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Abstract 
Strategic transportation network models are often used as support tools in the frame-
work of decisions to be taken at the policy level, such as the Trans-European Net-
work projects. These models are mostly setup using aggregated or limited data. If 
their calibration is regularly mentioned in the literature, their validation is barely 
discussed. In this paper, several modal choice model specifications that make only 
use of explanatory variables available at the network level are described and applied 
to a large scale case. A validation exercise is performed at three levels of aggregation. 
The paper is designed from a strategic transport planning perspective, and does not 
present new modal choice formulations or assignment procedures. Its main added 
value is the focus on calibration and validation considerations. Despite the limited 
explanatory information used, the global performance of the best models can be con-
sidered as satisfactory. However, the quality of the models varies from mode to mode, 
the use of railway transport being the most difficult to predict without more specific 
input. 
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1. Introduction 

Strategic multimodal freight transportation network models are often used in the frame-
work of transport policy decisions, in order to estimate the impacts of a new large in-
frastructure on traffic or modal split for instance. 

These models mostly cover several countries and are based on rather aggregated in-
formation, such as origin-destination (OD) matrixes containing data collected or esti-
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mated at a regional level, such as the “NUTS 2” level commonly used in Europe. The 
calibration and validation of such models are difficult because, in most cases, only a few 
explanatory variables, such as the transportation cost or distance per trip and per mode 
are available. Moreover, only limited observed data can be used for validation purposes.  

Calibration and validation are two different tasks. Calibration involves estimating the 
values of various constants and parameters in the model structure, while validation is 
the application of the calibrated models and the comparison of the results against ob-
served data.  

Even if not always explicitly cited as such, the calibration step is described in most 
papers, as it corresponds to the estimation of the parameters of a modal choice model 
for instance: the values of these parameters are often published, along with some 
performance measures such the Log-Likelihood or the Akaike Information Criterion 
(AIC). 

The validation step in regional, national or international multimodal freight models 
is, however, considerably less documented, while it has a very important impact on the 
level of confidence one can have in a model (de Jong et al. [1]). An interesting discus-
sion about the reasons why calibration and validation of such models is difficult can be 
found in Zhang [2]. She points out the large number of (elements in each) variable(s) 
or the lack of availability of reference data. She cites two papers in which the authors 
have put an effort in validating their model. The first, Jourquin [3], performs a valida-
tion by comparing the modelled modal shares of road, rail, and inland waterway trans-
port to the observed ones, per category of commodities. If this indicates that each mod-
ality in the network bears the right amount of freight flows, it does not guarantee that 
the flows are appropriately assigned to the right routes. The second paper, by Yamada 
et al. [4], also presents a model with three modes (road, rail, and sea) and two types of 
users (freight and passenger). The modal split estimated for this model was validated by 
comparing the modelled link flows with the actual link traffic counts, but the node 
flows were not calibrated or validated. As a result, when the model is used for node flow 
estimation, it is difficult to assess the validity or reliability of the results. Therefore, 
Zhang proposes her own freight model for road, rail and inland waterways in the 
Netherlands, calibrated and validated at the mode, route and node levels.  

The present paper examines, in a systematic way, several modal choice model speci-
fications applied to a model that covers a very large area (Europe), and for which only 
very limited or aggregated data is available for calibration and validation. This empiri-
cal analysis uses regional OD matrixes and the tested modal choice model utility func-
tions only use explanatory variables (costs, lengths, durations) that are available from a 
network model. The objective of the exercise is to compare the quality of several multi- 
modal traffic assignments, each one being based on a different multinomial logit mod-
al-choice model specification.  

In a comparable manner to what was done by Zhang [2], the validation of the models 
is performed at three levels of aggregation:  
• A highly aggregated level, for which the global shares for each transportation mode 
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and each group of commodities are estimated and compared to the observed ones; 
• A first disaggregated level, from the node point of view, for which the estimated 

modal split is measured and compared to the actual one for each origin-destination 
pair; 

• A second disaggregated level, from a link perspective, for which the assigned flow 
on the network is compared to the “observed” one. 

Beyond this introduction, the next section gives a brief presentation of some modal- 
choice model specifications. Section 3 describes the real world large scale multimodal 
freight transport network model under analysis. Several model specifications are esti-
mated with classical econometric tools. For benchmarking purpose, an alternative and 
rather crude iterative methodology is applied to some of the previously tested specifica-
tions. All these results are compared and discussed. The conclusive section opens some 
perspectives. 

