of forage quality.  

2. Materials and Methods 
2.1. The Samples and Sample Preparation 

Samples used to develop and validate NIRS calibration equations in this study were ob-
tained from three field trials conducted during 2011 and 2012. Two of three field trials 
were conducted at the H.H. Leveck Animal Research Farm (South Farm) on the cam-
pus of Mississippi State University. The first trial was a perennial cool-season variety 
trial in which 18 species were evaluated. These included seven wildrye species, two 
wheatgrasses, five orchardgrasses, one timothy, and three tall fescues. This study was a 
randomized complete block design with four replicates. Plots were established in the 
fall of 2010. Plots were fertilized according to soil test recommendations, however no 
nitrogen was applied. A total of seven harvests were made (four in 2011 and three in 
2012). The second study at this site was another cool-season variety trial, however 
seedlings were grown in greenhouse conditions and out-planted in a randomized com-
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plete block with four replicates. In this study, the same seven wildryes and one tall fes-
cue (“Kentucky-31”) were evaluated. As with the other study at this location, no N was 
applied. A total of four harvests were completed for this trial (one in 2011 and three in 
2012). The third study was conducted at the R.R. Foil Plant Science Research Center 
(North Farm) on the campus of Mississippi State University. For this field trial, sou-
theastern wildrye was sown in 10 foot rows in the fall of 2010. The trial consisted of five 
harvest interval treatments (20, 30, 40, 60, and 80 days). Fertilizer was applied at a rate 
of 50 l b of N using 15-5-10 (N-P2O5-K2O) prior to each spring’s harvests. For all stu-
dies, sub-samples were taken for each plot or row for each harvest. Though various cool 
season perennial grass species were included in these trials and samples of all species 
were collected, only southeastern wildrye samples were used for this work. Samples 
were weighed, placed in a forced-air oven and dried at 65˚C until no further change in 
weight could be measured. Samples were ground using a Wiley-type mill with a 1 mm 
screen and stored at room temperature until used for laboratory analyses of dry-matter, 
crude protein, ADF, and NDF contents as well as for collecting NIR spectra as de-
scribed below. 

2.2. Determination of Dry Matter Content 

Dry matter content of the pulverized samples was determined as per the Association of 
Official Analytical Chemist (AOAC) method 930.15 [22] by drying approximately 2 g 
of sample in a forced-air drying oven at 135˚C ± 2˚C for at least 2 h with freely circu-
lating air. Aluminum dishes with covers were dried at the aforementioned temperature 
and time; then, they were placed in a desiccator and allowed to cool to room tempera-
ture. Tare weights were obtained for containers with covers (W4) to the nearest 0.1 mg. 
Approximately 2 g of sample were added to each container. Total weight was recorded 
(W5) to the nearest 0.1 mg. Dishes were shaken to gently distribute sample and expose 
maximum area for drying. The dishes, with sample (uncovered) sitting on the covers, 
were placed into preheated oven at 135˚C and allowed to dry for 2 h. Samples were then 
placed in a desiccator, covered, sealed, and allowed to cool to room temperature. The 
dish was weighed with covers (W6) and recorded to the nearest 0.1 mg. Percent dry 
matter (DM) on wet basis was calculated using the following equation: 

Calculation: 6 4

5 4

% 100
W W

DM
W W

−
= ×

−
 

where: W4 = tare weight of dish in grams. 
W5 = initial weight of sample and dish in grams. 
W6 = dry weight of sample and dish in grams. 

2.3. Determination of Crude Protein Content 

Crude protein content of the samples was analyzed based on Total Kjeldahl Nitrogen 
(TKN). The laboratory procedure for TKN included a digestion step followed by a dis-
tillation-titration step. Procedures followed the Association of Official Analytical 
Chemist (AOAC) method 984.13.15 [23]. For each batch, a glutamic acid sample was 
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digested and analyzed as a quality control (QC) standard (i.e., a certified reference ma-
terial). Besides, each batch included one each of a blank, laboratory control spike 
(spiked on blank), matrix spike (spiked on a randomly chosen sample), and duplicate 
(of a randomly chosen sample). These QC samples were digested for TKN and subse-
quently analyzed for NH4-N. The acceptance criteria for these QC samples were as fol-
lows: Blank, below the method detection limit; QC standard, recovery within 80% - 
120%; laboratory control spike, recovery within 80% - 120%; matrix spike, recovery 
within 70% - 130%; duplicate, relative percentage difference ≤15%.  

