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Abstract

Mechanical vibrations cause forces that affect human bodies. One of the most com-
mon positions for human bodies is the seated position. In this work, mathematical
models of the seated human body are investigated and simulated in a Simulink/
MATLAB environment. In addition, segments of the human body are studied and
models are developed and built by using Simulink/MATLAB. As part of this work,
model analysis and state-space methods are used in order to check and validate the
results obtained from the simulations. Two types of forces are used to test the whole
seated human body under low frequency citation. The first is a sinusoidal wave signal
based on literature, and the second is an impulse function. The effects of mechanical
vibration on the head and lumbar are studied as these parts of the human body are
usually the most effected areas. Kinematic states of the head segment and lumbar are
considered. The characteristics of the vibration response on the two segments are also
obtained. In addition to the mechanical vibrations study, this paper is a resource for the
development and implementation of models in the Simulink/ MATLAB environment.

Keywords
Vibration, Human Body, MATLAB, State-Space

1. Introduction

Our bodies are highly sensitive to the natural activities around us. One of the most im-
portant phenomena that always affect all human body and its organisms is the vibration.

Humans are sensitive to vibrations under low frequency, and the problem becomes
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worse when they expose to vibrations continuously [1].

Experimental evidence has shown that a human body can be injured by vibrations. It
was reported that about 12 million workers in the USA were affected by vibrations [2].
According to that, researchers have been working hard to reduce this dangerous phe-
nomenon, and therefore they have written a lot of studies on how to avoid the effects of
the vibration on the human body.

Most seated workers are exposure to vibrations effects; these effects are very harmful
and in some cases lead to permanent pains, 7e. back pain. Vehicle drivers are exposed
to this type of pain because they are driving their vehicle and interacting with vibration
more than other people.

In order to study changes on the human body professionally, we should build a mod-
el that mimics the dynamics of the human body. For modeling the human body, it can
be done by using mathematical equations derived by using one of the modeling me-
thods, and then you can either find the analytical solutions in order to define the fre-
quencies that have effects on the body, or use simulation software in order to build the
mechanical structure of the human body and then examine it under different frequen-
cies. In this work, several modeling methods are used to build the mathematical model
of the human body in order to study the vertical vibrations on the seated human body.
Then the results of these methods are compared to the results obtained from the simu-

lated mechanical system of the human body by using MATLAB/Simulink Software.

2. Literature Review

The biodynamic study of the human body return back to 1918, when Hamilton define
the vibration white finger syndrome as a result of the vibrating hand tools [2].

Zheng, Qiu and Griffin [3] concluded that health and comfort of seated people be-
came unsafe when the human body is exposure to low-frequency vibrations. The bio-
dynamic responses of the seated human body to vertical vibration excitation have been
measured experimentally and some of the results summarized in International Stan-
dard 5982 [4].

There are many factors could affect the response of human bodies to the vibrations
and they differ from person to another. The experimental tests in [5]-[8] summarized
these factors including body weight, sitting posture, vibration magnitude, age, vibration
spectra, feet, holding a steering wheel and shock or impact force applied to the human
body.

Nawayseh and Griffin in [9] found that there is a fore-and-aft (cross-axis) response,
evident in fore-and-aft forces at the seat and the backrest during vertical excitation in
the additional to the vertical response. In [10], the authors found that backrests could
affect the response of the human body to the vibrations.

There are many biodynamic models have been built to mimic the movement of the
movement of human body. According to [11], the models of human body could be
classified as lumped-parameter models, multi-body models and finite-element models.
The former was the most popular model of the human body [12] [13]. The multi-body
models have been based solely on the apparent mass in the direction of excitation [13].
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The objective of this work is to build two models of the human body and then study

the effect of the vertical vibration on the head segment and lumbar spine using
MATLAB software.

3. Measurements and Mathematical Models of Seated Human
Model

3.1. Human Model

The human body is a complex dynamic system which has mechanical properties that
change from person to another and from time to time. Many mathematical models
have been developed on the basis of diverse field of measurements to describe the bio-
dynamic responses of human beings [14].

Based on different modeling methods, the human body model can be composed of
lumped-parameter models. The lumped-parameter model is simple system consists of
concentrated mass connected internally with springs and dampers. These models are
simple construction and easier to deal with for analysis, mathematically solved and si-
mulation.