2. Multinomial Logit Modal Choice Formulations 

Most econometric choice models are based on the theory of utility maximization. The 
simplest random utility maximizing model used to analyze choices is the binary Logit 
model which can be extended to the multinomial Logit (Equation (0)) with more than 
two choices. Although this model has some limits set by its basic assumptions (Ben- 
Akiva and Bierlaire [5]), it is well-known and widely used. 
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                           (0) 

where Pri is the probability to choose alternative i among k alternatives, and Vi is the 
utility of alternative i. 

The utility Vi is most often defined as a linear combination of one or more explana-
tory variables, each one being weighted by a parameter that needs to be estimated. In 
the simplest cases, with the total cost of transport TCi for the mode ias the only variable 
we could have: 

i iV TCα= −  or                             (1) 

i i iV TCα= −  and                           (2) 

i i iV TCα δ= − +                             (3) 

i i i iV TCα δ= − + .                           (4) 

Equations (1) and (3) are generic (or conditional) logits, involving a coefficient α 
common to each mode. Equations (1) and (2), without an estimated intercept, are sel-
dom or never used. Equation (2) will, however, be tested in this paper, because its spe-
cification is very close to an alternative one, presented later, and that is used for ben-
chmarking purposes. 

The data available for this case study allows to introduce an additional variable Ti for 
the time duration of each transportation task. The software package that is used also 
permits to separately compute, for each route, the fixed and variable costs, respectively 
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FCi and VCi. Hence, additional Equations (5) and (6) can be considered:  

i i i i i iV TC Tα β δ= − − + ,                          (5) 

and 

i i i i i i i iV FC VC Tα γ β δ= − − − + .                       (6) 

Beside the widely used Logit model, the literature sometimes mentions the so-called 
“Law of Abraham” (Abraham and Coquand [6]). Originally, this formulation, represented 
by Equation (7), was designed to spread traffic over two alternative routes of total costs 
TC1 and TC2.  

1 1

2 2

n
f TC
f TC

−
 

=  
 

                             (7) 

where f1 and f2 represent the flow assigned on routes 1 and 2 and n is a positive coeffi-
cient. The latest is often fixed to a value between 8 and 10, or even 14 (Bonnel [7]). As 
illustrated by Equation (8), this formulation can be generalized to the multinomial case 
so that the market shares for each alternative i appear as: 
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This formulation is rather similar to the logit formula, and it can be seen as equivalent 
to a logarithmic logit model (Leurent [8]), at least for the univariate linear case (Gaudry 
et al. [9]). Equations (9) and (10) illustrate how the utility function can be written in 
such a case. 

( )lni iV n TC= − , or                          (9) 

( )lni i iV n TC= − , with a mode specific ni.                (10) 

This model can then be simply extended as in Equations (11) and (12). These formula-
tions allow for a classical estimation of n and δ or ni and δi.  

( ) ( ) ( ) ( )ln ln ln lni i i i i i iV n TC n n TC n TCα α δ= − = − − = −           (11) 

( ) ( ) ( ) ( )ln ln ln lni i i i i i i i i i iV n TC n n TC n TCα α δ= − = − − = − .         (12) 

Note that, in the case of a common n = 1, the estimated share for each alternative is 
simply inversely proportional to the TCi’s. 

Finally, the logarithmic Logit formulation can be further generalized to other expla-
natory variables, as for instance in Equation (13) in which duration is included, or Eq-
uation (14) with an additional distinction between fixed and variable costs: 

( ) ( ) ( ) ( )ln ln ln lnn p
i i i i i i i i iV TC T n TC p Tδ δ− −= = − − +             (13) 

( ) ( ) ( ) ( )ln ln ln lni i i i i i i iV n FC m VC p T δ= − − − + .              (14) 

For benchmarking purposes, it is also interesting to measure how all these models per-
form better than a very simple method, not based on the well-known maximum like-
lihood. 

Using the same dataset, it is possible to estimate the parameters of some modal split 
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models using a simple iterative procedure. The rather crude algorithm that is presented 
here is, by nature, able to estimate only one coefficient per mode, so that only univa-
riate utility functions can be used, such as Ui = –αiTCi:  

1) Set the initial values of the coefficients to estimate, αi to 1.0. 
2) Compute the −αiTCi cost of each modal route.  
3) Apply the modal choice function to the OD matrix. 
4) Compare the global estimated modal share of each mode to the observed ones.  

a) If the estimated global market share of all the modes is close enough (<0.001% 
for instance) to the observed ones, stop the algorithm.  

b) Else, adjust the αi coefficients: if the estimated global modal share of a mode is 
higher than the observed one, increase αi so that the use of the mode i becomes more 
expensive. Decrease the value of αi if the estimated modal share is lower than expected1. 
Return to step 3. 