Approximately 1 g of ground sample, weighed to nearest 1.0 mg (W), was placed into 
a 250 mL TKN digestion tube. A solution comprised of a copper catalyst of 15 g K2SO4 
and 0.04 g anhydrous CuSO4, 3 g of pumice, and 20 mL of concentrated sulfuric acid 
was added to the flask. The tubes were swirled and placed in a metal rack. The digestion 
tubes along with the metal rack were then placed into the unheated digestion block 
(BD-20, Fisher Scientific, Inc., Pittsburgh, Penn.). As the first step, the digestion block 
was initially brought stepwise to a temperature of 200˚C, then to 300˚C, and finally to 
420˚C. The samples were then digested for 90 minutes or until the samples were green 
and clear. The tubes with digested samples were removed from the block and cooled for 
15 min at room temperature and diluted by addition of 100 mL deionized water. The 
Kjeldahl digests were distilled using an autodistillation unit (Kjeltec 8100, Foss-North 
America, Eden Prairie, MN). The method used a 40% NaOH solution to generate an 
alkaline distillation environment for producing ammonia vapor and 2% boric acid (4% 
for the glutamic acid digest) solution to collect the distilled ammonia. The boric acid 
solution also contained 0.001% bromocresol green and 0.0007% methyl red indicators 
to indicate the endpoint during subsequent titration with standardized hydrochloric 
acid. The collected ammonia in boric acid solution was titrated with 0.2 N HCl to the 
endpoint and volume of titrant consumed was recorded to the nearest 0.1 mL (VA). 
The titrant required to titrate the reagent blank (VB) was also recorded. Percentage ni-
trogen was calculated using the following equation: 

Calculation:  ( ) ( ) 1.4007
% Dry Matter Basis 100

%
VA VB NHCl

N
W DM

− × ×
= ×

×
 

where: 
VA = volume (mL) of standard HCl required for sample 
VB = volume (mL) of standard HCl required for blank 
NHCl = normality of standard HCl 
1.4007 = milliequivalent weight of N × 100 
W = sample weight in grams  
Percentage crude protein (CP) was calculated using the following equation: 
%CP (Dry Matter Basis) = %N (Dry Matter Basis) × 6.25. 

2.4. Determination of Acid Detergent Fiber (ADF) and Neutral  
Detergent Fiber (NDF) Contents 

The Acid Detergent Fiber (ADF) and Neutral Detergent Fiber (NDF) contents were de-
termined from 0.5-g pulverized samples using an automatic Fiber Analyzer (ANKOM2000 
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Fiber Analyzer, ANKOM Technology, Macedon, NY) based on the methods described 
by Goering and Van Soest [24] and Van Soest et al. [25]. The solvent used for the ADF 
was an acid detergent solution (FAD20C, ANKOM Tech.). The solvent used for the 
NDF analysis was a premixed neutral detergent solution (FND20C, ANKOM Tech.), 
which contained 30.0 g sodium lauryl sulfate, 18.61 g ethylenediaminetetraacetic acid 
disodium salt dihydrate, 6.81 g sodium tetraborate decahydrate, 4.56 g an hydrous so-
dium phosphate dibasic, and 10.0 ml triethylene glycol dissolved in 1 L distilled water 
with pH within 6.9 to 7.1. Twenty grams sodium sulfite and 4.0 ml of heat stable al-
pha-amylase with activity = 17,400 Liquefon Units/ml (catalog #FAA) were added to 
2000 ml of ND solution used to process 24 sample bags. Filter bags were suspended in 
the reaction vessel in a stainless steel suspension basket. The samples were processed in 
the reaction vessel for 70 min for the ADF procedure and 80 min for the NDF proce-
dure. The solution was then drained and the vessel was filled with 2 L of 94˚C deionized 
water and the samples were agitated for 5 min. The hot water rinse was repeated 4 
times. The filter bags were then removed and placed in a small beaker and covered with 
acetone to soak for 5 min. The bags were then squeezed and dried in an oven at 100˚C. 
The NDF and ADF concentrations were calculated using the following equation: 

( ) ( )
( )

Postdigestion dry weight g
  % 100

Predigestion dry weight g
ADF or NDF = ×  

2.5. Computation of Digestible Dry Matter (DDM), Dry Matter Intake 
(DMI) and Relative Feed Value (RFV) 

The DDM, DMI, and RFV were calculated as follows [26]: 

