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Abstract 
The paper introduces a simple theoretical model aimed to provide a possible deriva-
tion of the quantum fluctuations of the black body radiation. The model offers the 
chance of inferring and linking contextually quantum and relativistic results. 
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1. Introduction 

In 1859, Kirchhoff had the remarkable idea that a small hole in the side of a massive 
body of material containing a large cavity was the best experimental approximation of 
the concept of total absorber: the radiation penetrating through the hole was correctly 
assumed bouncing between the internal walls of the cavity with a little probability of 
escaping outside. With this viewpoint, still today acknowledged [1], Planck modeled 
1901 the thermodynamic equilibrium of the radiation field inside the cavity. Since any 
thermodynamic system is subjected to statistical fluctuations around the equilibrium 
configuration, Einstein proposed in 1909 a theoretical model about these fluctuations 
working on the Planck result. The Einstein model was focused essentially on the black 
body radiation assumed at the equilibrium in a cavity with perfectly reflecting walls. 
This assumption arose however the difficulty of explaining the thermalization mechan-
ism of the radiation field. The second law of thermodynamics states that any system left 
undisturbed for a sufficiently long time tends to the equilibrium state [2]; nevertheless 
the thermalization time of photons at temperatures below 109 K is expectedly very long, 
as their direct interaction is negligible compared to that with matter [3]. The fact that 
the thermalization process is slightly shortened in the presence of rarefied gas particles 
[4], shows that in fact the interaction of photons with matter, i.e. with the internal walls 
of the cavity, is required to explain the equilibrium condition of the black body at the 
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usual temperatures and times at which is tested the Planck law. The equilibrium condi-
tion is attained therefore considering partially reflecting walls of the cavity to promote 
the photon-solid matter interaction mechanism via continuous absorption and reemis-
sion of radiation. 

The problem of the quantum fluctuations of black body radiation is still today de-
bated for its theoretical interest [5] [6], in particular as concerns the thermalization 
mechanism of the photons in the cavity. Just this is the problem: any model aimed to 
describe the Planck law and its transient deviations from the equilibrium should infer 
explicitly this kind of interaction, without need of postulating it separately and pur-
posely. Moreover, the fluctuation of a thermodynamic system implies in general several 
non-equilibrium phenomena, e.g. local temperature gradients and configuration changes; 
specifically, are expected gradients of radiation frequency and mass evaporated from 
the internal surface of the cavity, whose dynamics contributes to the thermalization of 
photons. 

While focusing on the radiation field only seems reductive, the variety of phenomena 
involved when a black body system is out of the equilibrium suggests the usefulness of a 
comprehensive approach to the problem and introduces the three main motivations of 
this paper: 

1) To propose a model where the photon interaction with the walls of the cavity ap-
pears as a natural consequence of the theoretical approach underlying the black body 
physics. 

2) To highlight the thermodynamic aspects of the black body fluctuations with ref-
erence to their quantum basis, in particular the uncertainty principle. 

3) To show that relativistic results are also obtainable in the frame of a unique con-
ceptual model. 

After a preliminary outline of the main dynamical variables prospectively implicated 
in the problem, the model is specifically addressed to introduce not only the fluctuation 
but also the main physical laws expectedly useful to describe it. Despite the inherent 
complexity of the problem, the exposition is organized in order to be as simple, gradual 
and self-contained as possible. 

2. Preliminary Considerations 

Consider one free particle of mass m moving within a space range x∆  during a time 
range t∆ . It is in principle possible to express x∆  as a function of the Compton 
length Cλ  of the particle; so define the range size in Cλ  units putting 

, 1,hx n n
mc

∆ = ≥                            (1) 

where n is an arbitrary real number. The second position emphasizes that the range 
x∆  where the particle is allowed to move cannot be smaller than Cλ , which is an in-

trinsic physical property of the particle itself through its mass m. 
In principle, nothing hinders to express the numerical parameter n as the ratio c v , 

being v the component of velocity of the particle along x∆ : is attracting the chance 
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that 1n →  is consistent with Cx λ∆ →  whereas x∆ →∞  for 0v → , in agreement 
with the arbitrary size of x∆  and value of v in a given reference system R. The formal 
choice of introducing the range size in Cλ  units does not exclude thinking even a 
photon confined in x∆  during a time range t∆ , which compels therefore defining 

x c t∆ = ∆ . Dividing both sides of Equation (1) by c t∆ , one finds in R 

2 .x hn
c t mc t
∆

=
∆ ∆

 

Defining the link between time and space range sizes via c, in order to ensure that 
any massive particle is effectively confined within x∆  during t∆ , the positions 

1, ,x c v c
t t

ν∆
= = ≤

∆ ∆
                       (2) 

yield 

2
0 0, , , .cnE n mc E h

v
ε ε ν= = = =                   (3) 

The first equation simply rewrites 0 Eε ≥  as 2
mmc hν= , being ( )m c v tν ν= ∆ ≥ . 

Simple considerations show that these positions are physically sensible. The first eq-
uation reads indeed 

2, , ,h h v cmv h mc
c c
ν ν λ

λ ν
= = = =                   (4) 

i.e. mv  is related to the wavelength λ . Regard λ  with the physical meaning of wa-
velength of matter wave introducing a multiplicative factor 1γ <  necessary to express 
the wavelength as a function of v instead of c, as it appears in the third equation. Divide 
both sides of the first equation by the arbitrary number γ ; one obtains 

, , 1,mv h h c
c
ν γλ γλ γ

γ γ λ ν
′= = = = <

′
                (5) 

so that λ′  is in effect defined by v cγ′ =  instead of c; then 
2

2
h mc vp

cλ γ
= =

′
 

yields 
2

0
2 , , .h v mc mvp p

c
εε ε

λ γ γ γ
= = = = =

′
                (6) 

In other words, the matter wave propagating at rate v c<  implies λ λ′ <  in 
agreement with 0 Eε > . The result (6) is interesting because it is easy to show that 

( )21 ;v cγ = −                            (7) 

so, through the position n c v= , Equation (6) yield the De Broglie wave momen-
tum of the particle and contextually the relativistic expressions of energy and mo-
mentum, whereas Equations (1) and (6) imply the corpuscle/wave dual behavior of 
matter. 

To check this point, replace in the first Equation (6) vν λ′ ′= , so that 2 2v c hν ε′=  
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and thus ( )2 21 v c hε ε ν ′− = − ; hence 

2 2 21 .mc v c L hν ε′− − = = −  

At the left hand side appears the Lagrangian L of the free particle, which correctly 
results as a difference of two energies. Indeed by definition ( )h h vν λ′ ′= = pv , so that 

Lε = −pv . The concept of action dL t∫  also follows by consequence. Note that in the 
expressions (6) of ε  and p appears the ratio m γ ; admitting that this ratio is finite 
even in the limit v c→  if contextually 0m → , thus obtaining the undetermined form 
0/0, one finds 2

0m cε =  and 0p m c=  having put by definition 

( )0
0

lim .
v c
m

m m γ
→
→

=                            (8) 

This limit holds for a photon wave, in which case Equation (6) yields cpε = . For a 
massive particle instead 

2 21 , 1 .mv h hp t t v c
c c t
ν

γ γ
′= = = ∆ = ∆ −

′∆
                (9) 

If mv γ  is an invariant expression of momentum, then the right hand side must be 
an invariant quantity as well; in effect t′∆  for v const=  is the Lorentz transforma-
tion of t∆  between inertial reference systems displacing at rate v, in either of which 
the particle is at rest. Moreover it appears that γ  is not mere numerical factor, actually 
it allows linking the cases 0m ≠  and 0m =  depending on whether 1v c ≤ . 

These conclusions are inferred regarding in particular x∆  as a mere range size; i.e. 
the kinetic properties of a free particle follow simply as a consequence of the space and 
time ranges available to and compatible with its dynamical behavior. The frequency ν  
defines the range size 

cx
ν

∆ =                               (10) 

according to Equation (2); i.e., in agreement with the dual behavior of matter, the range 
size is related via ν  to the wavelength of the pertinent matter wave. 

Furthermore, an interesting consequence follows regarding x∆  as a physical con-
strain to the particle delocalization: for example one could suppose that x∆  is deli-
mited by two infinite potential walls that define its boundaries, in which case the par-
ticle must be thought bouncing back and forth in a given space range without chance of 
escaping. In other words, Equation (1) does not exclude that t the time t tδ∆ +  the 
particle could be located at x xδ∆ + , as instead it is purposely excluded now. If so, 
then x∆  is actually an one-dimensional cavity; thus the concept of frequency ν  is no 
longer the reciprocal time range 1t−∆  necessary for the photon to travel x∆ , rather it 
is related to the bouncing rate physically implied by the boundary potential walls. This 
is understandable thinking a steady photon wave with wavelength max 2 xλ = ∆  or mat-
ter wave with wavelength max 2 xλ γ′ = ∆  of Equation (5), both additional to all wave-
lengths allowed in the cavity. So, owing to Equation (2), the lowest frequencies allowed 
for photon or massive particle traveling through x∆  are respectively with obvious 
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notation 

0 0 0

max max

1 1 1, ;
2 2ph m ph

c v v c v c
t t

ν ν ν
λ λ γ γ

= = = = =
′∆ ∆

             (11) 

Consequently the minimum energies 2hν  and ( ) 2h v xγ∆  regard x∆  as a one- 
dimensional cavity where matter particles or even photons are confined without chance 
of escaping. Note that maxλ  and maxλ′  have been inferred in Equation (11) after hav-
ing simulated a confinement mechanism constraining any particle to move within x∆ ; 
it is easy to show however the possibility of reversing this path, i.e. that once admitting 
the existence of the limit momentum wavelengths maxλ  and maxλ′  it is possible to in-
fer a mechanism that constrains the motion of any particle within x∆  only. This point 
is highlighted just below and later in the Section 7. 