This algorithm is rather straightforward, and it stops once the difference between the 
observed and estimated global market shares of each mode is lower than a given thre-
shold. Such an “objective function” is very different from the one used to solve the 
econometric models presented earlier, based on the well-known maximum likelihood. 
The performances of the models that make use of the parameters estimated by this iter-
ative method can be considered as lower bound benchmarks. 

This procedure, which doesn’t need a particular software such as SAS or R, will be 
applied to the linear multinomial logit model and the logarithmic multinomial logit 
(aka Abraham) specifications. For the latest, a way to find out which value(s) of n to use 
will be discussed.  

3. Application to the Trans-European Networks 

The real-world case presented in this paper covers the European countries. The case 
was chosen for its complexity. Indeed, beside its large size (the network contains about 
68,000 road links, 40,000 railway links and 1200 waterway links), the coverage of the 
networks is also heavily heterogeneous, as all the transportation modes cannot be used 
between all origins and destinations. As illustrated by Figure 1, it is particularly the 
case for inland waterways transport, which is mainly available in the north of France, 
the Benelux countries, the Rhine, Danube and Rhône rivers.  

The demand data is provided by Panteia-NEA (Nea et al. [10]) for the year 2005. 
This dataset contains OD matrixes, at the NUTS2 European regional level (251 regions) 
and for 10 groups of commodities (the classical NST-R chapters 0 - 9). These matrixes 
are available for road, rail and inland waterway (IWW) transport. Obviously, these ten 
251 × 251 matrixes contain OD relations between which no flow is observed for some 
modes and/or groups of commodities. Table 1 gives a global idea of the content of the 
matrixes. 

The first three maps presented in Figure 1 illustrate the flows relative to each mode. 
They were obtained assigning the demand of a mode to its own network. The last map  

 

 

1In order to avoid an infinite set of possible combinations, one mode is considered as the reference mode, and 
its initial αi remains unchanged. 
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Figure 1. Road, IWW, rail and multimodal assignments. 
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Table 1. Modal OD matrixes. 

 OD relations Total qty (103 t) Average qty (t) Median qty (t) Market share 

Road 124,966 5,048,257 40,397 6351 85.8% 

Rail 45,681 532,517 11,657 3381 9.0% 

IWW 13,245 314,137 23,717 4697 5.2% 

 
is the result of a multimodal assignment using a single OD matrix, corresponding to the 
merge of the three modal matrixes. The resulting multimodal assignments vary with the 
applied modal choice model, and the objective of the exercise is to identify which mod-
al choice model specification gives the best results when only limited explanatory data 
is available.  

In the context of this paper, the only explanatory variables that are used are those 
that can be retrieved using a transport network analysis software with detailed costs in-
formation. For that task, we used the Nodus network model (Jourquin and Beuthe 
[11]). The software allows to retrieve, for each OD pair, for each mode and for each 
NST-R group of commodities, the total transportation cost (including loading, unload-
ing, transit and transshipment costs), the travel duration and the length of the haul. The 
most recent release of Nodus (release 7.0β, 2016) also allows to separately compute the 
variable (related to distance) and fixed (handling, transit…) costs for each trip.  

Nodus has the particularity to perform modal split and assignment in a single step: 
once a set of modal routes is computed between an OD relation, the corresponding 
demand is spread over these paths, using a (calibrated) modal choice model. The fig-
ures that are presented in the following tables, used for validation of the proposed 
models, are all gathered from the outputs of the assignments. 

All the tested model specifications use exactly the same dataset, i.e. the same demand 
matrixes, the same networks and the same costs as defined in Beuthe et al. [12]. These 
cost functions are used in the Nodus network model for computing the cheapest route 
between each OD pair for each mode.  