( ) ( )% 88.9 0.779 %DDM ADF= − ×  

( ) 120%
%

DMI LBW
NDF

=                                

1.29
DDM DMIRFV ×

=                                   

2.6. Near-Infrared Reflectance Analysis 

Scanning of the samples was performed using a NIRSystem model 6500 near-infrared 
scanning monochromator (FOSS North America, Eden Prairie, Minnesota) in the ref-
lectance mode. The instrument was equipped with a combination of silicon and lead 
sulfide detectors. Following instrument warm-up, satisfactory instrument performance 
was confirmed through instrument response, photometric repeatability (noise), wave-
length accuracy tests, and check cell scan. For the analysis, subsamples of the homoge-
nized pulverized samples were packed in ring cups (Part# IH-0386, FOSS North Amer-
ica, Eden Prairie, Minnesota) as follows. The cup was first overfilled, and the excess was 
removed by scraping it away. This procedure resulted in approximately 5-g samples 
being scanned (around 10 mm depth). The packed cup was held on a transport module 
and 32 successive scans were carried out covering the wavelengths from 400 to 2498 nm 
at 2-nm intervals to give a 1049 data points per sample. For the control, 16 scans were 
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made over an internal standard ceramic disk before and after the samples were run. 
The reflectance energy readings were referenced to the corresponding readings from 
the internal standard. An average of 32 successive scans was used to record the spec-
trum of each sample. All spectral data were recorded as the logarithm of the reciprocal 
of reflectance (log 1/R, R = reflectance). The scanning procedure was completed in 1.5 
minutes per sample and this excludes the time taken for instrument warm up and per-
formance check. 

Absorption of radiation at 400 - 2498 nm wavelength, the visible plus near-infrared 
region, was used to develop calibration equations related to the dry-matter (DM), crude 
protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF) and digestible 
dry-matter (DDM) contents, and dry-matter intake (DMI), and relative feed value 
(RFV) of the samples. After collecting the NIR spectra of all 179 samples, mathematical 
processing, and statistical analysis were performed using the software package WinISI 
WinSCAN v1.50 (FOSS North America, Eden Prairie, Minnesota). In WinISI software, 
the score program was used to select samples for spectral outliers before calibration and 
validation. For scoring, the principal components regression (PCR) analysis of the 
sample spectra was used. The score algorithm ranked spectra according to Mahalanobis 
distance. The first Mahalanobis distance accounted for difference of a given sample 
spectrum from the average spectral feature of the sample set as a whole [27], called 
“global-H” or “GH” distance. This gives spectral boundaries to eliminate the outlier 
samples with GH > 3.0. The algorithm also measured similarities between sample spec-
tra with a second Mahalanobis distance, called “neighboring-H” or “NH” distance and 
eliminates samples with NH < 0.6 from their nearest neighboring samples. Elimination 
of samples based GH and NH distances assisted in the development of an accurate and 
robust prediction equation [28]. After elimination of spectral outliers, the qualified 
sample sets for each of dry-matter (DM), crude protein (CP), acid detergent fiber 
(ADF), neutral detergent fiber (NDF) and digestible dry-matter (DDM) contents, and 
dry-matter intake (DMI), and relative feed value (RFV) of the samples were randomly 
divided into two subsets: two-third for calibration and cross validation, and one-third 
for external (or independent) validation to test the performance of the developed equa-
tions. The external validation sample set allowed the NIRS equation to be validated for 
prediction accuracy, using random samples not included in the calibration sample set 
[29]. 

Development of calibration models and validation of the developed models were 
performed using the global program in WinISI software as outlined in the WinISI soft-
ware manual using wavelengths of the entire visible (400 - 1100 nm) and near-infrared 
(1100 - 2498 nm) regions at every 2 nm interval. For calibration model development, 
we used a linear regression method, which was based on a modification of the partial 
least-squares (PLS) algorithm [27], where the X and Y residuals are standardized at 
each iteration, called “modified partial least square (MPLS)” regression. Pretreatments 
with standard normal variate and detrending (SNVD) were used for scatter correction. 
The SNVD was designed to remove additive baseline and multiplicative signal effects to 
give a spectrum with zero mean and a variance equal to one. Application of SNVD 
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transformation to raw spectral data reduces the interference of physical characteristics 
such as particle size and path length of sample to the spectra [30] [31]. The optimum 
number of PLS loading factors (called terms) was determined by cross-validation of 
MPLS procedure, and it was 6 for all models. Calibration models were optimized ap-
plying second derivative treatment of the spectra and 4-nm gap (i.e., 8 nm, the spacing 
over which the derivative was calculated). Only the first smoothing (the number for 
data points in a running average) at 4 was set in the software avoiding the second 
smoothing option. The application of the second-derivative algorithm to the raw spec-
tra (log 1/R) resulted in an increase in the complexity of spectra and a clear separation 
between peaks, which overlaps in the raw spectra [32]. 

