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Abstract 
The following inverse problem is solved—given the eigenvalues and the potential 
( )b n  for a difference boundary value problem with quadratic dependence on the 

eigenparameter, λ , the weights ( )c n  can be uniquely reconstructed. The investi- 

gation is inductive on m where 1m +  represents the number of unit intervals and 
the results obtained depend on the specific form of the given boundary conditions. 
This paper is a sequel to [1] which provided an algorithm for the solution of an 
analogous inverse problem, where the eigenvalues and weights were given and the 
potential was uniquely reconstructed. Since the inverse problem considered in this 
paper contains more unknowns than the inverse problem considered in [1], an 
additional spectrum is required more often than was the case in [1]. 
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1. Introduction 

Inverse problems in general are important in modern-day mathematics as they appear 
in many situations in physics, engineering, biology and medicine. This paper deals with 
inverse problems pertaining to a special type of second order difference equation. A 
comprehensive introduction to difference equations can be found, for example, in [2] 
and [3], amongst others. In particular, inverse problems for Sturm-Liouville difference 
equations with Dirichlet boundary conditions have been considered recently by Bohner 
and Koyunbakan in [4] where they show that the specification of the eigenvalues and 
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weights uniquely determines the potential. In addition, they also prove that if the po-
tential is symmetric, then it is uniquely determined by the eigenvalues only—this result 
can also be found in [5] where it is proved using different methods. 

This paper is a sequel to [1] where the following second order difference equation 
was considered 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 ,c n y n b n y n c n y n c n y nλ+ − + − − = −           (1) 

where ( ) 0c n >  represents the weights associated with a potential function, ( )b n . The 
boundary conditions, which were imposed respectively at the initial and terminal end- 
points, had the general form 

( ) ( ) ( )
1

1 0 : 0 , 0, 0,
s

k
k

k k

cy a b y Ay a c
d

λ
λ=

 
− = + − = ≥ > − 

∑          (2) 

( ) ( ) ( )
1

1 : , 0, 0.
p

j
j

j j

y m y m y m
γ

αλ β α γ
λ δ=

 
− = + − = Λ ≤ < 

−  
∑        (3) 

Given the weights and the eigenvalues for the above boundary value problem with 
1s ≤  and 1p ≤ , a unique reconstruction of the potential was obtained, see [1] for 

details. This can be considered as a generalization of the results obtained in [4] in that 
more general boundary conditions are considered. 

We now investigate the following inverse problem. Given a spectrum for a boundary 
value problem of the form (1), (2) and (3), with 1s ≤  and 1p ≤ , together with the 
potentials ( )b n , we prove that provided the number of eigenvalues exceeds 1m + , 
where 1m +  is the number of unit intervals, it is possible to uniquely reconstruct the 
weights ( )c n . If the number of eigenvalues is less than 1m +  we will require a second 
spectrum corresponding to a boundary value problem with exactly the same equation and 
boundary conditions of the same form in order to obtain a unique solution for ( )c n . 

The paper has the following structure. The proof of the above inverse problem is 
done inductively beginning with the cases of 1,2m =  ( 1s ≤  and 1p ≤ ) which is 
considered in Section 2. The inductive process continues in Section 3 with the cases 
corresponding to 3m = . The main result of this paper is a generalization of the results 
obtained in Sections 2 and 3 and is given in Section 4, in particular Theorem 4.1. 

As we do not have experimental data for the two examples presented in Section 3, the 
eigenvalues used are obtained by first solving the “forward” problem. Consequently, the 
theoretical results for certain of the inverse problems are then verified using these 
eigenvalues. 

An important result concerning the number of eigenvalues associated with a par- 
ticular boundary value problem was proved in [6] and will be used throughout this paper. 

Theorem 1.1. Consider the boundary value problem given by Equation (1) for  
0, , 1n r= −  together with boundary conditions (2) and (3) where m r= . This pro- 

blem has 
1) 1s p r+ + +  eigenvalues if 0α < , 
2) s p r+ +  eigenvalues if 0α =  and 0β =/ , 
3) 1s p r+ + −  eigenvalues if 0α β= = . 
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(Note that the number of unit intervals considered is 1r + ). 