Implement to this purpose the case of a particle bouncing elastically back and forth 
against either boundary wall that delimits the confinement range, Equation (11); the 
momentum change of the particle reads thus 2p mv γ∆ = . If the bouncing lasts a time 
range t∆ , the force acting on the wall is 

2 ;
pw

p mvcF
t xγ

∆
= =

∆ ∆
 

the subscript pw  stands for “potential wall” to stress that this particular range is able 
to confine any particle. It is clearly possible to express F in Planck units via an appro-
priate multiplicative factor q; then the last result reads 

4 2 ,
pw

c mvcF q
G xγ

= =
∆

 

which yields 

3
2 .pw

mvGx
q cγ

∆ =  

This is not a hypothesis “ad hoc”, as the Planck units have fundamental worth, being 
based on dimensional relationships involving fundamental constants of nature. It is 
immediate to describe in this respect the particular case of photon confinement taking 
the limit for v c→  and 0m → , which yields 0m mγ →  according to Equation (8). 
Putting then 0M m q=  this limit corresponds to the confinement of a photon in x∆  
and reads 

2
2 ,co

MGx
c

∆ =                             (12) 

which expresses the condition even for a photon to be trapped inside any x∆  of such 
size together with M by consequence of the gravitational effect of this latter. For ob-
vious reasons, the subscript pw  has been replaced by that stressing the idea of M dri-
ven confinement. 

Start eventually from the identity (1) x h mv∆ ≡  to obtain p x h γ∆ =  thanks to 
Equations (1) and (3); being by definition 1γ < , one infers p x h∆ >  whatever 0v ≠  
might be in the reference system R. Moreover, replacing p via the first Equation (6) as 
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well, one also finds 2p x h v x cγ ε∆ = = ∆ ; thus h v t cγ ε= ∆  yields ( )c v h tγ ε= ∆  
in the same R. As of course 1c vγ > , reasoning exactly as before one finds t hε∆ > . 

Consider now the identity ( )o op p p p≡ + − , being op  a constant momentum 
component, and note that the right hand side defines an arbitrary range p∆  whose 
upper and lower boundaries are op p+  and op  respectively. Is essential the fact that 
both p and op  are arbitrary and independent each other, so that the same holds for 
the range size and its boundary coordinates. Regarding in an analogous way even tε∆ , 
the straightforward conclusion is 

, .p x h t hε∆ ∆ > ∆ ∆ >  

Apart from the simplicity of reasoning, is remarkable the fact that the most typical 
feature of the quantum physics, the Heisenberg inequalities, has been obtained from the 
relativistic Equation (6). 

Equation (3) and other results of this section have been inferred directly from general 
considerations about the properties of the space time [7] in the frame of a unique and 
comprehensive approach “ab initio”. Equation (7) will be examined further on in the 
Sections 4 and 7 to clarify how these considerations are linked to the quantum 
fluctuations. 

3. Fluctuations 

This section introduces the fluctuation of all variables previously introduced, with the 
aim of finding possible links between these variations. Differentiate 0 nEε =  to simu-
late the physical idea that both energies are subjected to fluctuate: as by definition the 
dynamical variable of 0ε  is the mass m whereas that of E is the frequency ν , write 
thus according to Equation (3) 

2
0 ,En E n v

c
δε δ δ= −                         (13) 

being 
2

0 , .c m E hδε δ δ δν= =                       (14) 

These positions relate in general mδ  and δν  to vδ . Thinking specifically the 
black body cavity, for example, the first Equation (14) describes the fluctuations of the 
amount of mass evaporated from the internal walls of the cavity, the second Equation 
(14) concerns the corresponding frequency fluctuation of the radiation field in it con-
tained. Equation (13) relates them and requires temperature fluctuation too, although 
not yet explicitly concerned. To clarify this point note that the changes 0δε  and Eδ  
are defined around the respective 0ε  and E, which can be regarded as equilibrium 
values. For the following purposes it is useful to calculate the average fluctuations 

0δε  and Eδ  considering arbitrary fluctuation ranges around an arbitrary refer-
ence energy value. For instance Eδ  is calculated considering various ranges jEδ  
of values around the equilibrium value eqE  and taking their mean value; if 1 j N≤ ≤ , 
then 1

jjE N Eδ δ−= ∑  is the average fluctuation of the system matter+radiation; the 
same holds indeed to define 0δε . In principle therefore 0δε  and Eδ  are inde-
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pendent of the respective eqE  and 0eqε , which will be denoted in the following as E 
and 0ε  for simplicity of notation. Trivial manipulations of Equation (13) yield 

2 2
0 ,n Y E E n Yδε δ ζδ ζ= = =                     (15) 

where 
2

2
1 1 , .

24
E E E vY

E n cn
δ δε δ δδε
δε δ δε

 
= − − =  

 
             (16) 

In general 

( ), , , , mY Y r v v r δν δ
δν

= =                      (17) 

emphasizes that the variables of the problem are four and that only Y depends upon 
vδ . Regard first Y and 2n  separately and introduce the mean value Y  calculated in 

arbitrary ranges of all variables except vδ . Thus 

1 1 1 d d dY Y v m
v m

ν
ν

=
∆ ∆ ∆ ∫∫∫  

defines 

( ) 1 ;k k v
Y

δ= =                           (18) 

of course 2 1v v v∆ = −  denotes an arbitrary range of velocity components with respect 
to which is integrated dY v , whereas vδ  is the velocity fluctuation concurring togeth-
er with mδ  and δν  to define the relationship (13) between Eδ  and 0δε . The no-
tation emphasizes that k is actually an arbitrary numerical parameter, i.e. a scale factor 
dependent on vδ  only, such that for example 

( ) ( )0 0, ;k E kE k kδ δ δε δ ε= =  

by consequence k is also a conversion factor such that kE  and 0kε  can be related to 
energies with different physical meaning with respect to the initial E and 0ε . 

Among the possible values of Y, calculate Equation (15) with the specific value Y ; 
hence, owing to Equations (3) and (13), 

2

2 2
0 0

, .E k Ek Y Y
n

δ
δε ε

= = ≡                       (19) 

This result yields: 
2

2
2 2 2

0 0

1E k Ek v k
n c

δ
δε ε

= = =                    (20) 

These equations are obtained simply averaging the ratios of Equation (19). It worth 
emphasizing that 2v  is linked to the average temperature in the case of an ideal gas 
where by definition the particles are non-interacting; this shows that v is the velocity of 
matter particles evaporated from the walls of the cavity. So 2v  is related to the equi-
librium temperature of the cavity containing the black body radiation field. In this 
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one-dimensional approach x∆  is the distance between two matter boundary surfaces 
confining m and the photon wave of frequency ν , both subjected to the respective 
fluctuations mδ  and δν . Also, vδ  is the obvious consequence of the expected 
temperature fluctuation around the average value pertinent to 2v . 

So far the first Equation (3) is the only equation correlating E and 0ε . To find a 
second equation, the one linking E and v, consider now Equation (13) that involves the 
variables appearing in (17) and yields 

( ) ( )2 , ,E vn n E v v E
c E

δ ζ ζ ζ
δ

− = = =                  (21) 

It is evident that a hypothesis has been introduced regarding 2Yn  of Equation (15) 
as the function ( )Eζ . In principle Equation (21) is not new with respect to Equation 
(15); however the form of this latter was useful to infer Equation (18) and the tempera-
ture implied by Equation (20), whereas Equation (21) is now implemented thanks to its 
analytical form easily integrable. The solution 

( ), dE
E o

Ev Z c E
Z p

ζ= =
+ ∫                      (22) 

is the sought second equation linking E and v; the notation emphasizes that the integra-
tion constant op  has physical dimensions of momentum. Put 

2
0 1 2 ,E Eζ ζ ζ ζ= + + + ⋅ ⋅ ⋅                         (23) 

which yields at the first order of approximation 

2
0 1

, ;
2 o

o

Ev p const
p E c E cζ ζ

′= =
+ +

                 (24) 

if the position (23) is correct, then even this lowest order of approximation should give 
a sensible result. The validity of Equation (24) is preliminarily proven recalling Equa-
tions (3), according which v yields 

1
0 2

op c Ecn
v E

ζζ= = + +  

and then 
2

1
0 0 ;

2o
EnE p c E ζε ζ= = + +  

so, neglecting preliminarily the third addend at the right hand side, this result reads 

0 0E Eε = + , having put 0 1ζ =  and 0ocp E= . With the integration constant 0op ≥ , 
therefore, the result is nothing else but the statement 0 Eε ≥  of Equation (1). Clearly 
with an appropriate choice of the integration constant this inequality holds even re-
taining the 1ζ  term. 

Before proceeding, it is useful to verify further the validity of the equations hitherto 
inferred, in particular as concerns the physical meaning of the series expansion (23) of 
Equation (15). A simple one-dimensional approach is still enough for the present 
purposes. 
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4. Check of the Preliminary Results 

Recalling Equations (10) and (1), trivial manipulations show that Equation (19) 
reads 

2, .CE h D m D kδ δν νδ λ ν= = =                     (25) 

The first equation links mδ  and δν : if in particular Eδ  is due to the change of 
photon frequency in x∆ , then it can be nothing else but the quantum fluctuation of 
the radiation field in the range; also, δν  is related to the mass fluctuation rate mνδ  
occurring at a typical length scale of the order of the Compton length Cλ  that defines 

Eδ  through D. The free parameter k fits the basic physical definition 2
Cλ ν  of diffu-

sion coefficient to the appropriate value in specific situations. Specifically, as it will be 
shown below, this result also implies regarding x∆  as the distance separating the sur-
faces of two bodies of matter: thinking for example to the black body, m can be the 
mass of a particle evaporated from the internal surface of the cavity and diffusing 
throughout the cavity, whose size x∆  is defined as a function of n. 

From Equation (25) follow interesting consequences. Rewrite 

( ) 1log , ,o
DE m V

m
δ δ β

β ν
= =                    (26) 

where oV  is an arbitrary constant volume. 
Note that ( ) 1mν −  has physical dimensions time/mass; thus β  is the particle mo-

bility, also defined as velocity/force. Moreover D β  has physical dimensions force × 
length, i.e. pressure × volume. 

The dimensional analysis suggests that D β  should be related to, and thus propor-
tional to, Bk T . Putting indeed BD k Tβ ∝  and merging the proportionality constant 
with k of Equation (18), one finds concurrently three relevant results. 

First the well known law pressure volume Bk T× = ; of course this result holds for non 
interacting particles, as in the case of an ideal gas, whereas T is clearly linked to 2v  
previously found. With specific reference to the present model, the gas is that formed 
by evaporation of matter from the internal walls of the cavity containing the Planck 
radiation; 2v  is related to the temperature of gas particles in equilibrium with the 
surface of the cavity. 

Moreover 

, , log ,B B
o o

D C mk T E k T C
C V

δ δµ µ
β

 
= = = = 

 
           (27) 

where C is the concentration of m in oV  and o o oC m V=  is a constant. So the 
former equation is the well known Einstein equation linking diffusion coefficient and 
mobility. 