The calibration development procedure included a cross-validation of the calibration 
models. The cross-validation procedure of WINISI software estimated the validity of 
the calibration models by selecting every fifth sample in the calibration set and holding 
it for use as a validation during calibration. Thus during the cross-validation procedure, 
each calibration subgroup included 80% of the samples and the validation subgroup in-
cluded the remaining 20%. The very first cross-validation set was selected using the first 
sample as a starting point. The second cross-validation set was selected using the 
second sample as a starting point. In this manner, the cross-validation procedure was 
performed at least five times so that every sample in the entire set was used in the vali-
dation procedure. Thus, the procedure did not compromise the robustness of the cali-
bration models by holding back a set of samples for validation. During each cross vali-
dation step, the model outliers were rejected based on their spectral differences (H sta-
tistic) as described above. Such internal cross validation avoided overfitting of the equ-
ations by selecting the minimum number of PLS terms in each model [33]. 

Once the models were developed, a further elimination process removed the compo-
sitional outliers from the calibration sample set on the basis that the difference between 
predicted and laboratory-measured values exceeded three times original SECV [34] 
[35]. Compositional outliers are believed to be the samples with poor quality laborato-
ry-measured values that do not correlate well with the spectral features of the samples 
[34]-[36]. After exclusion of the compositional outliers, the final calibration models 
were developed, which were able to give NIR-predicted values within three standard 
deviations from the mean difference when compared with the associated laborato-
ry-measured values for each sample included in the model.  

Quality of the developed calibration models were evaluated based on the lower stan-
dard error of calibration (SEC) and higher coefficient of determination for calibration 
(R2) that accounts for the proportion of explained variation by the model. The cross va-
lidation ability of the models was evaluated based on the overall standard error of cross 
validation (SECV) and the associated 1-variance ratio statistics (1-VR) derived from the 
outcomes of all five cross validation steps. The 1-VR is indeed the coefficient of deter-
mination in cross validation. Besides, the following two ratios were utilized to evaluate 
the quality of the models [37] [38]: 
(1) RSCD, SD ÷ SECV, the ratio of standard error of cross validation to deviation (SD, 

standard deviation of reference data in calibration set). 
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(2) RSCIQ, IQ ÷ SECV, the ratio of standard error of cross validation to inter-quartile 
distance (IQ, inter-quartile distance in reference data in the calibration set). 

The DM, CP, ADF, NDF, DDM, DMI and RFV of sample sets, randomly separated 
out for external validation, were predicted by the developed models and compared with 
the associated laboratory-measured values. Once the samples were predicted, the com-
positional outlier samples were also removed from the validation set if the difference 
between predicted and laboratory-measured values exceeded three times original SECV 
[34] [35]. After exclusion of such compositional outliers, all remaining samples in the 
validation set gave NIR-predicted values within three standard deviations from the 
mean difference when compared with the associated laboratory-measured values. The 
standard error of prediction (SEP), bias-corrected SEP [SEPC], and the associated R2 
were then used to evaluate the prediction performances of the models. Besides, the fol-
lowing two ratios were utilized to evaluate the success of external (independent) valida-
tion of the models [37] [38]: 
(1) RPD, SD ÷ SEP, the ratio of performance (SEP) to deviation (SD of the reference 

data in the external validation set). 
(2) RPIQ, IQ ÷ SEP, the ratio of performance (SEP) to inter-quartile distance (IQ of the 

reference data in the external validation set). 

3. Results and Discussion 
3.1. Spectroscopic Analysis 

An average raw NIR reflectance spectrum of the wildrye samples are shown in Figure 
1(a). The second derivative was calculated from the log (1/R) spectra at gaps of 4 data 
points (8 nm) and a smoothing over segments of 4 data points (2, 4, 4, 1) with scatter 
correction (SNVD) and the derivative form of an average spectrum is shown in Figure 
1(b).  

In the average raw spectrum (Figure 1(a)), the main absorption bands were observed 
over several wavelengths. The absorption band covering 1436 - 1464 nm was related to 
C-H combination bands of methylene (−CH2) group associated with aliphatic and aro-
matic hydrocarbons, C-H stretching first overtone of starch, N-H stretching first overtone 
of amide/protein, N-H stretching (symmetric) first overtone of aromatic amines, >C=O 
stretching third overtone of ketones and aldehydes, and O-H stretching first overtone of 
water, starch or polymeric alcohol. The 1720 nm band was related to C-H stretching first 
overtone of methylene (−CH2) group associated with aliphatic and aromatic hydrocar-
bons, S-H stretching first overtone of thiol group associated with thiols and the band at 
1926 nm was related to O-H stretching and HOH deformation combination from mole-
cular water or water molecules in the 3-aminopropyltriethoxysilane-ethanol-water sys-
tem, O-H stretching and HOH bending combination in polysaccharides, and >C=O 
stretching first overtone in amides. The band covering 2100 - 2136 nm was related to 
O-H bending or C-O stretching of starch, C-O-O stretching third overtone of starch or 
cellulose, whereas the band covering 2302 - 2344 nm was related to C-H bending second 
overtone of proteins, C-H stretching and CH2 deformation combination from starch 
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and other polysaccharides, C=O hydrogen bonded to the N-H of the peptide link 
(termed the α-helix structure) of proteins, and C-H stretching (symmetric) first over-
tone of methylene group associated with aliphatic hydrocarbons, and C-H bending 
from polysaccharides. The band at 2488 nm was related to C-H stretching and C-C 
combination of cellulose. The overlaid raw spectra for all 179 samples shown in Figure 
2 reflect the fact that they belong to same population. 

