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Abstract 
The paper is dedicated to the development of the theory of orthotropic thick plates with consider-
ation of internal forces, moments and bimoments. The equations of motion of a plate are de-
scribed by two systems of six equations. New equations of motion of the plate and the boundary 
conditions relative to displacements, forces, moments, and bimoments are given. As an example, 
the problems of free and forced oscillations of a thick plate are considered under the effect of si-
nusoidal periodic load. The problem is solved by Finite Difference Method. Eigenfrequencies of the 
plate are determined, numeric maximum values of displacements, forces and moments of the 
plate are obtained depending on the frequency of external force. It is shown that when the value of 
the frequency of external effect approaches the eigenfrequency, there occurs an increase in dis-
placement, force and moment values; that testifies a gradual transition of the motion of plate 
points into the resonant mode. 
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1. Introduction 
Theory of plates and shells has a special place in design of structural elements. Specified theories of plates are 
built by many authors. All existing specified theories of plates are developed on the basis of a number of sim-
plifying hypotheses. An overview of the main statements and common methods of constructing an improved 
theory of plates and shells can be found in the works of S. A. Ambartsumyan [1], K. Z. Galimov [2], Sh. K. Ga-
limov [3], Kh. M. Mushtari [4] and others. Static problem of the bending of a thick isotropic plate in three- 
dimensional theory of elasticity is considered by B.F. Vlasov in [5], which gives an exact analytical solution in 
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trigonometric series. Monograph by E.N. Baida [6] is devoted to solving the problem of bending of orthotropic 
plates in trigonometric series. Numerical results of displacements and stresses are obtained. 

The authors in [7]-[10] deal with dynamic problems of plates with anisotropic properties. Karamooz Ravari 
M.R., Forouzan M.R. [7] have studied the problems of plates oscillations. Frequency equations of orthotropic 
circular ring plate were obtained for general boundary conditions in oscillation plane. In [8] the solution of tran-
sition oscillations of rectangular viscous-elastic orthotropic plate are given for concrete strain models according 
to Flugge and Timoshenko-Mindlin’s theories. The paper [9] is devoted to analytical solution of the problem of 
forced steady-state vibrations of orthotropic plate. By the method of superposition the problem is reduced to a 
quasi-regular infinite system of linear equations. In [10] an analytical method of solution of spatial problem of 
bending of orthotropic elastic plates subjected to external loads on upper and lower edges is developed. In [11] a 
problem is considered of a bending of orthotropic rectangular plate laying on two-parameter elastic foundation. 
Research in the field of thick plates has shown that in the case of spatial deformation of a plate along its thick-
ness there occurs the nonlinear laws of displacements distribution and the hypothesis of plane sections is vi-
olated. In the cross-sections of the plate except for the tensile and shear forces, bending and torsional moments, 
there appear the additional force factors, the so-called bimoments. The author of the article addresses the prob-
lem of bending and vibrations of thick plates based on bimoment theory of plates [12]-[15], built as a part of 
three-dimensional theory of elasticity, using the method of displacements decomposition in one of the spatial 
coordinates in Maclaurin infinite series. 

This paper gives a brief description of the technique of constructing a theory of plates with consideration of 
bimoments generated due to displacements distribution of cross-section points by a non-linear law. Here the eq-
uations of bimoments are built with the equation of three-dimensional dynamic theory of elasticity, described on 
face surfaces of the plate. The bimoments are introduced in stress dimensions and are characterized by the inten-
sity of generated bimoments. We would use the designations and determinant correlations of forces, moments, 
bimoments and equations of motion relative to these force factors.  

Unlike bimoment theory in [14] and [15], here the bimoment equations are built with the equation of three- 
dimensional dynamic theory of elasticity, described on face surfaces of the plate. Bimoments are introduced in 
stress dimensions, and they characterize the intensity of generated bimoments. 

Determinant relationships of forces, moments, bimoments and equations of motion relative to these force fac-
tors are given. 