Eventually, the third equation defines the chemical potential; this clarifies the physi-
cal meaning of Eδ  and suggests the chance of identifying oC  as the equilibrium uni- 
form concentration that implies 0µ =  in correspondence to 0mδ = , which indicates 
the end of the diffusion process. 
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In effect, the diffusion equations are contextually obtainable. Dividing both sides of 
Equation (25) by xδ , one finds 

E mD
x x x

δ δµ δν
δ δ δ

= =  

i.e. this equation defines a force F acting on m. It is easy to convert force into mass flux 
J, having physical dimensions of mass per unit time and surface, dividing both sides by 

oV ν . Recalling that by definition F xδµ δ= − , this equation reads 

, .
o

C FJ D J
x V

δ
δ ν

= − =  

This is the well known Fick diffusion law, from which also follows the second Fick 
law with the help of an appropriate continuity equation that excludes mass sinks or 
sources within oV . Given a function ( ),f f x t= , its differential  

( ) ( )f f x x f t tδ δ δ= ∂ ∂ + ∂ ∂  

subjected to the condition 0fδ =  reads 0xv f x f t∂ ∂ + ∂ ∂ =  with xv x tδ δ= ; so 
with vector notation f f t⋅∇ = −∂ ∂v . Putting by definition f=G v , where G is an ar-
bitrary vector to be specified, the result f f t∇ ⋅ − ∇ ⋅ = −∂ ∂G v  yields f t∇ ⋅ = −∂ ∂G  
once having put 0∇ ⋅ =v . The solenoidal character of the velocity vector excludes 
sinks or sources of matter crossing from inside or outside the surface of an ideal flux 
pipe around v. Also, it is clearly convenient to identify the arbitrary vector G with the 
flux vector J and thus f C= . If so, then f t∇ ⋅ = −∂ ∂J  yields the component 

, C CC D
x x t
∂ ∂ ∂ = = ∂ ∂ ∂ 

J v  

i.e. the definition of mass flux and the one dimensional second Fick law. 
Eventually, Equation (26) reads with the help of Equations (3) and (27) as fol-

lows 

( )log ,B o o
o o

m mE k T m M M const
M M

δ δ= =  

Suppose now that m is the j-th mass in a system constituted of a number totj  of 
masses, i.e. actually it is regarded here as jm . Next sum up this equation over j, i.e. 
over all masses of the system; one finds thus 

log , , .j
B j j o j j

j j o

m
E k T M m

M
δ δ= Π Π = Π =∑ ∑  

Since by definition log log logj j oδ Π = Π − Π , assuming oΠ  independent of the 
index j one finds 

( )log , log .B j j o o o
j

E k S S
T
δ

= Π Π + = − Π∑  

This equation defines the entropy S a function oS  apart as 

, log ;o B j j
j

E S S S k
T
δ

= − + = − Π Π∑  
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note that oS  is not necessarily constant, simply it does not depend upon j, e.g. it can 
depend on T or pressure and so on. So at constant T one finds oE TS TSδ − = − . These 
contextual results show that the driving force of the Fick laws is the entropy increase, i.e. 
the second principle of the thermodynamics. 

All this is linked to the further information provided by Equation (25). Noting that 
( )m m mνδ δ ν δν= − , this equation yields 

( ) ;
mE mD D

δ νδ δν
δν δν
+

=                      (28) 

this equation relates Eδ  to ( )mδ ν ; depending on the sign of this latter, one can have 
mass fluctuations corresponding to δν , to which is related the energy fluctuation Eδ . 
If in particular m constν = , then m mνδ δν= −  implies h D mδν νδ= . It appears that 
the energy fluctuation δν  of the radiation is linked to the evaporation or deposition 
rates mν  of matter on or from the contact wall; their relative balance determines the 
increasing or decreasing amount of mass in the cavity correspondingly to the concur-
ring oscillations of δν . Eventually note that the left hand side of Equation (28) defines 
the energy h m Dε ν ν= +  to which contribute not only the radiation but also the mat-
ter through its evaporation rate mν . This conclusion automatically includes the inte-
raction between photon and solid matter, without excluding of course that of photons 
with gas particles evaporated from the surface. Moreover the model provides thermo-
dynamic information able to describe both the equilibrium state of the system and its 
transient deviation during its fluctuation. 

Combine now Equations (24) and (6) to eliminate v; as h mvλ=  owing to Equation 
(4) and thus 

,E pc v cγ γε= =  

the result is 

( ) ( )22 2
0 1 2 , .o

v pcE pc E pc p c w w
c

ε ζ γ ζ
γ γε

= + + = =  

So 

( )
2

2 2 1
0, .

2o
E pcE Z pc p c const Z

w w w
ζε ζ γ= + + =              (29) 

Put preliminarily 1 2 0ζ ζ= = , i.e. neglect the first and second order terms of Equa-
tion (23); this equation reduces to 0ζ ζ≈  and reads then 

( ) ( )222 2 , , , .op constE Z constp c m c p p m m
w w c mc

ε ε ε
ε

′ ′ ′ ′ ′ ′= + = = = =  (30) 

Equations (29) and (30) concern both arbitrary square energies, a scale factor apart 
for the three quantities characterizing the initial ε  and p of Equation (6), and thus 
are physically equivalent provided that 2p v cε′ ′ ′= ; this requires of course 

v p v pε ε′ ′ ′ =  and implies an appropriate scale factor that converts the initial m to 
m′ . In effect the variables of the problem are three, i.e ν , m and v, i.e. n; whatever 
the specific value of ( )Z Z E=  might be, the constrains of these positions are three 
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as well, i.e. the factors linking the last three equations. It is worth noticing that if 
m m′=  for const mc= , then ( ) ( ) ( )22 22 2 2p c pc mcε ε′ ′− = − =  by definition. Since 
this conclusion holds even if referred in particular to different coordinate systems in 
reciprocal constant motion, this shows that these equations represent invariant ex-
pressions of energy. 

Consider now that in Equation (29) 

( )
2

22 21 1 1 :
2 2 2
E pc E pc

w
ζ ζ ζ

γε γ ε= =  

this term having the form 2p ε  with 1 0ζ <  is a well known result of quantum grav-
ity, which solves three cosmological paradoxes [8]. In conclusion, combining the zero 
order approximation of Equation (23) with Equation (6) one finds the classical expres-
sion of relativistic energy; the additional first order term accounts for the quantum 
correction of the rest energy 2mc  of cosmological significance. The Section 7 will 
show that actually even this result is not accidental. 

The fact that 1 0ζ <  fits the physical meaning of the literature result stimulates a 
further idea. As ( ) 0E v c ε=  according to Equation (3), Equation (23) yields at the 
first order 

0 1 0
0 1 0, ;c v v v c v

c c
ζ ζ εζ ζ ζ ε

′+ ′= = = +  

in effect 1 0ζ <  is compatible with v c′ < . The form v av b′ = +  suggests that v and 
v′  could be, at least approximately, velocity components expressed in different refer-
ence systems. Is thus attracting the idea of implementing v′  to define n c v′ ′=  and 
then 0 n Eε ′ ′ ′=  in analogy with Equation (3) but in a different reference system. 
Moreover admit for generality that 0ε ′  and E′  depend on new mass m′  and fre-
quency ν ′ ; thus, differentiating 0 n Eε ′ ′ ′=  exactly as before to infer Equation (21), 
one finds 

2 .E v vn n
c E c

δ
δ

′ ′ ′
′ ′− =

′
 

In effect v′  has no peculiarity with respect to v previously introduced; both are ar-
bitrary velocities, both fulfill the same kind of connection between 0ε  and E. If this 
reasoning is correct, then even this result must have a sensible physical meaning. The 
check is again carried out solving this primed differential equation. One finds 

2 2 2
o

E cv
E c p ′

′
′ = ±

′ +
 

and thus 

2 2
.

1

v m cE
v c

′ ′
′ = ±

′−
 

Since E c′  is momentum, this result reads 
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2 2

2 2
, 1 ;

1
m vp v c

v c
γ

′ ′
′ ′= ± = −

′−
                 (31) 

i.e. is admissible Equation (21) with the right hand side having the form v c  instead of 
the definition (23) of ζ . In fact, this conclusion is still compatible with Equation (23) 
itself simply putting 0 0ζ =  as a particular case in an appropriate reference system. It 
is instructive to obtain this last result even through a different reasoning. 

Calculate via the second Equation (6) 
2

2 .mc
v v
ε γ

γ
∂ ∂

= −
∂ ∂

 

Split this equation putting by definition 

2
2 , .p p mc

v v
ε γ

γ
∂ ∂

= = −
∂ ∂

                      (32) 

The second position, allowed in principle by dimensional reasons, allows to handle 
the first equation as follows with the help of the first Equation (6) 

( )2 .
pvv pp vγ

ε ε ε
∂∂ ∂

= − = −
∂ ∂ ∂

 

Note that there is no reference to vδ  in this last result, which instead relates the 
changes of p and pv  to dε  of the energy. Assume therefore that these changes are 
due to dm  and not to dv . In this case, the first Equation (6) yields 

2
2

21 .v
c

γ = −                             (33) 

This result is confirmed by the second Equation (32), which yields with the help of 
the third Equation (6) 

2 ;mv mc
v
γ

γ
∂

= −
∂

 

this equation reads ( )2d dv c vγ γ = −  and is easily integrated. The result is 
2

2
2

1 12 ,
2 2

vconst
c

γ = −                        (34) 

being 2const  the integration constant. It appears that putting 1const =  the result 
coincides with that previously found, despite here has been considered the dependence 
of p and ε  on v. It is easy to realize that only the positions (32) allow a consistent cal-
culation of γ  in Equations (33) and (34); for instance, replacing Equation (32) with 
the vγ ε∂ ∂  and ( )2p mc vγ γ= ∂ ∂ , in principle also possible because γ  is dimen- 
sionless, would imply inconsistent expressions of γ . This conclusion agrees with the 
result of Equation (31). 

It appears in conclusion that the term 0ζ  is enough for the purposes of the present 
model, while it is confirmed that the zero order term of the series (23) accounts for 
“classical” relativistic results. 