The second-derivative spectra had a trough corresponding to each peak in the origi-
nal spectra, removing the overlapping peaks and baseline effects [39]. The second de-
rivative of an average spectrum (Figure 1(b)) showed absorption bands at 1398 nm re-
lated to C-H bands of methylene (−CH2) group associated with aliphatic and aromatic 

 

 
 

 
Figure 1. Raw spectrum (log 1/R; (a)) and second derivative (2, 4, 4, 1 + SNVD; (b)) of NIRS av-
erage spectrum of southeastern wildrye. “R” stands for reflectance; “SNVD” stands for “Standard 
Normal Variate and Detrending”; “2, 4, 4, 1” stands for second derivative, 4 data points for gap, 4 
data points for first smoothing, and avoidance of using second smoothing. For further details, see 
Materials and Methods section. 
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Figure 2. Overlaid raw spectrum (log 1/R) of all 179 southeastern wildrye samples. “R” stands for 
reflectance. 

 
hydrocarbons; 1454 nm related to O-H stretching first overtone of starch, C-H bending 
of methylene (−CH2) of hydrocarbons and O-H stretching of starch; 1480 nm related to 
N-H stretching first overtone of −NH2C=O; 1526 nm related to N-H stretching first 
overtone of −NH2R; and 1742 nm S-H stretching first overtone of thiol group asso-
ciated with thiols. The bands at 1780 nm was related to C-H stretching first overtone of 
cellulose and H-O-H deformation and bending of cellulose, 1794 nm was related to 
O-H bending of water, 1962 nm was related to O-H stretching and O-H bending com-
bination band of starch, 2099 nm was related to O-H bending or C-O stretching third 
overtone of starch or cellulose, 2186 nm was related to N-H bending second overtone 
of protein, C-H stretching or C=O bending of protein, 2280 and 2348 nm were related 
to C-H stretching or −CH2 deformation-bending of starch, and 2304 nm was related to 
C-H bending second overtone of protein. 

The NIRS, as an analytical method, is based on the absorption/reflection of NIR rad-
iation at a specific region or wavelength by the samples of various natural products. 
While it works fairly well in many cases, it is often difficult to accurately determine 
what wavelength(s) or region(s) in the near-infrared spectrum carried the most quan-
titative information about the contents of natural compounds analyzed. In this paper, 
the assignment of main absorption bands in the spectrum to various probable func-
tional groups, as described above, was done according to literature complied by Work-
man and Weyer [40] which showed a good agreement with the information for the 
functional groups in the spectrum given by WinISI software. In the literature, the 
chemical interpretation for absorption/reflection of NIR radiation at a specific wave-
length often varies according to what experimental materials and chemical components 
were treated for NIR analysis [32], [41] and [42]. However, the NIRS technique has 
successfully been employed for determining the contents of various natural compounds 
in food, feed, biomass, and other natural products even without pinpointing chemical 
information regarding prominent functional groups related to the near-infrared spec-
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trum [8] [17] [21] [33] [36] [41] [43]. 

3.2. Laboratory Reference Data for Various Forage Quality Attributes 

The descriptive statistics including, range, mean, median, standard deviation (SD), first 
& third quartiles (Q1 and Q3), and inter-quartile distance (IQ) for DM, CP, ADF, NDF, 
DDM, DMI and RFV of the wildrye sample sets used in the calibration and validation 
sets are shown in Table 1. Mean values various forage quality attributes in the calibra-
tion and validation sets were similar. These were 93.74 versus 93.72% for DM, 12.87 
versus 13.04% for CP, 33.60 versus 32.16% for ADF, 53.60 versus 53.43% for NDF, 
62.72 versus 63.17 for DDM, 2.30 versus 2.29% (LBW) for DMI, and 108.7 versus 109.9 
for RFV in the calibration and validation sets, respectively. Likewise, the median, SD, 
Q1, Q3, and IQ of the validation sample set were more or less similar to those of the ca-
libration sample set in most cases. In addition, the observed results are in agreement 
with the results reported by other researchers for the southern forages from grass fami-
ly [44]. 
 