2. Statement of the Problem 
Consider an orthotropic thick plate of constant thickness 2H h=  and dimensions ,a b  in plane. Introduce the 
designations: 1 2 3, ,E E E —elasticity moduli; 12 13 23, ,G G G —shear moduli; 12 13 23, ,ν ν ν —Poisson ratio of plate 
material. 

When building an equation of motion the plate is considered as a three-dimensional body and all components 
of stress and strain tensors: ( ), , , 1,3ij ij i jσ ε =  are taken into consideration. The components of displacement 
vector are the functions of three spatial coordinates and time ( ) ( ) ( )1 1 2 2 1 2 3 1 2, , , , , , , , , , ,u x x z t u x x z t u x x z t . 

The components of strain tensor ijε  are determined from Cauchy relation as: 

31 2
11 22 33

1 2

, , ,
uu u

x x z
ε ε ε

∂∂ ∂
= = =
∂ ∂ ∂

                            (1.а) 

3 31 2 1 2
12 13 23

2 1 1 2

1 1 1, , ,
2 2 2

u uu u u u
x x z x z x

ε ε ε
     ∂ ∂∂ ∂ ∂ ∂

= + = + = +     ∂ ∂ ∂ ∂ ∂ ∂     
               (1.b) 

For orthotropic plate, the Hooke’ law, in a general case, is written as: 

11 11 11 12 22 13 33 ,E E Eσ ε ε ε= + +                             (2.a) 

22 21 11 22 22 23 33 ,E E Eσ ε ε ε= + +                             (2.b) 

33 31 11 32 22 33 33 ,E E Eσ ε ε ε= + +                             (2.c) 

12 12 12 13 13 13 23 23 232 , 2 , 2G G Gσ ε σ ε σ ε= = =                       (2.d) 
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where 11 12 33, , ,E E E  are the elastic constants, determined through Poisson ratio and the moduli of elasticity in 
the form [14] [15]. 

As an equation of motion of a plate we would use three-dimensional equations of dynamic theory of elasticity: 

1311 12
2

1 2

u
x x z

σσ σ ρ∂∂ ∂
+ + =

∂ ∂ ∂


                              (3.а) 

2312 22
2

1 2

u
x x z

σσ σ ρ∂∂ ∂
+ + =

∂ ∂ ∂


                              (3.b) 

13 23 33
3

1 2

u
x x z
σ σ σ ρ∂ ∂ ∂

+ + =
∂ ∂ ∂



                              (3.c) 

where ρ  is a density of plate material. 
Boundary conditions on lower and upper face surfaces of the plate z h=  and z h= −  are: 

( ) ( ) ( )
33 3 31 1 32 2, , , at ;q q q z hσ σ σ+ + += = = =                     (4.a) 

( ) ( ) ( )
33 3 31 1 32 2, , , at .q q q z hσ σ σ− − −= = = = −                    (4.b) 

Here ( ) ( ) ( )
1 2 3, ,q q q− − −  and ( ) ( ) ( )

1 2 3, ,q q q+ + +  are distributed external loads, applied to upper and lower face sur-
faces of the plate z h=  and z h= −  along the direction of 1 2, ,ox ox oz  coordinates axes. 

3. Method of Solution 
The methods of building the bimoment theory of plates are based on Cauchy relation (1), generalized Hooke’s 
law (2), three-dimensional equations of the theory of elasticity (3), boundary conditions on face surfaces (4). A 
proposed bimoment theory of plates is also described by two non-connected problems, each of which is formu-
lated on the basis of six two-dimensional equations of motion with corresponding boundary conditions.  

The components of displacement vector are expanded into Maclaurin infinite series in the form: 

( ) ( ) ( ) ( ) ( ) ( )
2 3

0 1 2 3 , 1, 2
i

k k k k k
k i

z z z zu B B B B B k
h h h h

     = + + + + + =     
     

              (5.а) 

2 3

3 0 1 2 3

i

i
z z z zu A A A A A
h h h h

     = + + + + +     
     

                      (5.b) 

Here ( ) ,k
i iB A  are unknown functions of two spatial coordinates and time ( ) ( ) ( )1 2, ,k k

i iB B x x t= ,  
( )1 2, ,i iA A x x t= . In a general case, these functions are determined according to the formulae: 

( ) ( ) 3

0 0

1 1, 1, 2 ,
! !

i i
k i ik

i ii i
z z

u uB h k A h
i iz z

= =

   ∂ ∂
= = =   ∂ ∂   

 

The displacements in stresses in upper z h= −  and lower points z h=  in plate fibers we would designate 
as ( ) ( ) ( ), , 1,3i iu u i− + =  and ( ) ( ) ( ), , 1,3; 1,3ij ij i jσ σ− + = = . 