Implement then Equation (21) in the simplest form 



S. Tosto 
 

1681 

0 0 .Eδε ζ δ=                            (35) 

Comparing with Equation (19), 0ζ  is nothing else but anyone among the possible 
values of 2k n . Therefore, the third equation of the problem that regards separately 

0δε  and Eδ  reads 

0 0 02 , ;kE E
n

δ δε δ ζ δε= =                  (36) 

the physical meaning of this equation is to consider the averages of all possible Eδ  
and 0δε  compatible with the given E and 0ε ; in effect the arbitrary changes Eδ  and 

0δε  are independent of the respective E and 0ε , as already remarked. 
In conclusion, to the four variables appearing in (17) correspond three Equations (3), 

(21) and (36); the free parameter k introduced in (18) is a freedom degree of the prob-
lem as a function of which are in principle determinable various E, m and v, i.e. n. 

These results have been hitherto obtained without specific reference to the black 
body cavity and even regardless of the Planck formula. The next section concerns just 
this topic. 

5. The Black Body 

To specify the previous results in the case of radiation in a black body cavity of arbi-
trary volume V, it is useful to consider first the Planck law. Noting that this law reads 

( )
3

3
24π , , ,

exp 1Pl
B

N ch V N
V h k T
ν

ν ν
ν

ρ
νν

= = =
−

 

let us examine the three factors that define Plρ . 
The degeneracy factor 2 of the Bose statistical distribution of photons with the same 

energy corresponds to the orthogonal polarizations of light [9], to which is due the 
usual elliptic polarization of a light beam of frequency ν . 

The factor 4π  suggests an integration over a solid angle dΩ . The physical meaning 
of this statement is clarified below. It is anticipated here that the integral concerns the 
random impacts of photons on various points of the internal surface of the cavity be-
cause of multiple reflections; accordingly any element of this surface thermalizes the 
radiation trapped inside V. 

The notation N Vν ν  of the number density of photons with frequency ν  empha-
sizes that just the wavelength c ν  defines the volume Vν  enclosing a cluster of Vν  
photons with the same frequency ν , whereas instead the true volume V of the cavity is 
seemingly irrelevant; it is replaced by the local volume defined by the cluster of photons 
themselves, supposed of course non-interacting at the usual temperatures at which is 
modeled and tested the black body radiation law. Also this crucial point is concerned 
below. 

With these hints, is really easy to infer the Planck result even in the present physical 
frame only. 

First of all, Nν  is found implementing once more Equations (26) and (27). Integrate 
Equation (26) with the help of Equation (27) between two arbitrary energies ε  and oε ′ ; 
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one finds ( ) ( )logo B ok T C Cε ε ′− = . It is possible to write oC C Cν= ± , because in 
principle C can be greater or lower than the constant oC  of interest for the present 
reasoning; then this last equation reads ( ) ( )exp 1o o BC C C C k Tν ν ε ′= ∆ ± . Of course 

o o oC m V=  and oC m Vν ν=  are referred to the same arbitrary volume oV ; more- 
over the masses om  and mν  are proportional to the respective numbers oN  and 
Nν  of particles, as they refer to a unique material or kind of particle. Hence one finds 
with these positions 

( ), log
exp 1

o
o o B o

o

B

NN k T C C

k T

ν νε ε
ε ε

′= = −
 −

± 
 

          (37) 

Note that oε  has the same form of µ  of Equation (27) a constant oε ′  apart, i.e. it 
is chemical potential. This result is nothing else but the well known statistical distribu-
tion of bosons and fermions as a function of the energy; their occupancy numbers of 
quantum states are inferable in general from the respective profiles as a function of 
temperature for either sign, instead of being postulated “a priori”. 

This point does not need further comments. Here, with the minus sign and putting 
hε ν∆ = , one calculates the Planck equation. 

The number density N Vν ν  is calculated via a variable volume Vν  dependent 
upon the wavelengths allowed in the cavity compatibly with the fixed real volume V. 

Let the cavity contain Nν  photons of frequency ν  that define the energy density 
( ),Tη η ν=  in the physical volume Vν ; then 

3

, ,h N cV
V

ν
ν ν

ν ν ν

νη η
ν
 = = =  
 

∑ ∑                  (38) 

where clearly ν  is in general anyone of the nν  frequencies allowed in the cavity. In 
this equation, the wavelength is regarded as measure unit to express the size of each Vν , 
which in this way results consistent by definition with the existence of standing waves. 
Moreover the obvious condition 

,V Vν
ν

= ∑                          (39) 

is fulfilled because V has not yet been specified. Whatever V might be, the sum over the 
various ν  can be replaced by that over an arbitrary real number n via the position 

onν ν= , being o c xν = ∆  the lowest frequency allowed in a cavity of size x∆ . If the 
various ν  are very close each other, then n can be regarded as a continuous variable; if 
so, the sum can be replaced by an integral between 1on = , in order to include oν , and 
an arbitrary max 1n > . 

In this case one would find ( )2
max1 2oV V n−≈ − ; the notation emphasizes that re-

placing sum with integral implies a numerical approximation. Despite this result fulfills 
the obvious requirements of increasing and finite V for maxn →∞ , one would expect 

oV V> : by definition, indeed, oV  is the volume ( )3
oc ν  pertinent to the lowest fre-

quency only. Moreover if maxn  would be plain real number, the limit max 1n →  would 
yield 0V → ; so the energy Vη  inside the cavity should vanish, unless admitting 
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η →∞ . These inconsistencies, not merely numerical but physical, can be due to noth-
ing else but to the low values of n contributing to the sum badly approximated by the 
integration; indeed it is true that maxn →∞  behaves in fact like a continuous variable. 
In effect the contribution of the low values of n is underestimated by the integration. 
Examine therefore the chance that n can take integer values only: in this case one finds 

oV V>  even for the lowest max 2n = , whereas ( )3 1.202 oV Vζ= ≈  for maxn →∞ . 
Also, V remains anyway finite because n cannot longer approach arbitrarily to 1. 

It is known in effect that the steady wavelengths nλ  allowed within a range x∆  
must fulfill the condition 

,nx nλ∆ =                               (40) 

with n integer; in other words, the electric field of an electromagnetic wave must vanish 
at the boundaries of its physical volume of confinement, correspondingly to wave nodes 
at the boundaries. 

The seemingly innocuous position (39) implies thus the energy quantization in the 
cavity. Equations (2) and (3) yield indeed 

,n

n

hhc hcE
x n n

ν
λ

= = =
∆

 

i.e. 1h Eν =  and 2 2h Eν =  and so on for all nλ  allowed in the cavity once regarding 
x∆  as its size. If the photons are assumed non-interacting at the usual T of interest for 

the black body physics, the sum (38) consists of independent terms. Considering one of 
these terms, νη , and differentiating it, one finds at the first order 

, ;h N T
V T

ν ν ν
ν ν

ν

ν η ηη δη δν δ
ν

∂ ∂
= = +

∂ ∂
                 (41) 

thus 

( ) ( ) .
N V N VNh h T

V T
ν ν ν νν

ν
ν

ν
δη ν δν δ

ν
 ∂ ∂

= + + ∂ ∂ 
           (42) 

To highlight the physical meaning of the differentials δν  and Tδ , implement this 
equation to calculate the energy density per unit range δν , i.e. 

( ) ( ) .
N V N VN Th h h

V T
ν ν ν νν ν

ν

νδη δρ ν
δν ν δν

∂ ∂
= = + +

∂ ∂
          (43) 

All frequencies allowed in the cavity contribute to η  according to Equation (41), 
whereas Equation (43) selects some frequencies in the range δν : i.e. ρ  is an energy 
density per unit frequency range. All addends share the number density N Vν  of a 
cluster of photons with the same frequency; regard thus this ratio as characteristic 
property of the cluster. Consider now that the thermal equilibrium inside the cavity 
requires the exchange of energy between the various Vν  existing in the cavity. Since 
however the photons of each cluster have been assumed non-interacting, this exchange 
cannot be that between different clusters; hence the thermalizing interaction can be 
nothing else but that with the cavity surface enclosing all photon clusters and possibly 
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with the gas matter evaporated from the walls of the cavity. This fact suggests that the 
equation 

dρ ρ′ = Ω∫                            (44) 

defines the radiation energy density per unit frequency ρ′  at the thermal equilibrium 
with the whole internal surface of the cavity; the corresponding d dρ ρ′= Ω  
represents instead the local interaction of each cluster of photons per unit solid angle, 
i.e. with any elementary surface element 2d ds r= ∆ Ω . In effect the integral represents 
by definition the sum of all local interactions dρ Ω  of the photon cluster with ele-
mentary elements ds  of internal surface of the cavity; this supports the idea of 
regarding ρ  as a local quantity and ρ′  as an average global quantity. In other words, 
the integral corresponds to and represents the cumulative effect of all internal reflec-
tions of each photon cluster consistent with the physical model of black body cavity. 
This is equivalent to say that ρ  concerns the local thermal equilibrium of the photon 
cluster with one arbitrary surface element ds  only, ρ′  represents the complete 
thermal equilibrium after interaction of the cluster with the whole surface of the cavity. 
So ρ  and ρ′  differ numerically because of the amount of corresponding energy 
density exchanged between radiation and surface. 

If Equation (44) leads to the correct formulation of the Planck law, then it also 
proofs indirectly that the photon thermalization mechanism occurs at the surface of 
the cavity. 

The integration of dρ Ω∫  is immediate admitting that the interaction process is iso-
tropic, i.e. the energy exchange occurs uniformly for all frequencies and that any al-
lowed ν  is not appreciably perturbed by the small energy loss; being the radiation 
field at the equilibrium uniformly distributed inside the cavity, there is no dependence 
of ν  upon the arbitrary direction along which is defined δΩ . So the result of the in-
tegration is simply 4πρ ρ′ = . Equation (43) yields therefore the following energy den-
sity per unit frequency thermalized by all possible paths of the ν-th cluster of photons 
in the cavity: 

( ) ( )
4π 4π 4π .

N V N VN Th h h
V T

ν ν ν νν

ν

ν δρ ν
ν δν

∂ ∂
′ = + +

∂ ∂
           (45) 

Noting that 

( ) ( ) ( )
,

N V N V N VN
T T V T T
ν ν ν ν ν νν

ν

ν ν ν ν νν
ν ν

∂ ∂ ∂∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂ ∂
 

Equation (45) reads then 

( )
4π 4π 1 4π .