2. Results for m = 1, 2 

In this section we investigate how to reconstruct the difference boundary value problem 
using a given spectrum or spectra. That is, how does the given spectrum/spectra, to- 
gether with the potential function ( )0b , ( )1b  provide us with a method of computing 
the associated weights ( )c n , 1,0,1n = − . 

Consider (1) with boundary conditions 

( ) ( ) ( )1 0 : 0 , 0, 0,cy a b y Ay a c
d

λ
λ

 − = + − = ≥ ≥ − 
           (4) 

( ) ( ) ( )1 : , 0, 0.y m y m y mγαλ β α γ
λ δ

 − = + − = Λ ≤ ≤ − 
         (5) 

The cases of 0c =  or 0γ =  correspond respectively to 0s =  or 0p =  in (2) and 
(3). 

In certain instances it is necessary to consider a second boundary value problem in 
order to obtain unique results. The second problem will be given by (1) with boundary 
conditions of the form 

( ) ( ) ( )1 0 : 0 , 0, 0,cy a b y Ay a c
d

µ
µ

 
− = + − = ≥ ≥ − 



 

  



           (6) 

( ) ( ) ( )1 : , 0, 0.y m y m y mγαµ β α γ
µ δ

 
− = + − = Λ ≤ ≤ − 



 

  



         (7) 

The case 1m =  is a “special” case in that if there is only one eigenvalue then two 
spectra are required in order to reconstruct ( ) ( )1 , 0c c−  uniquely. If there are two or 
more eigenvalues, then only one spectrum is needed in order to obtain a unique 
solution for ( )1c −  and ( )0c . The results for 1m =  can be split into four cases 
(according to the number of given eigenvalues) and these mirror the results obtained in 
[1] except that the values of ( )0b  are known and ( ) ( )1 , 0c c−  are uniquely recon- 
structed. 

The cases for 2m =  follow along the lines of those in [1] if the weights and potentials 
are interchanged and with the proviso that if the number of eigenvalues is greater than or 
equal to 3 then only one spectrum is required but if the number of eigenvalues is less than 
3 then two spectra are necessary to produce unique results. In this case, we are given 
( )0b  and ( )1b  and can uniquely reconstruct ( )1c − , ( )0c  and ( )1c . 

3. Main Results for m = 3 

As the inequalities for 1, 2m =  differ from one another, we now extend these results to 
include 3m = . There is an increased number of variables that need to be reconstructed 
which increases the technicality of the proofs. That is, given the spectrum/spectra and the 
potentials ( )0b , ( )1b , ( )2b  can we uniquely reconstruct the weights ( )c n ,  

1,0,1,2n = − ? 
Again, we will split the inverse problem for 3m =  into four cases depending on the 
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coefficients in the boundary conditions (4), (5) and/or (6), (7). We begin with the cases 
where we require two spectra to reconstruct the weights uniquely. 

Theorem 3.1. Consider the boundary value problems (1), (4), (5) and (1), (6), (7) 
where 

1) 0α β= = , 0c = , 0γ ≠  and 0α β= = , 0c = , 0γ ≠ ; 
2) 0α = , 0β ≠ , 0c γ= =  and 0α = , 0β ≠ , 0c γ= = . 
The boundary value problems corresponding to 1) and 2) have three eigenvalues, say 

0λ , 1λ , 2λ  for (1), (4), (5) and 0µ , 1µ , 2µ  for (1), (6), (7). Given 0λ , 1λ , 2λ , 0µ , 

1µ , 2µ  together with ( )0b , ( )1b  and ( )2b , the weights ( )1c − , ( )0c , ( )1c  and 
( )2c  may be uniquely reconstructed in either case. 
Proof. From Theorem 1.1, for both cases 1) and 2), it is clear that the boundary value 

problems each have three eigenvalues. 
1) Assume 0α β= = , 0c = , 0γ ≠  and 0α β= = , 0c = , 0γ ≠  in (4), (5) 

and (6), (7). Then at 0n = , (1) together with (4) gives 

( )
( ) ( ) ( )

( )
( )
( ) 1

0 1 1
: .