The first problem of bimoment theory describes tension-compression and transverse reduction of the plate, 
and the second one—the bending and transverse shear of the plate. Determinant relationships and corresponding 
equations of motion of the plate in the first and second problems are briefly described below. 

The first problem is described by the forces and bimoments with six generalized functions 1 2 1 2, , , , ,u u r Wψ ψ , 
which are determined by relationships: 

( ) ( )
( )1, d , 1, 2 ,

2 2

h
k k

k k k
h

u uu u z k
h

ψ
+ −

−

−
= = =∫                        (6) 

( ) ( )
3 3

32
1, d

2 2

h

h

u uW r u z z
h

+ −

−

−
= = ∫                            (7) 
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Introduce the external loads for the first problem 
( ) ( ) ( ) ( ) ( ) ( )

3 31 1 2 2
1 2 3, ,

2 2 2
q qq q q qq q q

+ −+ − + − +− −
= = =                     (8) 

The expressions of longitudinal and tangential forces are written as [12]-[15]: 

1 2
11 11 12 13

1 2

2N E H E H E W
x x
ψ ψ∂ ∂

= + +
∂ ∂

, 1 2
22 12 22 23

1 2

2N E H E H E W
x x
ψ ψ∂ ∂

= + +
∂ ∂

         (9.а) 

1 2
12 21 12

2 1

N N G H H
x x
ψ ψ ∂ ∂

= = + ∂ ∂ 
                         (9.b) 

The intensities of the bimoments 13 23,p p  from tangential stresses 13 23,σ σ  have the expressions 

( ) ( )1 1 2 2
13 13 23 23

1 2

2 2
,

u ur rp G p G
H x H x
ψ ψ− −   ∂ ∂

= + = +   ∂ ∂   
               (10.а) 

The intensity of the bimoment 33p  from normal stress 33σ  is written in the form: 

1 2
33 31 32 33

1 2

2Wp E E E
x x H
ψ ψ∂ ∂

= + +
∂ ∂

                         (10.b) 

The equations of motion relative to longitudinal and tangential forces and bimoments from tangential and 
normal stresses have the form [12]-[15]: 

11 12 21 22
1 1 2 2

1 2 1 2

2 , 2N N N Nq H q H
x x x x

ρ ψ ρ ψ∂ ∂ ∂ ∂
+ + = + + =

∂ ∂ ∂ ∂
                    (11) 

13 23 33 3

1 2

2 2p p p q r
x x H H

ρ∂ ∂
+ − + =

∂ ∂
                             (12) 

Note, that the expressions of force factors (9), (10), and hence, the equations of motion of the system (11), (12) 
is rigorously built. This system consists of three equations relative to six unknown functions 1 2 1 2, , , ,  ,u u r Wψ ψ . 
As could be seen, three equations are missed. If in expressions (9.а) the terms 13 132 , 2E W E W  are omitted, then 
we would obtain two equations of motion of classic theory of plates in the form (11), since the equation of mo-
tion (12) becomes isolated and fail.  