N VN NT Th h h
V T V T

ν νν ν

ν ν

ν δ ν δρ ν
ν δν δν

∂ ∂ ∂ ′ = + + + ∂ ∂ ∂ 
        (46) 

This expression can be considerably simplified because 

( )
3

3

exp 1o
B

N
N c

V h k T
ν

ν

ν
ν

−=
−
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has a maximum as a function of ν , which suggests 0N Vν ν∂ ∂ =  for an appropriate 
value *ν  of the ν -th frequency. In this case the second addend of Equation (45) va-
nishes for this particular value *ν ν= . Hence, replacing 2oN =  in Equation (37) to 
account for the light polarization states with the same ν  in the Bose function and cal-
culating Equation (46) with *ν ν= , the result at T const=  is simply 

( )
( )*3

3 *
*

24π 0.
exp 1Pl

B

N V
h

c h k T
ν ν

ν ν

νρ
νν =

∂
= =

∂−
             (47) 

Therefore, the plain Planck law corresponds to the particular set of frequencies that, 
among the ones allowed in the cavity, maximize the number density of photons with a 
given energy at a fixed T. 

Actually, however, no physical reason requires *ν ν=  and T really constant; nev-
ertheless, the analytical form of the first addend of Equation (46) is identical to that of 

Plρ  in Equation (47). This suggests that Plρ  is still given in general by the first ad-
dend of Equation (46) even though calculated with a frequency *ν ν≠  and thus 
without the constrain on T that annul the other terms; these terms account therefore 
for the frequency and temperature fluctuations with respect to the zero order term 
represented by the Planck function. This conclusion clarifies that δν  and Tδ  
represent just the frequency and temperature fluctuations of the cavity. 

In the present model it appears therefore that: 
• The interaction between degenerate photon clusters and internal walls of the cavity 

is responsible for the thermalization mechanism. 
• The fluctuations are inferred contextually to the Planck law itself. 

To emphasize these points, it is necessary now to link these fluctuations with Equa-
tions (19) and (20). As expected, the fluctuation is given by temperature and frequency 
deviations of ρ′  with respect to the mere equilibrium Planck term; simple considera-
tions show indeed that the fluctuation terms can have in principle positive or negative 
sign. 

Now it is possible to tackle the problem of describing the cavity for *ν ν≠  and 
0Tδ ≠ , i.e. when both frequency and temperature are allowed to fluctuate. 

6. Black Body Fluctuation 

The result (25) and Equation (44) imply the involvement of the material constituting 
the wall of the cavity to reach the condition of thermodynamic equilibrium of photons 
therein confined. In particular Eδ  appears related to mδ  and ( )mδ ν , i.e. to the 
material evaporating from the internal surface of the shell and present in the cavity to-
gether with the radiation field. This is confirmed by the mean square velocity 2v  of 
matter particles present in gas phase in the cavity contextually inferred. It is known 
from the elementary kinetic theory of gases that 2v  is related to Bk T . Even though 
the photons are admitted non-interacting, their thermalization process occurs by inte-
raction both with the internal wall of the cavity and with the amount of matter expec-
tedly evaporated and trapped in the cavity together with the radiation itself; clearly the 
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gas phase is at the thermal equilibrium with the cavity wall. 
For sake of clarity, collect together Equations (3), (27) and (25); one finds 

2 .B Bm k T k Th h mDh
n k k kmc

βν
ν

= = = =                    (48) 

These equations evidence in particular 

0
2. . ,B B

hk k T i e k k T
n n

εν
= =                      (49) 

whereas Equation (19) reads 

2 2
0

0

.EkE δε
δε

=                            (50) 

Since k has been defined as a mean value in Equation (18), let then be 
2 ,k q n=  

being q an arbitrary constant. Then, Equation (36) yields 
2

2
0

.
q En

n
δ
δε

=  

Since Equation (49) reads 
2

0 2
,B

n k T
q n

ε =  

so that merging these equations one finds 

0
0 ,Bk T

E
δε

ε
δ

=                           (51) 

the result obtained via Equation (50) is 

( ) ( ) ( ) ( )

2
2 20 022

2
0

.B B
BB

E Eq E k T k Tn E k Tk T EE
δε δεδ δ

δ δδ δ ε δδ
= =  

Therefore 

( ) ( )
2022

B
B

Eq E k Tn E k T
δε δ
δ δ

=  

yields 

( ) ( )
2 02 2 22, ;B

B

EU k T U Enq E k T
δε δ
δ δ

= =               (52) 

hence 

( ) ( ) ( )
2 20 02 0

0, .
( )B B

B B

E
U k T k T

q E k T k T q
δε δεδ ε

ε
δ δ δ

′
′= = =          (53) 

As 0 0δε δ ε′ ′= , this is just the famous Einstein equation [10]. To find this result, 
Einstein quoted the energy of a sub-volume enclosed by a large volume, both concur-
ring to the total volume of the cavity and exchanging energy. Here the role of the 
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smaller volume is proportional to 0ε , whose fluctuation is the source function of the 
Einstein model of a closed system. Actually this appears in Equation (44), because the 
photons are thermalized just impacting against the wall of the cavity, which is therefore 
the effective source of the photon energy. So it appears clearly that the fluctuations are 
controlled by the matter constituting the walls of the cavity; this conclusion has been in 
effect assumed in the paper [5]. If in fact 0 0δε = , then 2 0U = : i.e. the average 
energy is controlled by the matter at the walls of the cavity. Consistently 2U  is also 
related itself to the radiation field 2E , as it appears in Equation (52). Clearly it is rea-
sonable to put here 

( )* .E hδ ν ν= −  

Replacing Equations (51) into (53), one finds 

( ) ( )
2 *

0 , .B
B

E
U k T E

k T
δ

ε δ ν ν
δ

= = −                 (54) 

According to the previous considerations, 2 0U =  for *ν ν= ; this confirms that 
the left hand side of Equation (54) is a fluctuation energy. Equation (51) yields then the 
relationship between frequency and temperature fluctuations 

( ) . . .B
B B

kE k T k T i e T
h

δ δ δ δν δ= = =            (55) 

7. Discussion 

The fluctuations are likely the most typical manifestation of the probabilistic character 
of the quantum world, while also being the most striking evidence of the quantum un-
certainty. Nevertheless, elementary and straightforward considerations have shown that 
the equations describing the fluctuations are also compliant with relativistic corollaries: 
both have been concurrently inferred from Equation (1) in a unique theoretical frame. 
Despite the deterministic character of the relativity, the results so far outlined emphas-
ize this seemingly surprising connection. Actually a similar conclusion was already 
found also in [7] implementing an operative definition of space time, i.e. introducing 
ab initio the quantity 2hG c  as a basic postulate to be handled subsequently likewise 
any fundamental physical law. 

First of all, the present model plugs the problem of the black body radiation and its 
fluctuations in a wide context of physical laws having prospective interest for the 
non-equilibrium physics. The quantum basis of the Fick law is important because vari-
ous physical properties, e.g. the heat and electrical conductivities, have analogous form; 
here, in particular, the diffusion equations are in principle necessary to account for the 
unstable concentration gradients reasonably expected in gas phase due to random con-
centration fluctuations of the matter evaporated from the internal surface of the cavity. 
In effect the dynamics of matter particles that diffuse from the walls of the cavity con-
tributes to the thermalization process; in this respect, the model introduces concur-
rently even the free energy and entropy concepts useful to infer the Clausius-Clapeyron 
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equation governing the vapor pressure and thus the amount of matter in gas phase fill-
ing the cavity together with the radiation. In view of that, the Planck law has been in-
ferred in order to involve since the beginning the solid matter confining the photons 
and even their energy quantization and statistical distribution law. The interaction of 
photons with matter appears in fact essential to justify the thermalization mechanism. 
Strictly speaking, the radiation with wavelength larger than the finite size cavity should 
not be consistent with the standard approach to the Planck law; here however this 
problem is bypassed since the cavity volume V is not predetermined, rather it is deter-
mined by the radiation wavelengths themselves via the terms (39). Thus it is by defini-
tion compliant with the arbitrary size x∆  defining the allowed frequencies according 
to Equations (1), (2) and (38). For these reasons, is reductive the model [10] focused on 
the radiation field in the cavity only. 

The black body radiation field and its fluctuations have been contextually inferred 
merging two separate paths: the one from Equations (14) to (20) is apparently inde-
pendent on that leading from Equation (45) to Equation (53). The former series of equ-
ations does not refer specifically to the black body radiation, it introduces relationships 
between changes of dynamical variables that hold in general. The latter series of equa-
tions describes specifically the black body radiation under the boundary condition of 
Equation (20), which also implies Equations (21) to (24); this second path links the 
frequency and mass fluctuations, in agreement with Equations (4) to (9). Then, Equa-
tion (36) introduces the thermal equilibrium of Equation (50) leading to Equation 
(53). 

Yet other significant results are also easily inferable from the previous considerations 
of the Section 4. 

For example, combining Equations (26) and (27) with Equation (28) one finds at 
constant T 

( )
2

log .B
B

m k TDD k T
δ ν δβ δβ δ β
δν δν β δν δνβ

= − = − = −  

The equation ( ) logBD m k Tδ ν δ β= −  is easily integrated; calling 0β  the integra-
tion constant, the solution 

( )
0log log

B

D m
k T
δ ν

β β− = −∫  

yields 

( )
0

exp .
B

D m
k T
δ νβ

β

 
 = −
 
 

∫  

Owing to the first Equation (27) put then 

( )
0 0

0

exp , ,B
B

B B

D mD k T D k T
D k T k T

δ ν
β

 
 = − =
 
 

∫  

being 0D  a constant diffusion coefficient corresponding to the integration constant 
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0β . The conclusion is 

( )0 exp ,act
act

B

UD D U D m
k T

δ ν
 

= − = 
 

∫  

This Arrhenius-like equation is a well known property of the diffusion coefficient, 
whose quantum origin introduces the activation energy as a consequence. 

Other important equations of processes activated by the temperature follow this kind 
of dependence upon Bk T . 

A further significant result is obtained from Equation (6), assuming that the mo-
mentum p is time dependent variable. This compels regarding the wavelength λ  as 
time variable itself, as in effect it is possible because no restrictive hypothesis has been 
introduced about p and thus about λ  in Equations (2) and (4). Deriving thus 
p h λ=  with respect to time in the reference system R previously introduced to define 
t∆  and x∆  of Equation (2), one finds 

2 , , .C
hp h mc

t
δλλ λ λ λ λ
δλ

= − = =
∆

   

                  (56) 

It is possible to expand in series λ  around an arbitrary constant value oλ , e.g. 