0 0 0
b c y

a b A
c c y

λ λ
−

− + − = =                   (8) 

Next, evaluating (1) at 1n =  and using (8) we obtain  

( )
( )

( )
( )

( )
( ) 2

1

1 0 21 : .
1 1 1

b c y
A

c A c y
λ− − = =                      (9) 

Also, at 2n =  we have 
( )
( )

( )
( )

( )
( ) 3

2

2 1 31 : .
2 2 2

b c y
A

c A c y
λ− − = =                     (10) 

Then applying (5) gives the equation 

( )
( )

( )
( )2

2 11
2 2

b c
c A c

λ δλ
γ
−

− − =                       (11) 

which on simplification yields a polynomial in λ  of degree three namely, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

2

2 2

2

0 0 1 2 2 0 0 1 1 2 1

1 1 0 1 2 0 2 1 2 1

0 1 2 0 2 1 2 1 1 2 0

0 2 1 0 1 0 1 2 0 2 1 2 1

2 1 1 1 1 1 2 1 1 0 2

1 2 1 0 1 2

b b b b c b c bb b c

bc c b b c c c bb c c

b b c c c bb c c b b c

b b c c c b b c c c ab b c

bb c c ac c bb c c b c c

ab c c b c c

γ γ γ γ

γ δ δ δ

λ γ

γ γ γ γ γ

γ γ γ δ

δ δ

= − − − −
+ − + − − − 

+ − + + − −

− + − + − −

+ − + − + − −

− − − ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

3

1 2 1

1 0 2 0 1 2 1 2 1 1 2 1

2 0 1 1 0 2 0 1 2 2 1 1

1 2 1 1 2 1 0 1 2 1 2 1

0 1 2 1 2 1 0 1 2 1 2 1 .

bc c c

b c c b c c ab c c bc c c

b c c b c c b c c ab c c

ab c c bc c c c c c ac c c

c c c ac c c c c c ac c c

δ

λ

γ γ γ γ

γ γ δ δ

λ γ γ

+ − 
+ + + − − −
+ + + + −

+ − − − + + − 
+ − − − − − −  

  

This can be rewritten in the form 
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3 2 0.λ λ λ+ + + =                         (12) 

The eigencondition is given by 

( ) ( ) ( )3 2
0 1 2 0 1 0 2 1 2 0 1 2 0.λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ+ − − − + + + + − =          (13) 

For (1), (6) and (7) we obtain the same third order equation as (12) with λ  replaced 
by µ  and , , ,a b γ δ  replaced by their tilde (~) versions. 

In addition, the eigencondition in this case is given by 

( ) ( ) ( )3 2
0 1 2 0 1 0 2 1 2 0 1 2 0.µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ+ − − − + + + + − =        (14) 

Equating coefficients of 2λ , 1λ , 0λ  in (12) and (13) results in 

0 1 2 0 1 0 2 1 2 0 1 2, and ,λ λ λ λ λ λ λ λ λ λ λ λ= − − − = + + = −           (15) 

and similarly considering the coefficients of 2µ , 1µ  and 0µ  yields 

0 1 2 0 1 0 2 1 2 0 1 2, and .µ µ µ µ µ µ µ µ µ µ µ µ= − − − = + + = −  

          (16) 

Solving the six simultaneous equations gives ( )1c − , ( )0c , ( )1c  and ( )2c  uni- 
quely. 

2) Suppose that 0α = , 0β ≠ , 0c γ= =  and 0α = , 0β ≠ , 0c γ= = . Then (8), 
(9) and (10) hold and (11) becomes 

( )
( )

( )
( )2

2 11 1 .
2 2

b c
c A c

λ
β

− − =                      (17) 

This can be rewritten as a cubic polynomial i.e. in the form (12) where  ,   and 
  can be found using Mathematica or similar programmes. 

Again for (1), (6) and (7) we obtain the same cubic polynomial as above with λ  
replaced by µ  and , , ,a b γ δ  replaced by their tilde (~) versions. The eigenconditions 
are given by (13) and (14) thus, Equations (15) and (16) hold. Hence, we can again 
solve the six simultaneous equations uniquely for ( )1c − , ( )0c , ( )1c  and ( )2c . 