If a route exists for a given mode, the fixed cost FC, the variable cost VC, the length L 
and the duration T of the trip are retrieved. As a result, for each OD pair and each 
group of commodities, the dataset contains a record with the following fields: FCroad, 
VCroad, Lroad, Troad, Qroad, FCrail, VCrail, Lrail, Trail, Qrail, FCiww, VCiww, Liww, Tiww, Qiww. If no 
route is found for a mode, the related fields are left empty. The total cost for a mode 
TCmode on a route can be computed as FCmode + VCmode. Altogether, the dataset contains 
almost 160,000 records. 

3.1. Validation at the Aggregated Level 

Several combinations of these variables are tested in order to estimate their coefficients 
in multinomial Logit models, using the “mnLogit” R package (Hasan et al. [13]), a fast-
er version of the Logit R package (Croissant [14]). The mnLogit package provides time 
and memory efficient estimation of multinomial logit models using maximum likelih-
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ood method. Numerical optimization is performed by the Newton-Raphson method, 
using an optimized parallel C++ library to achieve fast computation of Hessian matrix-
es. 

Linear additive and logarithmic additive utility functions, following the formulations 
described in section 2, are tested. The Lmode variable is not retained, as it appears to be 
barely discriminant from mode to mode. Actually, it is highly correlated with the 
TCmode variable and even perfectly correlated with VCmode as the variable costs are de-
fined by unit of length (km). Thus, the following additive combinations of explanatory 
variables are tested: TCmode, TCmode + Tmode and FCmode + VCmode + Tmode. The log-linear 
additive combinations of the same variables are also tested. For each model specifica-
tion, the coefficients are separately estimated for each group of commodities. Road 
transport is considered as the reference mode, the other two modes being estimated 
relatively to trucking2. The estimated parameters of all these specifications are used to 
perform multimodal assignments in Nodus, which results are summarized in Table 2. 
The last three columns give the estimated global modal market shares. 

As expected, models (1), (2) and (7), which don’t estimate an intercept, give the poor-
est results. All the others estimated modal shares are close to the observed ones. 

Next to these models estimated using the “mnLogit” R package, the “benchmark” 
iterative procedure explained in section 2 is also applied. Table 3 describes the two spe-
cifications that were tested. Model (12) is a classical univariate multinomial logit, while 
model (13) is the law of Abraham. 

It is important to note that, despite the similarity of these specifications with those of 
the univariate logit models (2) and (7), the nature of the αi coefficients are different: 
• The multiplicative parameter αI estimated by the iterative procedure is not equiva-

lent to the αI parameters of the econometric models as the objective functions of 
both approaches are different. 

• The estimation of the logarithmic, aka Abraham, model (13) is also different. While 
the econometric model (7) provides estimations for ni, the iterative procedure esti-
mates αI, while the values of n must be given. This will be discussed later. 

The objective function of the iterative procedure being the convergence of the es-
timated global market shares to the observed ones, the estimations are, by nature, very 
close to the observed ones.  

If one except the models without an estimated intercept, i.e. (1) (2) and (7), which 
will be abandoned from now, all the tested models properly estimate the global modal 
shares. However, these figures are average values, and correct global market shares 
could very well be estimated while, at the per OD level, huge estimation errors are ob-
served. 

3.2. Validation at the OD Relation Level 

The estimated coefficients for each commodity are applied to the explanatory variables 
of every OD relation of the multimodal multi-commodity demand matrix in order to  

 

 

2The number of estimated coefficient is too large to be published here, but can be provided on request. 
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Table 2. Estimated market shares for the max likelihood linear and log-linear models. 

ID Var(s) Cond. Interc. Utility Vi (target) 

Market share 

Road Rail IWW 

(85.8%) (9.0%) (5.2%) 

1 TC •  iTCα−  45.9% 32.3% 21.8% 

2 TC   i iTCα−  80.8% 13.1% 6.1% 

3 TC • • i iTCα δ− +  84.3% 10.5% 5.2% 

4 TC  • i i iTCα δ− +  84.0% 10.8% 5.2% 

5 TC, T  • i i i i iTC Tα β δ− − +  84.5% 10.3% 5.2% 

6 FC, VC, T  • i i i i i i iFC VC Tα γ β δ− − − +  84.6% 10.2% 5.2% 

7 TC   ( )lni in TC−  83.7 11.0% 5.3% 

8 TC • • ( )ln i in TC δ− +  84.2% 10.6% 5.2% 

9 TC  • ( )lni i in TC δ− +  83.8% 11.0% 5.2% 

10 TC, T  • ( ) ( )ln ln lni i i i in TC p T δ− − +  84.1% 10.7% 5.2% 

11 FC, VC, T  • ( ) ( ) ( )ln ln ln lni i i i i i in FC m TC p T δ− − − +  85.4% 9.4% 5.2% 

 
Table 3. Iterative models and estimated market shares. 