( ) ,j
o j o

j
aλ λ λ λ= + −∑                        (57) 

being ja  appropriate coefficients. Implement Equation (40) to express again length 
x∆  as a function of wavelength λ ; here, however, λ  is the momentum wavelength 

of Equation (5). To highlight the physical meaning of the series expansion, retain pre-
liminarily the constant term only and consider two chances of rewriting the first Equa-
tion (56). Eliminate h from Equation (56), replacing it via the Planck mass Plm c G=   
and fine structure constant 2e cα =  ; so, being by definition 

2 22π 2π ,Plh m G c e cα= =                     (58) 

Equation (56) reads at the zero order of approximation of the series expansion accord-
ing to Equation (40) 

2 2 2 2

2 2

2π 2π 1 , .o Pl on m n ep F G x n
c cx x
λ λ

λ
α

= ≈ − = − ∆ =
∆ ∆

 

        (59) 

Since F is actually the component of a force along x∆ , which can have both signs, 
consider for brevity of notation its absolute value only. This expression reads then 

2 2 ,m m e eF G
x x
′ ′′ ′ ′′

≈ =
∆ ∆

                      (60) 

having put 

2

2π 2π, ,

2π 2π, , .

o o

o o
Pl Pl o o o

e en e en
c c

m m n m m n n n n
c c

λ λ
α α

λ λ λ λ λ

′ ′′
′ ′ ′′ ′′= =

′ ′′
′ ′ ′′ ′′ ′ ′′ ′ ′′= = =

 

 

  

 

As n and oλ  are arbitrary, likewise the primed and double primed quantities, these 
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approximate definitions of force correspond to the Newton and Coulomb interactions 
between arbitrary masses and steady charges, which have thus analogous form. In effect, 
at this level of approximation, neither term of the equality (60) depends on v. The only 
term that could introduce charge velocity is oλ ; yet no reason requires assuming 

( )o vλ . In lack of specific hypotheses, therefore, oλ  is consistent with stationary 
charges. In the case of gravity force, it is well known that the Newton law is generalized 
by the general relativity; it is reasonable therefore to expect that the terms of series ex-
pansions, here neglected preliminarily, account for the necessary relativistic corrections 
of the plain Newton law. To demonstrate this statement, calculate via Equation (56) the 
potential energy U generated by the mass m defining p at any point r r rx n λ∆ = ; the 
subscript emphasizes that rλ  concerns the radial distance of m′′  from m′ . As by de- 
finition rF U λ= −∂ ∂ , Equations (56) and (57) yield 

( ) 2, d .
r

jo
j o

jr

U h h a
λ

λ λ λ λ λ
λ

∞ −= − − Γ Γ = −∑∫


             (61) 

Whatever the value of Γ  might be, depending on the series coefficients ja , is re-
markable the fact that the potential here inferred differs from the Newtonian form just 
because of the presence of terms neglected in the classical Equations (59) and (60). It is 
well known that the perihelion precession of orbiting bodies is correctly calculated in 
the general relativity by potential terms additional to the mere Gm r− , which how-
ever cannot be justified in the plain Newton model [11]. Here, in effect, additional 
terms appear as a natural consequence of λ  of Equation (56): there is no reason to 
assume that λ  be equal to the constant oλ  only, being instead reasonably expecta-
ble a more general form like that of Equation (57). Actually it is easy to show that U 
cannot be equal uniquely to the first addend; owing to Equation (60) one would infer 
indeed 

2 ,
2πo r r

rPl

m m c x n
nm

λ λ
′ ′′

= ∆ =                     (62) 

in the mere Newtonian approximation of Equation (59). If so, however, the ratios 

Plm m′  and PLm m′′  in principle arbitrary likewise rn , could admit o cλ > , which is 
however impossible. So a correction term, i.e. Γ , is necessary to define U by compar-
ing Equations (56) and (61). This conclusion confirms therefore that the terms of the 
sum (57), neglected for simplicity in Equation (60), are in fact essential to agree with 
the finite light speed and have thus relativistic valence. 

It is possible to show the validity of these conclusions, which should hold for the 
Coulomb law as well, by demonstrating how to find well known results of the general 
relativity as a consequence of Equation (19). 

To this purpose it is necessary to generalize what mδ  actually means in 2
0 c mδε δ= . 

The previous considerations about the black body cavity have emphasized that mδ  
concerns the material evaporated from the internal walls of the cavity; as the tempera-
ture fluctuation modifies the vapor pressure of the cavity material, mδ  refers to the 
change of amount of material evaporating from or condensing on the internal wall of 
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the cavity according to the Clausius-Clapeyron equation. However the mass fluctuation 
can have a more general meaning, directly related to the concept of energy quantum 
fluctuation δε  itself; e.g. it is possible in principle that ( ) 2

0 m m cε δε δ+ = + . Of 
course this effect is reasonably negligible in the case of a black body cavity, owing to the 
small mδ  related to the usual cavity temperature and its fluctuations. Yet the follow-
ing examples aim to show that ( )m m m mδ ′ ′′= + −  is conceptually significant in prin-
ciple, even though 0mδ ≈ . If such a mass fluctuation is indeed allowed to occur, then 
it is significant to investigate the behavior of the transient formation of m′  and m′′  
related to mδ . Expectedly, this brings to the classical Kepler problem, where either 
mass orbits in the gravity field of the other; so, let us regard for example orm m′ =  and 

gfm m′′ = , where the subscripts stand for orbiting and gravity field. It is known that the 
general relativity predicts in this respect two effects, the perihelion precession of m′  
around m′′  and the emission of gravitational waves. Since these effects are concomi-
tant, being both features of any orbiting system, the following discussion aims to ex-
amine jointly both of them. 

Consider first just Equation (19) used to calculate the quantum fluctuations and note 
that the ratio at right hand side can be rewritten defining k such that ( )22

PlkE F r= ∆ : 
i.e., likewise as done to infer Equations (12) and (59), the definition of Planck force is 
again implemented here to introduce G into the present problem. So, thanks to the ar-
bitrary numerical factor k, the energy k E  is rewritten in order to introduce the ar-
bitrary displacement r∆  too. Equation (19) reads thus 

2
20 0

2 2
1 , .m G

E k E c r
δε ε ξ ξ
δ

′′
= = =

∆
                    (63) 

Introduce now at the right hand side the further mass m′ ; the last equation turns 
into 

2
0

2 .m m G
E m c r

δε
δ

′ ′′ =  ′ ∆ 
 

This result becomes next more familiar via a formal and elementary manipulation. 
Eliminate r∆  introducing the modulus of classical angular momentum orwm v r′= ∆M  
of m′ , being orv  the average orbital velocity of the mobile mass m′  and w the num- 
erical coefficient taking into account the vector nature of M and orv ; this allows con- 
sidering at the right hand side the modulus of or∆ ×r v . Eliminating thus m r′∆  at the 
right hand side, the last formula reads 

2
20

2 , , 1.or
or

m m Gvw M wm v r w
E c M

δε
δ

′ ′′  ′= = ∆ ≤ 
 

 

Eventually, recalling that or orv c n=  according to the initial definition (3), this equ-
ation reads 

2 2
20

2 2
1 , 1, 1.or

or

m m G wn
E cM n

δε θ
δθ

′ ′′ = ≥ = ≤ 
 

 

At the left hand side, the energies appear through a numerical coefficient times a ra-
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tio of the respective fluctuations. Consider now the case where this factor is 1≤ . Of 
course, nothing requires just this condition, which however is in principle possible and 
deserves attention for the related consequence of the initial Equation (63): this particu-
lar case is interesting because the left hand side can be regarded as a square probability 

2Π . Hence, it is appropriate to identify 2Π  with the product of two probabilities, that 
of angular displacement 2πδϕ  and that concerning the related tangential velocity 
component of m′ ; clearly the velocity component of orv  corresponding just to the 
advancement direction δϕ  in any point along the orbit has probability 1/3, because 
the independent local components of orv  are three. If so, then 2

0 Eδε θ δ  takes the 
meaning compatible with a known formula of the general relativity: indeed, regarding 
the right hand side of the last result in a probabilistic way as 

2
2 1 ,

2π 3
m m G

cM
δϕ ′ ′′ Π = =  

 
                       (64) 

one recognizes the well known formula of the perihelion precession. This identifica-
tion needs however a detailed justification and explanation: helps to this purpose a 
further result related to the energy loss via gravitational waves, still implied by Equa-
tion (63). 

It is known that an isolated orbiting system irradiates energy all around in the space; 
the energy loss causes the orbit shrinking closer and closer towards the central mass. 
The starting input to demonstrate this effect in the present context is still Equation (19), 
rewritten identically via Equation (35) as follows 

2 2
0 0 2, , ;k k

kk E k k
k

ε ζ ε ε
′

′ ′′= = =
′′

                   (65) 

i.e. k, whatever its specific value might be, has been split into k ′  and k ′′  suitable to 
obtain a new value of energy kε  from the early 0ε . This is in principle possible be-
cause the values of these latter are both arbitrary. The fact that ( )E hc c hc rν= = ∆ , 
in agreement with the position (10), suggests assuming 0k ζ′  in order that 

2 2
2

0
0

1, ;m m m mk E G k G
r hc

ζ
ζ

′ ′′ ′ ′′   ′ ′= =   ∆   
 

moreover if k q m′′ ′′∝ , being q arbitrary proportionality constant, then 

( )
2 2

22 2
2

0 0

1 1, , .k
m q m qqc k G k k k G
k hc k hc

ε
ζ ζ

′ ′   ′ ′′= = = =   ′′ ′′   
 

Hence the first Equation (65) reads 

( )
2

2 ,m mG qc
r
′ ′′  = ∆ 

 

where the right hand side is constant. Integrating now both sides over the solid angle 
dΩ , one finds 

2

d .m mG const
r
′ ′′  Ω = ∆ ∫  
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The square energy at the right hand side is constant; since it consists of fundamental 
constants only, thanks to the position assumed for k ′′ , it is reasonable to put 

Plconst hW= , being PlW  the Planck power. Moreover, if the space around the orbiting 
system is homogeneous and isotropic, so that the orbiting system irradiates energy un-
iformly to all directions, one finds 

24π , .r Pl r
m mhW G

r
ε ε∆ ∆

′ ′′
= = −

∆
                    (66) 

At this point the quantum uncertainty is of valuable help; it requires that r∆  and 
the momentum component rp∆∆  fulfill the condition rnh p r∆= ∆ ∆ . In the present 
case, introducing the reduced mass µ  of the orbiting system, the resulting uncertainty 
equations read 

24π , , , .r r
Pl

n nh r m mr r p r r
W r t m m

δµ ε µ µ
δ∆ ∆

′ ′′∆
∆ ∆ = ∆ = ∆ = ∆ = =

′ ′′∆ ∆ +
          (67) 

Replacing in Equation (66) h from the second equation, one infers 24π r Plr n W rε µ∆∆ = ∆ , 
i.e. 