Theorem 3.2. Consider the boundary value problem (1), (4) and (5) where 
1) 0α = , 0β ≠ , 0c ≠ , 0γ =  and 0α = , 0β ≠ , 0c ≠ , 0γ = ; 
2) 0α = , 0β ≠ , 0c = , 0γ ≠  and 0α = , 0β ≠ , 0c = , 0γ ≠ ; 
3) 0α β= = , 0c ≠ , 0γ ≠  and 0α β= = , 0c ≠ , 0γ ≠ ; 
4) 0α < , 0c γ= =  and 0α < , 0c γ= = . 
The boundary value problem corresponding to any of the four cases above has four 

eigenvalues, say 0λ , 1λ , 2λ  and 3λ  for (1), (4), (5) and 0µ , 1µ , 2µ  and 3µ  for (1), 
(6), (7). The weights ( )1c − , ( )0c , ( )1c  and ( )2c  may be uniquely reconstructed in 
any of these cases assuming we are given the eigenvalues together with ( )0b , ( )1b  
and ( )2b . 

Proof. This uses the procedure outlined in Theorem 3.1 above. It is similar to the 
proof of Theorem 3.2 in [1] but with increased dependence on λ  as a polynomial of 
degree four is obtained. The eigencondition is also a fourth order polynomial namely, 

( ) ( )
( ) ( )

4 3 2
0 1 2 3 0 1 0 2 0 3 1 2 1 3 2 3

0 1 2 0 1 3 0 2 3 1 2 3 0 1 2 3

0

,

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

= + − − − − + + + + + +

+ − − − − +
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and similarly for µ . Equating relevant coefficients of the powers of λ  and µ  and 
solving the resulting equations simultaneously, yields unique values for ( )1c − , ( )0c , 
( )1c  and ( )2c . 
Theorem 3.3. Consider the boundary value problem (1), (4) and (5) where 
1) 0α = , 0β ≠ , 0c ≠ , 0γ ≠ ; 
2) 0α < , 0c ≠ , 0γ = ; 
3) 0α < , 0c = , 0γ ≠ . 
Given the five eigenvalues iλ , 0,1, 2,3i =  associated with the boundary value 

problems above, as well as the values ( )0b , ( )1b  and ( )2b , it is possible to recon- 
struct ( )1c − , ( )0c , ( )1c  and ( )2c  uniquely. 

Proof. In all three cases, starting with 0n =  in (1) and imposing the boundary con- 
ditions where appropriate, yields a fifth order polynomial in λ , that is  

5 4 3 2 0.λ λ λ λ λ+ + + + + =                 (18) 

The associated eigencondition is also a fifth order polynomial given by 

5 4 3 2ˆ ˆˆ ˆ ˆ 0,A B C D Eλ λ λ λ λ+ + + + + =              (19) 

where 

0 1 2 3 4
ˆ ,A λ λ λ λ λ= − − − − −  

0 1 0 2 1 2 0 3 1 3 2 3 3 4 0 4 2 4 1 4
ˆ ,B λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ= + + + + + + + + +  

0 1 2 0 1 3 0 2 3 1 2 3 0 1 4

0 2 4 1 2 4 0 3 4 1 3 4 2 3 4

ˆ

,
C λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ
= − − − − −

− − − − −
 

0 1 2 3 0 1 2 4 0 1 3 4 0 2 3 4 1 2 3 4
ˆ ,D λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ= + + + +  

0 1 2 3 4
ˆ .E λ λ λ λ λ= −  

By equating relevant coefficients of powers of λ , unique solutions for ( )1c − , ( )0c , 
( )1c  and ( )2c  result from the simultaneous solution of the resulting equations. 
Theorem 3.4. Assume that we have the boundary value problem (1), (4) and (5) with 

0α < , 0c ≠  and 0γ ≠ . Given the six eigenvalues iλ , 0,1, ,5i =   associated with 
this boundary value problem, together with the values ( )0b , ( )1b  and ( )2b , a uni- 
que reconstruction of ( )1c − , ( )0c , ( )1c  and ( )2c  is possible. 