The second problem of bimoment theory consists of the equations for bending moments, torsional moments, 
shear forces relative to six kinematic functions 1 2 1 2, , , , ,u u r Wψ ψ 

     , determined by formulae: 
( ) ( )

( )2
1, d , 1, 2 ,

2 2

h
k k

k k k
h

u uu u z z k
h

ψ
+ −

−

−
= = =∫                      (13) 

( ) ( )
3 3

3
1, d

2 2

h

h

u uW r u z
h

+ −

−

+
= = ∫

                            (14) 

Introduce the generalized external loads for the second problem 

( ) ( ) ( ) ( ) ( ) ( )
3 31 1 2 2

1 2 3, ,
2 2 2

q qq q q qq q q
+ −+ − + − −+ +

= = =                       (15) 

Bending, torsional moments and shear forces, which are rigorously built, have the form [12]-[15]:  

( )2
1 2

11 11 12 13
1 2

2
2

r WHM E E E
x x H
ψ ψ −∂ ∂ = + −

 ∂ ∂ 





 

                    (16.а) 
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( )2
1 2

22 12 22 23
1 2

2
2

r WHM E E E
x x H
ψ ψ −∂ ∂ = + −

 ∂ ∂ 





 

                     (16.b) 

2
1 2

12 12
2 12

HM G
x x
ψ ψ ∂ ∂

= + ∂ ∂ 

 

                             (16.c) 

13 13 1 23 23 2
1 2

2 ,r rQ G u H Q G u H
x x

   ∂ ∂
= + = +   ∂ ∂   

 

                      (16.d) 

The system of equations of motion of the second problem consists of two equations relative to bending, tor-
sional moments and one equation relative to shear force and it is written in the form [12]-[15]: 

2 2
11 12 21 22

13 1 1 23 2 2
1 2 1 2

,
2 2

M M M MH HQ Hq Q Hq
x x x x

ρψ ρψ∂ ∂ ∂ ∂
+ − = − + − = −

∂ ∂ ∂ ∂
 

              (17) 

13 23
3

1 2

2Q Q H r q
x x

ρ∂ ∂
+ = −

∂ ∂


                                (18) 

Note, that the expressions of forces and moments (16), hence, the equations of motion of the system (17), (18) 
are rigorously built. Similar to the first problem, here three equations are missed. The system of equations of 
motion (17), (18) consists of three equations relative to six unknown functions 1 2 1 2, , , , ,u u r Wψ ψ 

     . If in expres-
sions of forces and moments, into the equations of motion (17) and (18) conventionally introduce  

1 1 2 23 , 3u uψ ψ= =    and 13 23 0E E= = , and the shear modulus 13 23,G G  substitute for 13 23,z zk G k G , (where zk
is a shear coefficient), then an equation of motion of plates could be obtained according to Timoshenko’s theory. 

To complete the systems (11), (12) and (17) and (18) it is necessary to build two more systems, with three 
equations in each. Write down three equations of motion of the theory of elasticity (3) on face surfaces of the 
plate z h= −  and z h= + . Adding and subtracting the equations of the theory of elasticity (3) on face surfaces 
of the plate z h= −  and z h= , and taking into account the Hooke’s law (2), surface conditions (4) and desig-
nations (6), (7) and (13), (14), two independent systems with three equations in each could be obtained. The first 
of these systems describes the first problem and has the form: 

* *
13 2311 12 21 22

1 2
1 2 1 2

,u u
x x H x x H

σ σσ σ σ σρ ρ∂ ∂ ∂ ∂
+ + = + + =

∂ ∂ ∂ ∂
                    (19) 

*
331 2

1 2

q q W
x x H

σ ρ∂ ∂
+ + =

∂ ∂
                                 (20) 

Here the intensities of the bimoments 11 22 12, ,σ σ σ —under transverse reduction and tension-compression of 
the plate, generated due to 11 22 12, ,σ σ σ  are: 

( ) ( )

( ), 1, 2; 1, 2
2

ij ij
ij i j

σ σ
σ

+ −+
= = =                            (21) 

* * *
13 23 33, ,σ σ σ  are the intensities of the bimoments generated due to transverse stresses 13 23 33, ,σ σ σ : 

( ) ( )
( )

( ) ( )* *
3 3 3 33 33 331 1, 1, 2 ,

2 2
k k k k

H z z H z z
σ σ σ σ σ σ+ − + −   ∂ ∂ ∂

= + = = −      ∂ ∂ ∂ ∂   
               (22) 

The second system of equations obtained from the equations of the theory of elasticity (3) is written in the 
form:  