The model used in this work is linear model as shown in Figure 1. The values of the

parameters are specific constant values and are summarized in Table 1 and Table 2.
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Figure 1. The human body model [14].
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Table 1. Mass values for each segment [14].

Seated human body segments Mass in kg
Seat 12
Lower arm 5.297
Upper arm 5.47
Torso 32.697
Thoracic spine 4.806
Thorax 13.626
Cervical spine 1.084
Head 5.445
Lumbar spine 2.002
Diaphragm 0.454
Abdomen 5.906
Pelvis 27.174

Table 2. Damping and stiffness parameter values [14].

Item no. Stiffness (kg-fm™) Damping constant (kg-fm™)
a 89.41 29.8
b 5364 365.1
¢ 8941 29.8
d 5364 365.1
e 8941 29.8
f 5364 365.1
g 5364 365.1
h 5364 365.1
i 5364 365.1
j 6885 365.1
k 6885 365.1
1 2550 37.8

3.2. Linear Graph and Bond Graph for Seated-Human Body Model

Linear and bond graphs are one of the modeling techniques used in order to find ma-
thematical equations for mechanical skeleton. The whole system’s structure represented

in linear and bond graphs are shown in Figure 2 and Figure 3, respectively.
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Figure 2. Linear graph for the presented human body model.

3.3. Measurements and Mathematical Equations

The proposed seated-human body model consists of 12 degree of freedoms. In order to
find the mathematical equations for each segment, free body diagram should be drawn
and then Newton’s 2™ law should be applied.

The equations of a general n-degree-of-freedom system are divided into n equations
of the following form:

mX + BX + kx = f
Rewrite the above equation, you will obtain:
1
X=—(f —Bx—kx
L )

For mass 1 (Seat)

7, = %( f —BLZ, — KLz, +BLz, + KLz,)

2
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Figure 3. Bond graph for the represented human body model.

For mass 2 (Pelvis)
. 1 , ,
Z,= E(BLz1 +KLz, —(BL+BB+BA)z,
—(KL+KB+KA)z, + BAZ, + KLz, + BBZ, + KBz,
For mass 3 (Abdomen)

Z, =mi3(|3Az'2 + KAz, —(BA+BC) 2, - (KA+KC)z, + BCZ + KCz)
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For mass 4 (Lumbar spine)

Z, =$(B|3z'2 + KBz, —(BD + BB) 2, — (KD + KB) z, + BDZ, + KDz

For mass 5 (Diaphragm)

Z :%(8023 +KCz, —(BC + BE) 2, — (KC + KE) 7, + BEZ, + KEz, )

For mass 6 (Thoracic spine)
. 1 , ,
7, =—(BD2, +kDz, ~(BD+ BH +BF )2, ~(KD + KH + KF )7,
m
+ BFz, + KFzy + BHz, + KHz,)

For mass 7 (Thorax)
Z, :%(Bcz5 +KCz, —(BC +BI) 2, —(KC +Kl)z, + Bz, + Klz,)
For mass 8 (Cervical spine)
A :mis(BHz6 +KHzg = (BH + BG) 2, - (KH + KG) 7, + BG2,, + kG,
For mass 9 (Torso)
Z, =%(BJZ‘H+ KJz,, —(BI +BF +BJ) 2, —(KI + KF +KJ)z
+Blz, +Klz, + BFzg + KFz,)

For mass 10 (Head)
1

Zy :m(_(BG)Zlo —(KG)z, +BGZ, + kGZs)

For mass 11 (Upper Arm)
Z, =%(BJ29 +KJz, —(BJ + BK) 2, — (KK + KJ) z;, + BKz,, + kKz,, )
m
For mass 12 (Lower Arm)

) 1 . ~
7, :E(BKZM + KKz, —(BK) 2, - (KK) z,,)

4. Simulation

There are several methods to solve the n-DOF system; n equations of second order dif-
ferential equation for each DOF. Solution could be achieved analytically or numerically
by using one of the engineering Software. In this work, they will be solved using three

techniques:

1) MATLAB/Simulink: 2 simulation models are used in order to validate results
2) Modal Analysis; this method was explained in previous section

3) State space Representation
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4.1. First Simulation Model of the Mechanical Skeleton of the Human
Body

The first simulation model is built to include all the mass segments of the human body

together as shown in Figure 4.
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Figure 4. 1" simulation model of the mechanical skeleton of the human body using Stmulink/MATLAB.
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4.2. Second Simulation Model of the Human Body Using Ordinary

Differential Equations

The second simulation model of the human body is built by drawing the 2™ ODE for

each mass of the body segments separately using Simulink/MATLAB as shown in Fig-

ures 5-16.
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Figure 5. Simulation part for the seat segment.
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Figure 8. Simulation part of the lumbar spine segment.