ID Modal choice specification 
Market shares 

Road Rail IWW 

12 
( )
( )1

exp
exp

i i
k

j jj

TC
TC

=

∝

∝∑
 85.9% 8.9% 5.2% 

13 
1

n
i i

k n
j jj

TC
TC

−

−

=

∝

∝∑
 85.8% 9.0% 5.2% 

 
spread the total demand (tons) of each OD cell over the available transportation modes. 
As a result, a set of more than 480 000 records is generated, each one containing 
• The origin o of the flow (NUTS2 region), 
• The destination d of the flow (NUTS2 region), 
• The group g of commodities (NST-R), 
• The mode m, 
• The observed quantity for mode m between o and d for group g, 
• The estimated quantity for mode m between o and d for group g. 

Beside the classical R2, a few other accuracy measures are used. An interesting over-
view of the common used (forecast) error measurements can be found in Shcherbakov 
et al. [15]. In the present case, we must take into account that some data corresponds to 
a zero market share, as all the transportation modes are not (or cannot) be used be-
tween all OD pairs. Thus, most statistical measures that involve ratios can lead to divi-
sions by zero and are therefore useless in our context. Equations (15) to (18) are re-
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tained from this review: two absolute forecasting errors (the Mean Absolute Error (MAE) 
and the Median Absolute Error (MdAE)), as well as two measures based on squared 
errors, the Mean Square Error (MSE) and the Root Mean Square Error (RMSE).  

1,
1

1MAE mean
n

i i n i
i

e e
n =

=

= =∑                        (15) 

where ei is the error (observed modal share minus estimated one) with respect to ob-
servation i among n observations. Similarly, 

1,MdAE mediani n ie== .                         (16) 

RMSE is often preferred to MSE, has it has a similar scale as the one of MAE and 
MdAE.  

( ) ( )2 2
1,

1

1MSE mean
n

i i n i
i

e e
n =

=

= =∑                      (17) 

( ) ( )2 2
1,

1

1RMSE mean
n

i i n i
i

e e
n =

=

= =∑ .                   (18) 

We choose to keep MAE, MdAE and RMSE plus the classical R2. In order to keep 
comparable values among modes, the first three indicators are computed using the ob-
served and estimated market shares instead of the observed and estimated quantities. 
Hence, all the figures are in the same [0, 1] scale. 

The iterative model 13 (Abraham) was run with different values of n in order to 
identify the “best” ones. Table 4 gives the MAE values obtained for a series of values of 
n, for each group of commodities. The bold values identify the lowest MAE for each 
NST-R, giving the corresponding “optimal” value of n. Although values of n set to 8 or 
10 are often cited in the literature (Bonnel [7]), all the values of n that are higher than 6 
result in a higher MAE for all groups of commodities. It is interesting to note that, for 
five out of the ten groups of commodities, the optimal value of n appears to be 1. In 
other words, for these groups, the market shares estimated for each alternative are 
simply proportional to −TCi.  

Table 5 gives the performance indicators of the tested models. Conditional models 
(3) and (8) perform less well and will not be discussed further in this paper.  

The values of the performance indicators also vary from mode to mode, as illustrated 
in Table 6. Altogether, all the retained specifications produce comparable perfor-
mances. The modal share for railway transport appears to be systematically less well es-
timated.  

The two iterative methods (12) and (13), used for benchmarking purposes and which 
performed best at the aggregated level presented in the previous subsection are now 
clearly outweighed by the others. Starting from Table 5 the values of these “bench-
mark” iterative procedures are presented in italic. As illustrated by the bold figures in 
Table 6, the utility functions of models (6, linear) and (11, log-linear) give the best re-
sults, but none is better than the other on all indicators.  
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Table 4. MAE values for each NST-R/n combination. 

n 1 2 3 4 5 6 

NST-R 0 0.195 0.201 0.210 0.218 0.225 0.230 

NST-R 1 0.064 0.042 0.024 0.018 0.018 0.019 

NST-R 2 0.334 0.332 0.331 0.332 0.333 0.334 

NST-R 3 0.313 0.317 0.321 0.325 0.328 0.330 

NST-R 4 0.338 0.337 0.337 0.338 0.340 0.342 

NST-R 5 0.280 0.287 0.294 0.299 0.304 0.308 

NST-R 6 0.165 0.173 0.183 0.193 0.203 0.212 

NST-R 7 0.285 0.288 0.291 0.294 0.298 0.301 

NST-R 8 0.130 0.088 0.069 0.067 0.068 0.070 

NST-R 9 0.099 0.064 0.036 0.028 0.027 0.028 

 
Table 5. Global validation at the OD level. 