* *
13 2311 12 21 22

1 2
1 2 1 2

,u u
x x H x x H

σ σσ σ σ σρ ρ∂ ∂ ∂ ∂
+ + = + + =

∂ ∂ ∂ ∂
    

 

                     (23) 
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*
331 2

1 2

q q W
x x H

σ ρ∂ ∂
+ + =

∂ ∂
 



                                (24) 

Here 11 22 12, ,σ σ σ    are the intensities of the bimoments under transverse bending and shear for the second 
problem generated due to the stresses 11 22 12, ,σ σ σ : 

( ) ( )

( ), 1, 2; 1, 2
2

ij ij
ij i j

σ σ
σ

+ −−
= = =                           (25) 

The intensities of the bimoments * * *
13 23 33, ,σ σ σ   , generated due to the stresses 33 13 23, ,σ σ σ , under transverse 

shear and bending are written in the form:  
( ) ( )

( )
( ) ( )* *

3 3 3 33 33 331 1, 1, 2 ,
2 2

k k k k
H z z H z z
σ σ σ σ σ σ+ − + −   ∂ ∂ ∂

= − = = +      ∂ ∂ ∂ ∂   

 

               (26) 

The intensities of the bimoments 11 22 12 11 12 22, , , , ,σ σ σ σ σ σ    are determined from Hooke’s law (2) with con-
sideration of the conditions on face surfaces z h= −  and z h=  (4) as: 

* * * *13 231 2 1 2 1 2
11 11 12 3 22 12 22 3 12 12

1 2 33 1 2 33 2 1

, ,E Eu u u u u uE E q E E q G
x x E x x E x x

σ σ σ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + = + + = + ∂ ∂ ∂ ∂ ∂ ∂ 
     (27) 

* * * *13 231 2 1 2 1 2
11 11 12 3 22 12 22 3 12 12

1 2 33 1 2 33 2 1

, ,E Eu u u u u uE E q E E q G
x x E x x E x x

σ σ σ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + = + + = + ∂ ∂ ∂ ∂ ∂ ∂ 

     

          (28) 

Here * * *13 23 23
11 11 31 22 22 32 12 21 31

33 33 33

, ,E E EE E E E E E E E E
E E E

= − = − = − . 

The expressions of the intensities of the bimoments * * *
13 23 33, ,σ σ σ  are determined by the solution of the sys-

tem of linear algebraic equations relative to coefficients of Maclaurin series ( ) ( ) ( )1 2
2 2 2 1, , , 0,1, 2,i i iB B A i+ =  , 

which are obtained by the substitution of the series (5) into the conditions on face surfaces at z h= −  and 
z h=  (4) and designations (6), (7). 

* 131 1 1 2
13 13 31 32 3 1

1 33 1 1 2

60 12 12Gu u uWG H E E q q
H x E x x x

ψσ
   − ∂ ∂∂ ∂

= − − + − +   ∂ ∂ ∂ ∂   
         (29.а) 

* 232 2 1 2
23 23 31 32 3 2

2 33 2 1 2

60 12 12Gu u uWG H E E q q
H x E x x x

ψσ
   − ∂ ∂∂ ∂

= − − + − +   ∂ ∂ ∂ ∂   
        (29.b) 

* 1 2
33 33 31 32

1 1 13 2 2 23

1 2
31 32 3

1 2

420 180

20

q qr W W WE HE HE
H H x x G x x G

u uE E q
x x

σ
     ∂ ∂ ∂ ∂

= − − − − −     ∂ ∂ ∂ ∂     
 ∂ ∂

− + − ∂ ∂ 

          (30) 

The expressions of the intensities of the bimoments * * *
13 23 33, ,σ σ σ    are determined by the solution of the sys-

tem of linear algebraic equations relative to coefficients of Maclaurin series ( ) ( ) ( )1 2
2 1 2 1 2, , , 0,1, 2,i i iB B A i+ + =  , 

which are obtained by the substitution of the series (5) into the conditions on the face surfaces at z h= −  and 
z h=  (4) and designations (13), (14).  