Table 1. Descriptive statistics for dry-matter (DM), crude protein (CP), acid detergent fiber 
(ADF), and neutral detergent fiber contents (NDF) in the Southeastern Wild Rye (Elymus gla-
briflorus) samples used in both calibration and validation. 

Constituent N Range Mean Median (Q2) Q1a Q3b SDc IQd 

 
Calibration 

 

DM (%) 113 91.48 - 96.03 93.74 93.72 92.62 94.93 1.26 2.31 

CP (%) 113 3.51 - 23.82 12.87 12.97 10.59 15.12 3.95 4.53 

ADF (%) 116 22.39 - 60.81 33.60 32.15 29.55 34.22 8.56 4.67 

NDF (%) 118 24.60 - 70.83 53.60 56.34 47.41 60.33 9.68 12.92 

DDM (%) 116 41.53 - 71.46 62.72 63.86 62.25 65.89 6.67 3.64 

DMI (%LBW) 118 1.69 - 4.23 2.30 2.13 1.99 2.50 0.482 0.510 

RFV 116 74.51 - 156.62 108.7 106.0 96.72 113.66 17.69 16.94 

 
External Validation 

 

DM (%) 53 91.48 - 96.10 93.72 93.62 92.67 94.89 1.28 2.22 

CP (%) 57 5.93 - 21.81 13.04 13.34 10.34 15.11 3.57 4.77 

ADF (%) 49 22.57 - 57.77 32.16 31.59 29.50 33.11 7.12 3.61 

NDF (%) 53 25.16 - 65.72 53.43 56.10 49.47 59.82 9.19 10.35 

DDM (%) 55 42.79 - 71.36 63.17 64.05 62.90 65.60 6.22 2.72 

DMI (%LBW) 56 1.79 - 3.78 2.29 2.14 2.01 2.38 0.444 0.377 

RFV 55 84.59 - 157.68 109.9 104.7 98.27 113.60 17.40 15.33 

aQ1, first quartile; bQ3, third quartile; cSD, standard deviation of mean. IQ, inter-quartile distance (IQ = Q3 − Q1). 
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3.3. Calibration Models 

The calibrations and cross validations statistics of the developed NIRS models for DM, 
CP, ADF, NDF, DDM, DMI and RFV of wildrye are shown in Table 2. The MPLS regres-
sion models developed based on the spectral information from full spectra covering 400 
to 2498 nm wavelength (both visible and NIR range) using the second-derivative trans-
formation with scatter correction (by SNVD) of raw reflectance spectra yielded the equa-
tions for all seven parameters with relatively higher R2 (>0.8) and lower SEC in the cali-
brations along with higher 1-VR (>0.8) and lower SECV values in the cross-validations 
(Table 2) than other regression methods (the actual outcomes not shown) tested in this 
study. We also observed that the use of this whole visible-NIR range (400 - 2498 nm) 
resulted in much higher R2 and 1-VR and lower SEC and SECV than when using either 
just the visible range (400 - 1100 nm) or just the near-infrared range (1100 - 2498 nm) 
(data not shown). Optimum wavelengths for NIR analysis mostly rely on empirical ca-
librations for predicting qualitative constituents in agricultural products. This is be-
cause of the broad array of chemical compounds present in the samples, which lead to 
overlapping and perturbed NIR absorption bands [32].  

For all seven parameters, the equations using mathematical treatment 2, 4, 4, 1 were 
selected over other mathematical treatments because they provided better values of 
several calibration statistics used as the judging criteria. The selected equations for DM, 
CP, ADF, NDF, DDM, DMI, and RFV resulted in high values of R2 (0.904, 0.974, 0.896, 
0.934, 0.895, 0.924, and 0.932, respectively) as well as 1-VR (0.844, 0.963, 0.820, 0.843, 
0.820, 0.823, 0.884, respectively). In addition to R2, the 1-VR is an important statistic in 
judging the quality of calibration equations. A calibration equation with high R2 may 
have low 1-VR in cross-validation, which suggests a failure of the model in cross valida-
tion and hence not a strong model at all. All seven selected equations in this study were 
 

Table 2. Near infra-red spectroscopic equation development statistics using MPLS and scatter correction for the NIRS prediction of 
dry-matter (DM), crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber contents (NDF) in the Southeastern Wild 
Rye (Elymus glabriflorus) samples. 