Model ID R2 MAE MdAE RMSE 

Linear 

3 0.909 0.193 0.032 0.340 

4 0.905 0.185 0.014 0.344 

5 0.918 0.176 0.016 0.332 

6 0.932 0.180 0.018 0.338 

Log 

8 0.908 0.193 0.030 0.339 

9 0.909 0.189 0.015 0.345 

10 0.913 0.182 0.012 0.338 

11 0.934 0.169 0.015 0.319 

Iter 
12 0.824 0.237 0.000 0.452 

13 0.915 0.201 0.083 0.336 

 
Table 6. Validation at the OD level per mode. 

 ID R2 MAE MdAE RMSE 

Linear 

 Road Rail IWW Road Rail IWW Road Rail IWW Road Rail IWW 

4 0.949 0.234 0.573 0.258 0.245 0.051 0.095 0.069 0.000 0.411 0.406 0.145 

5 0.956 0.254 0.636 0.244 0.234 0.049 0.090 0.064 0.000 0.396 0.391 0.142 

6 0.963 0.306 0.674 0.252 0.242 0.047 0.101 0.073 0.000 0.404 0.399 0.140 

Log 

9 0.951 0.251 0.611 0.265 0.253 0.050 0.111 0.079 0.000 0.413 0.409 0.142 

10 0.953 0.259 0.618 0.255 0.243 0.048 0.106 0.072 0.000 0.404 0.399 0.140 

11 0.965 0.321 0.676 0.235 0.225 0.048 0.096 0.063 0.000 0.380 0.374 0.141 

Iter 
12 0.899 0.047 0.415 0.380 0.319 0.047 0.038 0.014 0.000 0.447 0.530 0.182 

13 0.955 0.199 0.519 0.285 0.265 0.053 0.176 0.140 0.000 0.401 0.394 0.146 
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3.3. Validation at the Link Level of the Networks 

In the two previous subsections, the validation of the models is performed at the de-
mand (node) level, but the network topologies are completely ignored. As no (ob-
served) count data is available along the segments of the networks for such a large area. 
One could consider the modal assignments presented in Figure 1 as some kind of ref-
erence. Indeed, the best modal choice model specifications would result in multimodal 
assignments for which the flow on each modal network would closely correspond to 
those illustrated by the first three maps of Figure 1. However, the modal choice models 
are unable to perfectly predict the modal split for each OD relation, and this impacts 
the results of the assignments, as illustrated by Figure 2. In this figure, the first map 
(identical to the one represented in Figure 1) corresponds to the “actual” flow on the 
IWW network. The second one represents the flow resulting from a multimodal as-
signment, using modal choice model (6). At a first glance, both are identical. However, 
when both flows are compared (last map of Figure 2), it comes out that differences ex-
ist, particularly on the North Rhine River. 

It is thus interesting to compare the flow assigned to each link of the networks by the 
multimodal assignment procedure to the values retrieved from the three modal assign-
ments. Therefore, “counting points” are placed on all the segments of the network that 
are connected to at least two other segments. The flows are separately measured for 
both directions. This represents about 27,500 counting points on the road network,  
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Figure 2. Difference between actual and estimated flows on the IWW network. 
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17,200 on the railways network and 850 for the inland waterways. Table 7 presents the 
correlation between the “actual” and estimated flows measured at the counting points. 
Again, the two iterative procedures used for benchmarking appear to be clearly less 
performant. It is especially the case for rail transport for which the logit formulation 
gives very poor results (R2 = 0.061). Here also, there is no big difference between the li-
near and log-linear models and the modal choice models perform less well for railway 
transport, with a maximum R2 of 0.769. 

3.4. Summary of Main Results 

If the global performances of the models could be considered as acceptable at the three 
levels of aggregation (see Table 2 for the aggregated level, Table 5 for the OD level and 
column “All” of Table 7 for the link level), the quality of the results largely varies from 
mode to mode. This is illustrated by Table 8, which clearly shows that the use of rail  
 
Table 7. Validation at the flow per link level. 