On this work we only care about the head and lumber spine segments as they are

taking the most damages. In order to find their transfer function, MATLAB’s control

and estimation manager (CEM) toolbox is used. This is done by using the State Space

equation and the Bode plot for each mass of the human body as shown in Figures

17-23 and as follows.
1) Select the inputs of the system.
2) Select the outputs of the system.
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3) Open the control and estimation tools manager and linearize the system in order

to get the transfer function, state space equations, and other characteristics of the

system.

4) Obtaining the Bode plot for the seat, head and lumbar spine segments.

5) Obtaining the transfer functions.
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4.3. Model Analysis

Equations of motion of a multi-degree-of-freedom system under external forces are

given by the following equation:
[m]x+[B]Xx+[k]x=[f]

where [ml], [B], [K] and [{] for our system are explained as the following;

'™ml 0 0 0 O 0 O O O O 0 O
0O m o0 0 0 0 0 0 0 0 0 0
0 0 m 0 0 0 0 0O 0 0O 0 0
0 0 0md O 0O 0 0O O O 0 0
0 0 0 0ms 0 0 0 0 0O 0 0

(] 0O 0 0 0 0 m 0 0O O O 0 0
0 0 0 0 0 0 m 0O O O 0 0
0O 0 0 0 0 0O 0 m O 0 0 0
0 0 0 0 0 0 0 0 mM 0 0 0
0O 0 0 0 0 0 0 O O mo 0 0
0 0 0 0 0 0 0 0O 0O 0 mil 0
0 0 0 0 0 0 0 0 0 0 0 m2
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Bode Diagram
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Figure 21. Transfer function of the seat segment.
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Figure 22. Transfer function of the head segment.
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Figure 23. Transfer Function of the lumbar spine segment.

[ BL -BL 0 0 0 0 0 0 0 0 0 0
-BL BL+BA+BB -BA -BB 0 0 0 0 0 0 0 0
0 -BA BA+BC 0 -BC 0 0 0 0 0 0 0
0 -BB 0 BB + BD 0 -BD 0 0 0 0 0 0
0 0 -BC 0 BC + BE 0 BE 0 0 0 0 0
[B]z 0 0 0 -BD 0 BD + BF + BH 0 -BH -BF 0 0 0
0 0 0 0 -BE 0 Bl + BE 0 -BI 0 0 0
0 0 0 0 0 -BH 0 BH + BH 0 -BG 0 0
0 0 0 0 0 -BF -BI 0 Bl+BF+BJ 0 -BJ 0
0 0 0 0 0 0 0 -BG 0 BG 0 0
0 0 0 0 0 0 0 0 BG 0 BG+BK -BK
| 0 0 0 0 0 0 0 0 0 0 -BK BK |
[ KL —-KL 0 0 0 0 0 0 0 0 0 0 ]
—-KL KL+ KB+ KA -KA -KB 0 0 0 0 0 0 0 0
0 -KA KA+ KC 0 -KC 0 0 0 0 0 0 0
0 —-KB 0 KB + KD 0 -KD 0 0 0 0 0 0
0 0 -KC 0 KC + KE 0 KE 0 0 0 0 0
[K]: 0 0 0 -KD 0 KD + KF + KH 0 -KH -KF 0 0 0
0 0 0 0 -KE 0 KE + Kl 0 —KI 0 0 0
0 0 0 0 0 —-KH 0 KH + KG 0 -KG 0 0
0 0 0 0 0 -KF —KI 0 KF+KI+KJ 0 -KJ 0
0 0 0 0 0 0 0 -KG 0 KG 0 0
0 0 0 0 0 0 0 0 KJ 0 KJ+KK -KK
| O 0 0 0 0 0 0 0 0 0 -KK KK |
[ f]=[Vertical input force; 0;0;0;0;0;0;0;0; 0; 0; 0]

Vertical input force is any input force applied on the system such as sinusoidal wave
signal, step-function signal, ramp-function signal, impulse-function signal, etc. All the
variables in the above equations are numerically defined and set in Table 1 and Table
2.