      
Calibration Cross-validation 

  
Constituent Na Termsb Range SD IQ SECc R2d SECVe 1-VRf RSCDg RSCIQh 

DM (%) 113 6 91.48 - 96.03 1.26 2.31 0.3901 0.9042 0.4968 0.8445 2.54 4.65 

CP (%) 113 6 3.51 - 23.82 3.95 4.53 0.6412 0.9736 0.7648 0.9627 5.16 5.92 

ADF(%) 116 6 22.39 - 60.81 8.56 4.67 2.764 0.8957 3.637 0.8195 2.35 1.28 

NDF (%) 118 6 24.60 - 70.83 9.68 12.92 2.477 0.9345 3.822 0.8434 2.53 3.38 

DDM (%) 116 6 41.53 - 71.46 6.34 3.64 2.050 0.8954 2.689 0.8201 2.36 1.35 

DMI (%LBW)i 115 6 1.694 - 4.227 0.482 0.508 0.1338 0.9235 0.2006 0.8268 2.40 2.53 

RFV 114 6 74.51 - 156.62 17.69 16.94 4.602 0.9323 6.021 0.8836 2.94 2.81 

aSamples used to develop the model; bNumber of PLS loading factors in the regression model MPLS (modified partial least-squares); cSEC, standard error of calibra-
tion; dR2, coefficient of determination of calibration; eSECV, standard error of cross-validation; f1-VR, one minus the ratio of unexplained variance divided by va-
riance or coefficient of determination in cross validation; gRSCD, SD/SECV, the ratio of standard error of cross validation to deviation (SD, standard deviation of 
reference data in calibration set); hRSCIQ, IQ/SECV, the ratio of standard error of cross validation to inter-quartile distance (IQ, inter-quartile distance in reference 
data in the calibration set); iLBW, live body weight of the animal. 
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associated with not only high R2 values, but also with invariably high 1-VR values, sug-
gesting good correlations between reference values and NIRS predicted values in each 
case. The quality of the equations was also judged based on their RSCD (SD/SECV) 
values, a widely used selection criterion of the NIR calibration equations ([34] and 
[38]). The RSCD values for the equations each of DM, CP, ADF, NDF, DDM, DMI, and 
RFV (2.54, 5.16, 2.35, 2.53, 2.36, 2.40, and 2.94, respectively) were all greater than 2.0, 
indicating a close relationship between reference values and NIRS predicted values [32], 
[34] and [38]. The RSCIQ (IQ/SECV) is another such criterion, which has been claimed 
to be a more robust than RSCD because it is based on inter-quartile distance instead of 
SD, which better represents the spread of the population [37]. The calculated values of 
RSCIQ for the selected equations of DM, CP, ADF, NDF, DDM, DMI, and RFV (4.65, 
5.92, 1.28, 3.38, 1.35, 2.53, and 2.81, respectively) were also invariably greater than 2.0 
for all but ADF and DDM, reconfirming the accuracy of at least for equations devel-
oped for DM, CP, NDF, DMI, and RFV. However, the original paper of Bellon-Maurel 
et al. [37], where the RSCIQ was proposed as a judging criterion of NIRS calibration 
model, did not discuss the interpretation of the situation with a low RSIQ, but high 
RSCD as observed for the ADF and DDM calibrations of this study. Therefore, the ac-
ceptance or rejection of a calibration model solely based on RSIQ value (>2.0 or <2.0) 
remains questionable. The other judging criteria must be taken into due consideration. 
Based on this trend, the models for ADF and DDM may leave rooms for further im-
provement, but should not be considered as the failed ones at all, because they yielded 
acceptable values of all other statistics used in numerous reports as the judging criteria 
for NIRS calibration models. The independent validation performance merits closely 
monitoring in such case and could be used as the judging criteria with more emphasis. 

Figure 3 shows the plots of laboratory reference values versus NIR predicted values 
for DM, CP, ADF, and NDF contents for the calibration set. Such plots for DDM, DMI, 
and RFV are not shown because these are calculated from ADF and NDF contents. The 
diagonal dashed line in each plot is the 1:1 line. The closeness of the plotted data that 
points to this line indicates the closeness between the NIR predicted values and the 
corresponding laboratory reference values. As revealed in the plots for ADF, the values 
deviate from normal to some extent with higher frequency of the lower values. Such a 
high density of low values often results in more favorable coefficients of determination 
than when the values are more evenly distributed over the range (for example with DM, 
CP, and NDF). 