 ID 
R2 

All Road Rail IWW 

Linear 

4 0.960 0.980 0.629 0.914 

5 0.970 0.985 0.736 0.939 

6 0.975 0.987 0.772 0.953 

Log 

9 0.958 0.979 0.607 0.924 

10 0.964 0.982 0.655 0.938 

11 0.974 0.987 0.769 0.951 

Iter 
12 0.891 0.953 0.061 0.863 

13 0.945 0.979 0.383 0.898 

 
Table 8. Summary of the performances at the three levels of aggregation. 

 Attributes 
Aggregated shares Disaggregated (OD)  Disaggregated (flow)  

Market shares R2 R2 

Linear 

 Road Rail IWW Road Rail IWW Road Rail IWW 

TCi, δi 84.0% 10.8% 5.2% 0.949 0.234 0.573 0.980 0.629 0.914 

TCi, Ti, δi 84.5% 10.3% 5.2% 0.956 0.254 0.636 0.985 0.736 0.939 

FCi, VCi, Ti, δi 84.6% 10.2% 5.2% 0.963 0.306 0.674 0.987 0.772 0.953 

Log 

TCi, δi 83.8% 11.0% 5.2% 0.951 0.251 0.611 0.979 0.607 0.924 

TCi, Ti, δi 84.1% 10.7% 5.2% 0.953 0.259 0.618 0.982 0.655 0.938 

FCi, VCi, Ti, δi 85.4% 9.4% 5.2% 0.965 0.321 0.676 0.987 0.769 0.951 

Iter. 
TCi logit 85.9% 8.9% 5.2% 0.899 0.047 0.415 0.953 0.061 0.863 

TCi Abraham 85.8% 9.0% 5.2% 0.955 0.199 0.519 0.979 0.383 0.898 

 (actual) (85.8%) (9.0%) (5.2%)       
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transport is the most difficult to predict. This is probably due to the fact that the railway 
networks are available almost everywhere in Europe, and that competition with road 
transport is very often observed. Therefore, additional attributes would be needed in 
the modal choice utility functions. 

4. Conclusions and Perspectives 

Strategic multimodal freight transportation network models are regularly used in the 
framework of important transport policy decisions to be taken, but are often setup us-
ing coarse origin-destination matrixes, defined at a regional level. In addition, only a 
few modal choice attributes are mostly available. Unfortunately, if numerous exam-
ples of such models can be found in the scientific literature, the published papers are 
almost silent on their validation. 

Validation is precisely the main objective of this paper, which examines, in a syste-
matic way, several modal choice models specifications that make only use of explana-
tory variables available at the network level (mainly costs and durations per mode/ 
route). The parameters for a series of linear and log-linear multinomial logit specifica-
tions are estimated using R, and the results obtained by an alternative iterative estima-
tion procedure are used as a lower bound benchmark. 

The validation of the models is performed at three levels of aggregation:  
• A highly aggregated level, for which the global shares for each transportation mode 

are estimated and compared to the observed ones; 
• A first disaggregated level, from a “node” viewpoint, for which the estimated and 

actual shares are compared for each origin-destination pair; 
• A second disaggregated level, from a “link” perspective, which compares the as-

signed flows to the actual ones on a per segment basis. 
A multimodal freight network model, covering the whole European area, is pre-

sented. Inland waterways, rail and road transport compete where possible, and 10 cate-
gories of commodities are embedded in the origin-destination matrixes.  

If the global performances of the models could be considered as acceptable, the qual-
ity of the results largely varies from mode to mode, the use of rail transport being the 
most difficult to predict.  

But there is no miracle: having limited information clearly impacts the quality of the 
models. 

Nowadays, most transport network models are embedded in geographic information 
systems, which can also give some information about the areas where demand and supply 
are located, such as the number of inhabitants, employment, gross regional product, 
accessibility to the modal networks… These variables can partially explain the attrac-
tiveness between the OD pairs and could be used, in some future work, as additional 
explanatory variables into the utility functions.  

As pointed out by de Jong et al. [1], it would also be interesting to go a step further in 
the validation process, performing some “backcasting” (use the model to calculate a 
“forecast” for a year in the past) or validity testing (asking industry experts and regional 
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planners for their opinion on whether the model behavior and the model results look 
reasonable). Unfortunately, and especially for models covering international areas, there 
is a glaring lack of data and available expertise covering all the countries included in 
large strategic models.  
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