Proof. As per usual we start the evaluation of (1) at 0n =  together with (4). 
Following procedures outlined above in (3.2) and [1], we obtain an equation which 
reduces to a sixth order polynomial in λ . Equating coefficients of this polynomial with 
those of the eigencondition provides a unique solution for ( )1c − , ( )0c , ( )1c  and 
( )2c . 
Example 1 
To illustrate part (3) of Theorem 3.3, suppose that 0 2.67152λ = − , 1 1.56314λ = ,  

2 0.843923λ = − , 4 0.798491λ =  and 5 0.0327864λ =  are the given eigenvalues corre- 
sponding to the boundary value problem 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 ,c n y n ny n c n y n c n y nλ+ − + − − = −  

( ) ( ) ( )1 3 1 0 ,y yλ− = −  
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( ) ( )42 2 1 3 .
2

y yλ
λ
−

= − + −
+

 

Clearly, it is seen that, 3, 1, 0, 2, 4, 1a b c α γ β= = − = = − = − = . Using these values 
together with ( )0 0b = , ( )1 1b = , ( )2 2b =  and the method outlined in the theorems, 
one finds  ,  ,  ,   and   as given in (18). Equating these with the coefficients 
of (19) and simultaneously solving the five equations yields ( )1 1c − = , ( )0 4c = ,  
( )1 9c =  and ( )2 16c = . 
Example 2 
Assume that we are given eigenvalues 0 2.67152λ = − , 1 1.56314λ = ,  

2 0.843923λ = − , 4 0.798491λ =  and 5 0.0327864λ =  corresponding to the boundary 
value problem 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 2 1 1 ,c n y n n y n c n y n c n y nλ+ − + + − − = −  

( ) ( )41 1 0 ,
1

y y
λ

 − = − + 
 

( ) ( )12 3 .
2

y y
λ
−

= −
+

 

To illustrate Theorem 3.2(3), suppose also that 0 3.43996µ = , 1 2.39846µ = ,  

2 1.40648µ = , and 3 0.161577µ = −  are the eigenvalues corresponding to the boundary 
value problem 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 2 1 1 ,c n y n n y n c n y n c n y nλ+ − + + − − = −  

( ) ( )21 0 ,
1

y y
λ

 − = − − 
 

( ) ( )51 3 .
1

y y
λ
−

= −
+

 

Note that the two boundary value problems above are of the same form i.e. they have 
exactly the same equation and their boundary conditions are of the same type. In the 
first problem, 0, 1, 4, 0, 1a b c α β γ= = = = = = −  while  

0, 2, 0, 5a b c α β γ= = = = = = − 

    in the second problem and ( )0 4b = , ( )1 9b = ,  
( )2 16b =  for both problems. Using these values routine calculations give  ,  ,  , 

 ,  ,  ,   and  . Simultaneously solving the eight equations yields  
( )1 2c − = , ( )0 3c = , ( )1 4c =  and ( )2 5c = . 

4. General Case m = r 

As mentioned previously, the case of 1m =  is a special case in that if the number of 
eigenvalues is less than 1r + , then two spectra are required. However, if the number of 
eigenvalues is greater than or equal to 1r +  then only one spectrum is required. Using 
the previous two sections and with 1m > , we inductively obtain results for the general 
case where m r= . That is, given the spectrum/spectra and the potentials ( )b n ,  

0, , 1n r= −  the theorem below provides an algorithmic method enabling one to 
uniquely reconstruct the weights ( )c n , 1, , 1n r= − − . 

Theorem 4.1. For 1r > , assume that we are given the spectrum 0 1, , kλ λ −  of the 
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boundary value problem (1) with boundary conditions (4) and (5) where the number of 
eigenvalues k is calculated according to Theorem 1.1. In addition, suppose that the 
potentials ( ) ( )0 , , 1b b r −  are known, 

1) if 1k r> +  then the weights ( ) ( )1 , , 1c c r− −  can be uniquely reconstructed; 
2) if 1k r≤ +  and we are given a second spectrum 0 1, , kµ µ −  corresponding to 

the boundary value problem (1) with boundary conditions (6) and (7) then the weights 
( ) ( )1 , , 1c c r− −  can be uniquely reconstructed. 
Proof. Follows as in ([1], Theorem 4.1) where the k simultaneous equations in 1) and 

2k simultaneous equations in 2) are now solved to find unique values for  
( ) ( )1 , , 1c c r− − . 
Remark: 1) It is not possible for the number of eigenvalues of (1), (4) and (5) to be 

less than m as this would imply a Dirichlet boundary condition at 1m − , meaning that 
the interval shrinks and we wish to maintain the number of unit intervals as 1m + . 

2) It should be noted that because there are more weights than potentials, two spectra 
are required more often than in [1] in order to obtain a unique reconstruction of the 
weights. 
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