3.4. External Validation  

The predictability of the seven NIRS calibration models for DM, CP, ADF, NDF, DDM, 
DMI, and RFV wildrye developed in this study was tested through external validation 
with 57 samples. The statistics of such external validation exercise such as r2, bias, bias 
(limit) (maximum allowable bias), SEP, SEPc (the bias-corrected SEP), SEPc (limit) 
(the maximum allowable SEPc), slope, RPD (SD/SEPc) and RPIQ (IQ/SEPc) values 
are presented in Table 3. These statistics were used to evaluate the predictability or  
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Figure 3. Scatter plots of NIRS predicted values versus laboratory reference values for the cali-
bration sets. SEC, standard error of calibration. R2, coefficient of determination of calibration. 
1-VR, one minus the ratio of unexplained variance divided by variance, also called coefficient of 
determination in cross validation. SECV, standard error of cross-validation. 

 
reliability of the calibration models. An NIRS calibration model is considered robust 
and reliable when it can produce lower bias [(lower than the bias (limit)] and SEPc 
[(lower than the SEPc (limit)] with r2 and slope close to 1.0, and RPD and RPIQ values 
greater than 2.0 in external validation with samples independent of calibration sample 
set [32] [34] [37] [38]. Based on these criteria, the r2, and RPD values obtained during 
external validation of all seven models were high enough (Table 3) to indicate good 
agreement between reference values and NIRS predicted values, similar to the corres-
ponding statistics obtained during the calibration development (Table 2). The r2 values 
were greater than 0.8 for all parameters. Likewise, the RPD values were invariably 
greater than 2.0-threshold value. However, RPIQ values for ADF and DDM were lower 
than 2.0 threshold value just as observed for RSCIQ discussed earlier. The slope was 
greater than 0.90 for all seven parameters; it was very close to 1.0 for DM, CP, NDF, 
and RFV. More than 90% of the samples included in the validation set were successfully 
predicted by all calibration models except ADF with difference between measured and 
predicted values smaller than three times original SECV. For ADF model, this was 86%. 
Figure 4 depicts the plots of NIRS predicted values versus laboratory reference values 
in the validation set for DM, CP, ADF, and NDF contents, which shows the significant 
relationship between NIRS and reference.  
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Figure 4. Scatter plots of NIRS predicted values versus laboratory reference values for the valida-
tion sets. n, samples (independent) used to monitor the model. r2, coefficient of determination in 
external validation. SEP, standard error of prediction. SEPc, the bias-corrected standard error of 
prediction. 

4. Conclusion 

All seven NIRS calibration models presented and discussed in this paper showed accu-
rate prediction abilities for some important forage quality parameters of wildrye related 
to animal nutrition. Thus, these models can be reliably applied in the routine analysis of 
these properties. Once the samples are dried and ground, this nondestructive NIRS 
method is very rapid and could simplify the analysis of qualitative factors of interest by 
replacing tedious laboratory methods. Despite the complicated nature of spectral in-
formation and somewhat speculative interpretation of the absorption/reflection bonds, 
the well-researched and widely used chemometric techniques are able to establish valid 
quantitative relationship between the spectral information and the parameters meas-
ured for the samples leading to an acceptable tool to be used for predicting the parame-
ters in unknown samples. As a result, properly developed and validated NIRS calibra-
tion models, as presented in this study, become a very reliable method for predicting 
unknown samples that have resemblance with the samples utilized in the calibration 
development. When high throughput in analysis is demanded by the industry, such as 
in integrated forage based livestock production industries, NIRS method is especially 
suitable because it replaces the time consuming laboratory methods without sacrificing 



J. B. Rushing et al. 
 

659 

accuracy and precision. Thus, it consistently plays its role as a reliable analytical tool for 
decision allowing determination of multiple values (e.g. DM, CP, ADF, NDF etc.) in a 
single analytical procedure thereby assisting in timely decision making on strategic use 
of nutritional supplements or adjustments in ration formulation to efficiently sustain 
milk, meat, or fiber production. Although development of an NIRS laboratory entails 
significant initial start-up costs, it is relatively inexpensive in the long term. It is also 
considered as “cheap” and “green chemistry” because it does not involve any chemicals 
and does not generate any hazardous wastes. Despite many advantages of NIRS me-
thod, its prediction becomes merely an unreliable extrapolation when it is improperly 
used or abused such as applying on predicting samples that are very different from the 
calibration sample set. This can happen due to a variety of reasons such as differences 
in species, cultivation area, drying and storage methods, influences of genetic and en-
vironmental variation, and others. However, such problem of spectral outliers should 
be watched out and solved by updating, expanding, and improving the initially devel-
oped and validated calibrations (such as the ones presented here) by including future 
samples from different environments and species and covering a wider range of the pa-
rameters to impart further robustness to the current calibration models. This should be 
a routine practice of the NIRS laboratories. 
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