4.4. State-Space Representation

The State-Space method is useful for modelling multi-DOF systems. It could be used to

represent the entire states of the system at any given time.
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General form representation:
X=Ax+Bu
y=Cx+Du

where A, B, Cand D are the system, input, output and feed-forward matrices, and x, y
and u are the state, output and input vectors.
For human body model in previous sections, the equations could be rewritten in

state-space representation form in order to model the whole system. It is assumed that:

X =2,X =2, X =25, X = 2, X = 23, X = 23, X = L4, Xg = 24, Xg = 25, %o = s,

Xy = g, Xy = Zg, Xi3 = 27, Xy = 27, X5 = Zg, Xig = Zg, X7 = Lo, Xy = Zg, Xyg = Zyg,

Xoo = Zigy Xo1 = L33y Xop = Zygs Xog = L334 Xoq = Iy

According to that, equations of the human body are as the following:
X = il( f — BLx, — KLx, + BLX; + KLX,)
m
1
X =—2(BLX1+ KLX, —(BL + BB +BA)x, —(KL+ KB+ KA)x,
m

+BAX, + KLXg + BBX; + KBX, )

X =%(BAX3 +KAX, —(BA+BC) X, —(KA+ KC)z; + BCx, + KCz)
X, =$(BBX3 + KBX, —(BD + BB) X, —(KD + KB) X, + BDX,, + KDXx,, )
X :%(Bst +KCx; —(BC + BE ) X, —(KC + KE) X, + BEX,; + KEx,, )

Xu:mi6(BDx7+ka8—(BD+BH +BF )%, —(KD+KH + KF)x,

+BFx;; + KFxyg + BHxys + KHx)

X5 :%(BCXQ +KCx,y —(BC + Bl ) x5 —(KC + K1) X, + Blx; + Klx )

X5 =%(BHXM+ KHx,, —(BH + BG) X5 — (KH + KG) X,; + BGX,y + kGXy )

%, :%(BJX21+KJX22—(BI +BF +BJ) X, —(KI + KF + KJ) g

+ Blxyg + Klx,, + BFX,, + KFx,,)

. 1
%.q :m_lo(_(BG)Xlg —(KG) X, + BGX,5 + kG, )

Yoy :ﬁ(mx17 + Kxg = (BJ + BK) X, — (KK + KJ) X,, + BKX,, +kKx,, )
, 1
%3 :E(BKXZI + KKX,, = (BK ) X,5 — (KK ) Xy, )

There are several methods to solve the state-space equations. In this work, the Lap-

lace inverse method has been used in order to get the transition matrix e"
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e™ = Laplace invers of (sl — A)™
x(t)=e"X (0)+ [;e*Bu(z)dz

Then,
y(t)=Cx(t)+ Du

Isim(sys, u, § function produces a plot of the time response of the dynamic system
model sys to the input time history ¢, u. The vector ¢ specifies the time samples for the
simulation (in system time units, specified in the Time Unit property of sys), and con-

sists of regularly spaced time samples.

5. Results

5.1. 1st Simulation Model Results

5.1.1. Sinusoidal Wave Input Signal

The velocity and the position for each of the head and lumber spine segments of the
human body with respect to the sinusoidal wave input signal are shown in Figures

24-27, respectively.

-

nInput = _EI SS_ rn Vellacity? @m%
Ge (R« OB Pas l[leae@« i 0% 08 % -~

Time offset: 0

Figure 24. Sinusoidal wave input and the corresponding head’s velocity.

ulnput ':'_EI S@_ 'Vn Poszition? l':' =] -S;h1
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h Time offset: 0

Figure 25. Sinusoidal wave input and the corresponding head’s position.
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Bl tnput = B % B veiocity2 b B
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Figure 26. Sinusoidal wave input and the corresponding lumber spine’s velocity.
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Figure 27. Sinusoidal wave input and the corresponding lumber spine’s position.

5.1.2. Impulse-Function Input Signal
The velocity and the position for each of the head and lumber spine segments of the
human body with respect to the impulse-function input signal are shown in Figures

28-31, respectively.

5.2. 2nd Simulation Model Results
5.2.1. Sinusoidal Wave Input Signal

The acceleration, velocity and position for both of the head and lumber spine segments
of the human body with respect to the sinusoidal wave input signal are shown in Fig-

ures 32-37, respectively.