( )
2 3

5 5 34π 4π .G m m Gr n G n m m m m
rc r c rµ
′ ′′  ′ ′′ ′ ′′∆ = = + ∆∆ ∆ 

            (68) 

With the minus sign and 1n = , this expression is nothing else but the well known 
Einstein result of orbit contraction contextual to the emission of gravitational waves: 
indeed 4π  approximates well the numerical value 64/5 of his original formula. This 
means that the possible time evolution of the orbiting system described by this energy 
equation is due to the integer n which can take different discrete values at various times; 
correspondingly, the orbiting system changes energy and orbital distance from the cen-
tral mass as well simply according to n. This quantum behavior already found in [12] is 
not surprising, since the starting point of the present reasoning was the quantum law 
governing the energy fluctuations. The related energy change rε∆  of the orbiting sys-
tem is immediately calculated. It is enough to note in this respect that 

, ,r r r
rF

r r t
ε δε δεε

δ δ
∆ ∆ ∆

∆= = =
∆ ∆ ∆






 

where F is force. Simply considering the elementary positions 
2 2

2, ,
2r

m m rG F r
r

µωε µω∆

′ ′′ ∆
= − = = ∆

∆
 

one finds 

( )

( )

2 3 6 4
2

5 3 5

2
3

4π 2π ,
2

.

r
r

r nG rr m m m m nG
r c r c

m m G
r

ε µω ωε µ

ω

∆
∆

∆ ∆′ ′′ ′ ′′= ∆ = + =
∆ ∆
′ ′′+

=
∆

 

      (69) 

The second equation is well known in the elementary Kepler problem identifying 
r∆  with the major semi-axis of the elliptic orbit. This result shows that the orbit size is 

subjected to change, concurrently to its angular displacement previously introduced; 
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indeed Equation (69) concerns in particular the perihelion distance. Once again ap-
pears the Einstein formula for 1n =  and without minus sign. The explanation of these 
two results and their connection with Equation (64) is really simple. 

Here rε∆∆   with 1n =  represents the energy gap ( ) ( )2 1r n r nε ε∆ = ∆ =−  related to the 
jump of m′  between orbits where ( )1r r n∆ = ∆ =  to ( )2r r n∆ = ∆ = , or in general 
to any ( )1r r n∆ = ∆ > , during the time range tδ∆ ; of course this latter is not a diffe-
rential dt, physically meaningless, but a finite time change of t∆  necessary for any 
physical process to occur. This quantum point of view leading to Equations (68) and 
(69) is coherent with Equation (19) leading to the fluctuation Equation (53). The quan-
tum standpoint also explains the lack of explicit minus sign in both Equations (68) and 
(69). In the Einstein result the orbital motion progressively decays towards distances 
closer and closer around the central gravitational mass with gradual energy loss only; 
accordingly, any orbiting system is destined to merge soon or later its bodies into a 
unique celestial body. In the present model instead Equation (68) is the distance gap 
between two contiguous orbits allowed with 1n∆ = , i.e. m′  can in principle decay or 
be excited towards a lower or higher n-th orbits. This also means that two gravitational 
systems can even exchange “resonant” energy, e.g. by exchanging gravitons, likewise as 
two atoms of the same kind do by exchanging photons if either of them is in any elec-
tron excited state and the other in the fundamental state. It is also evident the analogy 
with the electrons that do not fall on the nucleus, but occupy stable quantum levels. So 
the lack of minus sign means that the formulas concern the amount of quantum energy 
exchanged regardless of whether this energy is released or absorbed by a given orbital 
system. 

Consider now any point of the ellipse at a given time t∆  and at later time t′∆ ; e.g. 
this point could be, but not necessarily must be, the perihelion. Equation (68) of r∆   
shows that this point moves radially from its initial position, as it is evident in the mo-
mentum/position uncertainty Equation (67) implementing radial conjugate dynamical 
variables. Equation (64) accounts instead for the tangential motion of m′  in any given 
point along to the orbit: of course nothing, apart from the algebraic elaboration of the 
formulas, compels tangential displacement only or radial displacement only of the orbit 
of m′ . So, as previously emphasized, Equation (64) on the one hand and Equations (68) 
and (69) on the other hand simply complete each other in describing the dynamics of a 
unique phenomenon, i.e. the radial and tangential displacements of m′  along its orbit 
that rotates and deforms as a function of time; this is coherent with the fundamental 
idea of deformation of the space time in the presence of a gravitational mass m′′ . This 
is in effect the physical meaning of λ  in Equation (56), being λ  linked to x∆  via 
Equations (2) and (4). Note that m′  and m′′  can be exchanged while leaving identic-
al the results: as nothing distinguishes the specific role of either of them from a physical 
point of view, one concludes that the concepts of gravitational and inertial mass are 
physically indistinguishable. 

The idea of introducing Planck units is fruitful and general, as it is confirmed also in 
the following reasoning. 
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Rewrite 0 nhε ν=  as 

0 ,m mh c vε ν ν ν= =  

thanks to Equation (3). So, owing to Equation (21), Equations (19) and (15) yield 
2 2

0 0
2 2

1
E k E k

εδε ε ν
δ ν

= =  

while being owing to Equation (21) 
2

0 01 ,n E v vn n
E c E c E

δε εδ δ
δ δ δ

 = − = − 
 

 

whence 
2

0
02

0

1 1 , .m nE v v kn
c E c E

ν εδ δ ν ν
δ δν

= − = − =                 (70) 

Since ( )E v cδ δ  has physical dimensions of an energy, it is possible to put 

( ) 2
PlFE F x x

v c
δ

δ
′= ∆ = ∆  

where 4
PlF c G=  is the Planck force; being x′∆  and x∆  arbitrary lengths, the 

energy at the left hand side can be certainly expressed as F x′∆  and in turn this latter 
as 2PlF x∆ . These positions merely implement the general definitions of force and 
energy. The reason of having introduced the factor 1/2 appears soon after replacing in 
Equation (70); one finds 

2

2 2
0

21 .m mG
c x

ν
ν

= −
∆

 

Note that 0mν ν=  for 0m =  and for x∆ →∞ , i.e. in the absence of gravity field; 
also, owing to Equation (12), 0mν ν≤  implies 1cox x∆ ∆ < . Just this is the reason of 
having introduced the factor 1/2: to describe the red shift of a photon moving away 
from a gravitational mass, the photon must be outside the boundary of its confinement 
radius (12) of m; i.e., the previous limits hold outside the “event horizon” of m, other-
wise the photon could not freely escape to infinity. In conclusion the last equation reads 

2
0

21 .m rm G
c x

ν
ν

= −
∆

 

Is really significant the fact that also this result of the general relativity is obtained 
implementing Equations (19) and (18), from which have been obtained Equation (50) 
and then the black body fluctuation Equation (53). A wider landscape of results of the 
general relativity is inferred via an “ab initio” theoretical model in [7]. 

On the one hand, the result (60) highlights the quantum origin of the gravity force, 
simply inferable admitting time dependence of De Broglie momentum wavelength. In 
this respect Equation (59) prospects an interesting consequence as it yields 

2

2 2
2π1 1 1, .o

Pl

G e n
A e A A cm x

λα
= =

∆



                  (71) 
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So, owing to Equation (58), Equation (71) reduces to the trivial identity of two reci-
procal surfaces A admitting the equality 2

PlG e e m constα = = ; this equality is reason-
able, being mere consequence of the definitions of fine structure constant and Planck 
mass. Nonetheless, being 104.8 10 esue −= ×  and 52.18 10 gPlm −= ×  in the cgs sys-
tem where 8 3 1 26.67 10 cm g sG − − −= × ⋅ ⋅ , one finds 

3 2 3 2
2 1 cm g s.
Pl

G e
e m
α
= = ⋅                      (72) 

The fact that both ratios are almost exactly equal to 1 is not trivial: in general one 
would expect simply 2

PlG e e m constα = = , with const equal to a generic numerical 
value; the fact that 1const =  shows that G and e are linked directly, not via a propor-
tionality constant whose physical meaning should be specifically explained. Equation 
(72) reveals thus the direct correlation between e and G via α , i.e. between gravita-
tional and electromagnetic interaction. 

On the other hand, despite the simplicity of approach, the compliance of the present 
model with the relativity, already emphasized by the corollaries of the Section 4, does 
not appear accidental. This point is elucidated next by four relevant examples. 

1) According to Equation (2) 0c t x∆ − ∆ = , whence c t x s′∆ − ∆ =  with the arbi-
trary length 0s ≠  for x x′∆ ≠ ∆ . Hence in analogy with Equation (1) Cc t n sλ′∆ − = , 
being n c v′ ′= . Also, it is possible to write 

2 2h mc t n h tc t n s
mc mc t

′∆ − ∆′∆ − = =
∆

 

By dimensional reasons, it is also possible to put 2n h t m′ ∆ =  , being   an arbitrary 
length. So, let us show that are definable two invariant equations linked by a square in-
terval of size inv : from 

( )2 2c t sc t∆ − = ∆  

one expects both 

( )2 2 2 2 2 2, ,inv invc t x sc t∆ − = = ∆ − ∆ =     

as in effect it is true. Indeed it is possible to express   as q x= ∆ , with q arbitrary 
constant; this result reads ( ) ( )2 2 2 21c t q x∆ − = − ∆ . On the one hand, the right hand 
sides defines ( )2 2c t∆ −   in the same reference system of x∆ , i.e. it trivially concerns 
a smaller range. On the other hand, however, ( )2 2c t∆ −   is not necessarily related to 

x∆  via the proportionality constant 21 q−  only; being arbitrary by definition, it can 
be regarded in general as any x′∆ , i.e. x∆  in another reference system mowing with 
respect to that of x∆ . Hence, the left hand side is an invariant; it also holds therefore 
for s t∆ . Recalling Equation (9), the time and space invariants with v const=  read 
thus 

2 2

2 2
1 , .