5.2.2. Impulse-Function Input Signal
The acceleration, velocity and the position for each of the head and lumber spine seg-
ments of the human body with respect to the impulse-function input signal are shown

in Figures 38-43, respectively.
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Figure 28. Impulse-function input signal and the corresponding head’s velocity.
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Figure 29. Impulse-function input signal and the corresponding head’s position.
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Figure 30. Impulse-function input signal and the corresponding lumber spine’s velocity.
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Figure 31. Impulse-function input signal and the corresponding lumber spine’s position.
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Figure 32. Sinusoidal wave input signal and the corresponding head’s acceleration.
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Figure 33. Sinusoidal wave input signal and the corresponding head’s velocity.
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Figure 34. Sinusoidal wave input signal and the corresponding head’s position.
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Figure 35. Sinusoidal wave input signal and the corresponding lumber spine’s acceleration.
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Figure 36. Sinusoidal wave input signal and the corresponding lumber spine’s velocity.
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Figure 37. Sinusoidal wave input signal and the corresponding lumber spine’s position.
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Figure 38. Impulse-function input signal and the corresponding head’s acceleration.
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Figure 39. Impulse-function input signal and the corresponding head’s velocity.
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Figure 40. Impulse-function input signal and the corresponding head’s position.

rnsmpegs = e nacce1eration4 lﬂ@g .
S0 Akl OERODES - isEOR P AEEB DA ~-

Figure 41. Impulse-function input signal and the corresponding lumbar spine’s acceleration.
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Figure 42. Impulse-function input signal and the corresponding lumbar spine’s velocity.

K2
298 0:;3: Scientific Research Publishing



M. AlShabi et al.

5.3. State-Space Method Results
5.3.1. Sinusoidal Wave Input Signal
The velocity and position for both of the head and lumber spine segments of the human
body with respect to the sinusoidal wave input signal are shown in Figures 44-47, re-

spectively.

5.3.2. Impulse-Function Input Signal
The velocity and the position for each of the head and lumber spine segments of the
human body with respect to the impulse-function input signal are shown in Figures

48-51, respectively.
6. Discussion and Conclusion

6.1. Discussion

Figure 20 represents the transfer function (gain and phase shift) of the human segments

= @ s ]
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Figure 44. Sinusoidal wave input signal and the corresponding head’s velocity.
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Figure 45. Sinusoidal wave input signal and the corresponding head’s position.
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Figure 46. Sinusoidal wave input signal and the corresponding lumbar spine’s velocity.
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Figure 47. Sinusoidal wave input signal and the corresponding lumbar spine’s position.
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System: sys
Peak amplitude: 0.00862
At time (sec): 17.7

Figure 48. Impulse response of the head’s velocity.

System: sys
Peak amplitude > 259
At time (sec) > 3e+004

Figure 49. Impulse response of the head’s displacement.
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Figure 50. Impulse response of the lumber spine’s velocity.

Figure 51. Impulse response of the lumber spine’s displacement.
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(seat, head and lumber spin) subjected to vertical sinusoidal force with amplitude of 15
N. Head and lumbar spine segments are most segments that suffer from the vibration.

The gain represents the amplitude ration between the output and input inertia. Posi-
tive gain indicates that the F,,/F, relationship will have the same phase. Conversely,
negative gain is reflected by the F,,/F, opposite phases.

Resonance can cause large oscillation when the frequency of excitation coincides
with the natural frequency of the relevant subject. Harmful mechanical effect of vibra-
tion occurs because of induced strain on different tissues, caused by motion and de-
formation within the body.

The mechanical energy due to vibration is absorbed by tissues and organs, when the
vibrations are attenuated in the relevant body segment. Consequently, vibration leads
to muscle contractions (Voluntary and involuntary) which can cause local muscle fati-

gue, particularly when the body vibrated at the resonant frequency level.

6.2. Conclusion

Two simulation models have been designed to represent the human body subjected to
vertical vibration by using mechanical parameters obtained from [15]. Simulink/
MATLAB software has been used to develop and implement the models obtained using
the model analysis and state-space methods. The results from these two approaches
confirm that the head and lumbar suffer the most from vibration in terms of forces. In
addition, it is found that the rest of the organs may become strained leading to pain and

fatigue, depending on the magnitude of the vibrations.
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