1
xt t v c x

v c
∆′ ′∆ = ∆ − ∆ =
−

                 (73) 
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2) Let 1v  be the average velocity component with which one massive particle moves 
in the range x∆  and let the particle energy be subjected to fluctuations, during which 
its velocity component changes to the value 2v . Assume therefore that the particle can 
move in x∆  at average rates 1v  or 2v , both arbitrary and allowed to occur during 
the time range x c∆  of Equation (2) because of an unforeseeable fluctuation; the only 
constrain is that, according to Equation (1), 0m ≠  requires 1v c<  and 2v c< . 
Define therefore 

1 2
1 2 1 2

1 2

1 1, , ;v v
n c n c

Π = = Π = = Π = Π +Π  

the notations emphasize the probabilities Π1 and Π2 that m, delocalized within x∆ , tra-
vels just with either velocity before and after the fluctuation. Moreover, 1 2v c v cΠ = +  
emphasizes that anyway the particle moves, i.e. both velocity components are allowed 
to the particle; this is another way to state that fluctuation in fact occurred. But of 
course Π is effectively definable provided that 1 2 1v c v c+ ≤  too, which allows re-
garding Π as pertinent probability that both Π1 and Π2 are possible for the particle in 

x∆ . This is the first boundary condition of the present problem. Since this reasoning in 
R must hold likewise in any other reference system R′ , it is possible to describe the 
situation for the range size x′∆ , i.e. 

( )
1 2 1 2

1 1 1 11 , , ,q
n n n n

′ ′Π = + Π Π = + Π = +
′ ′

              (74) 

where again q is an arbitrary constant. Let the primed and unprimed velocity compo-
nents be defined in R' and R thinking that in general x′∆  shifts with arbitrary rate 
with respect to x∆ . Of course still holds in R' the boundary condition 1 2 1v c v c′ ′+ ≤  
in order that the energy fluctuation be regarded in an analogous way in both reference 
systems. This is the second boundary condition of the problem. Clearly the factor q > 0 
represents the link between primed and unprimed quantities, i.e. it determines the 
transformation law of velocity components in R and R′ : in fact the form (74) ensures 
that if 1Π ≤ , then anyway 1′Π ≤  as well. In principle the boundary conditions are 
unsatisfied simply summing 1v  and 2v , i.e. calculating 1 2Π +Π ; yet the actual form 
of the sum of velocity components depends on the choice of q. Note in this respect that 
it is reasonable to put 

1 2 ;q = Π Π  

this position ensures that both 1v  and 2v , whatever they might be before and after the 
energy fluctuation, are in fact allowed in R and R′ . In other words, the positions just 
introduced regard the ratios 1v c  and 2v c  as probabilities of states with and with-
out fluctuation accessible to the particle, and thus in fact occurring, regardless of the 
choice of reference system. The first Equation (74) reads therefore 

1 21
Π′Π =

+ Π Π
 

so that 
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1 2
1 2

1 2
2

.
1

v vv v v v v
c

+′ ′ ′= + =
+

 

In this way 1 2v v c+ ≤  is always consistent with the probabilistic meaning of 

1 2Π +Π . 
This is the well known composition rule of the velocity components along the direc-

tion of motion of two reference system reciprocally displacing. The probabilistic 
meaning of a relevant relativistic property also appears here, already emphasized in 
demonstrating the perihelion precession [7]. This explains why even the relativistic re-
sult is compatible with the quantum approach. 

3) It is easy at this point to highlight further the physical meaning of the length 
22mG c . Consider the first Equation (11) and calculate the photon energy 0 0

ph phE hν=  
putting once more 2

0
phh mc nν = , in strict analogy with the first Equation (3); so, in par- 

ticular, 22h t mc n∆ =  too. The left hand side introduces the idea of frequency 1 2 t∆  
of a photon necessarily confined within a range cox∆  via the position 0 2ph

coxλ = ∆ ; 
this implies indeed a steady wavelength actually consisting of two half-wavelengths 
spreading at rate c throughout cox∆ . Of course, Equation (3) holds also for the partic-
ular photon frequency 0

phν  related to such wavelength. Replacing once more h via the 
Planck length, 2 32π Plh l c G=  one finds 

2 3 2 2π, ;
2

Pll c mc
G n t

ω
ω= =

∆
 

then, dividing both sides of 2 3 22Plnl c mGcω =  by 4c , the result is 
2 2 2

2
2 , .Pl Pl Pl

co
n l l l mG x r v

c v r c
ω ω ω= = = = ∆ ∆ =

∆
 

Hence, 22mG c  of Equation (12) appears again here through the length 2
Pll r= ∆ . 

The circular frequency ω  shows that the photon cannot escape from the gravitational 
field of m, the photon can only “orbit” around m at the black hole distance   from the 
center of gravity. Obviously, this conclusion could be inferred for the second Equation 
(11) too. The interest to quote here a result already found is that of rising an interesting 
question: what happens if the photon transits a a distance cox x∆ > ∆  from m greater 
than that compelling its confinement? The most intuitive answer is that the photon 
should be simply deviated from its asymptotic straight propagation because of the 
presence of gravity field of m, which reasonably deforms the surrounding space time. 
Let be therefore according to Equation (12) 

2
2 1

co

MG
c x

=
∆

                           (75) 

and write then identically 

2
2 .cox mG

x c x
∆

=
∆ ∆

                          (76) 

Defining an angle φ  via the arc sδ  of circumference of radius x∆  such that 
s xφ δ= ∆ , the left hand side becomes ( )cox sδ φ∆ . Implement once more a probabil-
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istic approach, noting that cox x∆ < ∆  is compatible with 1cox sδ∆ < . Is in particular 
interesting the case where 1 2cox sδ∆ = Π = : indeed sδ  can be defined for a photon 
coming from minus infinity, approaches m and proceeds towards infinity after being 
deviated by the gravitational field of m; however this case is physically indistinguishable 
from that where the photon comes from infinity and proceeds towards minus infinity 
after an identical deviation. In other words sδ  must be such that −∞→+∞ +∞→−∞Π = Π , 
whereas of course 1−∞→+∞ +∞→−∞Π + Π = : i.e. the photons is anyway deviated wherever 
it comes from or proceeds to. Since however either chance only actually happens and 
has probability 1 2Π = , the previous result reads 

2
4 .mG
c x

φ =
∆

 

This is the well known formula of the light beam bending in a gravitational field, 
since the angle defining the arc of circumference is equal to that between the tangents 
to the circumference at the boundaries of the arc, which yield the sought path devia-
tion. 

4) Note eventually that 2 2 2 2
invc t x∆ − ∆ =   defines an invariant interval inv  what-

ever t∆  and x∆  might be. Of course this invariance property of the range size inv  
holds even if one considers in particular according to Equation (73) 

( )
2

2
2 2 2 2

2 2
1 ,

1
inv

xc t v c
v c

 ∆ ∆ − − =
 − 

  

as in this case both addends at the left hand side remain themselves identically un-
changed in two different inertial reference systems in reciprocal constant motion. This 
expression does not consider the mass of a particle possibly present in the space time. 
Consider now Equation (75) and introduce an arbitrary distance cox x∆ > ∆ , i.e. outside 
the confinement range, and consider the gravity field of M at an arbitrary point outside 
its event horizon; then Equation (12) yields 

2
2 1, , ,co M

M

MG x x v c
v x

= ∆ > ∆ <
∆

 

being Mv  the local velocity defined by MG  just at a distance x∆ . Hence 
2

2 2
2 1.MvMG
c x c

= <
∆

                          (77) 

Replacing v c  with Mv c , Equation (77) yields according to Equation (73) 

( )
2

2
2 2 2

2
1 2 .

1 2
M

xc t MG c x inv
MG c x

 ∆ ∆ − ∆ − =
 − ∆ 

 

Simple considerations show that the right hand side reduces to the form 2 2 2ds rδ δ− Ω  
in spherical coordinates; this is thus nothing else but the metric of the general relativity 
formulated by Schwarzschild. However this last result shows a crucial difference from 
the Einstein metrics: the latter assumes that the boundary of the ranges therein appear-
ing are exactly knowable as in the classical physics, the former are instead uncertainty 
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ranges that by definition satisfy the Heisenberg principle [7]. On the one hand this 
formal analogy explains why the formulas of the general relativity are also found via 
quantum approach; on the other hand their conceptual difference from the classical 
physics explains the difficulty of bridging relativistic and quantum ideas. However, the 
present reasoning shows that the link between quantum and relativistic physics exists 
indeed and is easily identifiable with the help of elementary considerations. Just this 
remarkable circumstance allows bridging quantum physics and relativity, despite the 
Einstein space time metrics is essentially classical physics extraordinarily enriched by 
the key concepts of four-dimensionality and covariancy of physical laws. In lack of a 
radically alternative way to infer the relativistic formulas, the mere attempt of modify-
ing or perturbing the standard formulation of the general relativity to bridge determi-
nistic metrics and probabilistic character of the non-real and non-local quantum world, 
would be difficult or even self-contradicting. 

8. Conclusions 

Starting from elementary considerations, the present model is allowed to describe the 
fluctuations in a wider theoretical context that includes even relativistic implications. 
No “ad hoc” hypothesis has been necessary to infer relativistic results, which deserve a 
few final remarks. The first one emphasizes that in the present context they have been 
obtained regardless of any preliminary consideration about the covariancy of the phys-
ical laws and even about the metrics describing the space time deformation in the 
presence of matter; actually, instead, the hidden probabilistic meaning of the most 
famous results of the general relativity is easily acknowledgeable. The second one 
stresses an open point left by Equation (56) and omitted for brevity taking the absolute 
value of F in Equation (60), i.e. that the space time deformation inherent the time de-
pendence of λ  could imply in principle contraction or expansion of the range x∆  
and thus both signs of λ ; hence, the signs of F correspond not only to attractive or 
repulsive interaction of the charges e′  and e′′ , well known, but also to different 
chances of gravity force. This point, also remarked in [7] [12], opens a critical problem 
about the existence of the anti-gravity. This conclusion deserves detailed investigation, 
too long and complex to be exposed in a short conclusion. 

A final remark deserves attention. With little effort and elementary mathematical 
formalism, Einstein could anticipate himself as done here the most significant discove-
ries of his general relativity: i.e., as side corollaries of Equation (54) describing the black 
body fluctuation. Unfortunately his paper [10], despite its great historical relevance, 
was too purposely focused on the new born Planck physics. May be, the reluctance of 
Einstein to accept the weird quantum ideas has been the main conceptual obstacle to 
his opening towards the possible implications of the quantum fluctuations. It is sur-
prising that great intuitions like the photon and the far reaching model of specific heat 
of solids settled eventually with the mere “hidden variables” of the EPR paradox. The 
present paper confirms indeed that there is no conceptual gap between quantum and 
relativistic ideas, as the conceptual foundations of both theories are actually rooted in 
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the quantum concept of space time uncertainty [13]. 
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