* 131 1 1 2
13 13 31 32 3 1

1 33 1 1 2

420 180 20 20 ,Gu u uWG H E E q q
H H x E x x x
ψσ

   ∂ ∂∂ ∂
= − − − + − +   ∂ ∂ ∂ ∂   



   

          (31.а) 

* 232 2 1 2
23 23 31 32 3 2

2 33 2 1 2

420 180 20 20 ,Gu u uWG H E E q q
H H x E x x x
ψσ

   ∂ ∂∂ ∂
= − − − + − +   ∂ ∂ ∂ ∂   



   

          (31.b) 



М. K. Usarov et al. 
 

 
1649 

* 1 2
33 33 31 32

1 1 31 2 2 32

1 2
31 32 3

1 2

60

12 .

q qr W W WE E H E H
H x x G x x G

u uE E q
x x

σ
   − ∂ ∂ ∂ ∂

= − − − −   ∂ ∂ ∂ ∂   
 ∂ ∂

− + − ∂ ∂ 

  

 



 



              (32) 

Write down the formulae to determine the displacements on the face surfaces of the plate z h= −  and 
z h= + : 

( ) ( ) ( ) ( ) ( )
3 3, , 1, 2 , , .i i i i i iu u u u u u i u W W u W W− + − += − = + = = − = + 

                (33) 

Formulae for stresses on the face surfaces of the plate z h= −  and z h=  have the form: 
( ) ( ) ( ), , 1, 2; 1, 2ij ij ij ij ij ij i jσ σ σ σ σ σ− += − = + = =                        (34) 

Maximum values of displacements and stresses of the plate are reached on the face surfaces of the plate and 
are determined by the solutions of the first and second problems by the formulae (33) and (34).  

Note, that the expressions of intensities of the bimoments (10), (27), (28), (29), (30), (31) and (32) are built 
for the first time and are new in the theory of plates. 

Consider the boundary conditions of a discussed problem for the thick plates. 
1) On the border of the plate the displacements are zero. On the edges of the plate 1 constx =  and 2 constx =  

the conditions should be as follows: 

1 2 1 20, , 0, 0; 0, 0r u u Wψ ψ= = = = =                         (35) 

1 2 1 20, 0, 0, 0; 0, 0r u u Wψ ψ= = = = = =                            (36) 

2) On the border 1 constx =  the plate is supported. The following conditions should be satisfied: 

11 12 11 120, 0, 0, 0, 0, 0N N r Wσ σ= = = = = =                      (37) 

11 12 11 120, 0, 0, 0, 0 0M M r Wσ σ= = = = = =                        (38) 

3) On the border 1 constx =  the plate is free of supports. The following conditions should be satisfied 
*

11 12 13 11 12 130, 0, 0, 0, 0, 0N N p σ σ σ= = = = = =                    (39) 

*
11 12 13 11 12 130, 0, 0, 0, 0 0M M Q σ σ σ= = = = = =                      (40) 

Boundary conditions on the border 2 constx =  are similarly written. 
When studying the problem of transverse bending and shear it is enough to consider only the second problem 

with the equations of motion (17), (18), (23), (24) and boundary conditions (35)-(40). 

4. Solution of Tests Problem 
As an example, consider the forced harmonic vibrations of a cantilever rectangular plate fixed on both ends un-
der the effect of harmonic periodic external load: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2 1 2 3 3 0 0 0

π π0, 0, 0, 0, 0, sin sin sinx xq q q q q q q t
a b

ω β− − + + + −= = = = = = − +          (41) 

where 0 0 0, ,q ω β  is an amplitude, frequency and the mode of vibration of an external load, respectively. Note, 
that if 0 0ω = , we obtain the problem of static bending of the plate.  

Substituting (41) into (8) and (15) determine the load terms of the equation of motion. For a plate fixed on 
both ends the boundary conditions are written in the form (35) and (36). 

5. Numeric Results 
First determine eigenfrequencies of the plate. After dividing the variables by spatial coordinates and time, the 



М. K. Usarov et al. 
 

 
1650 

problem is solved by Finite Difference Method. The step in spatial coordinates is 1 2 30
ax x∆ = ∆ = . In calcula-

tions, for isotropic plates 21 13 32 0.3ν ν ν= = =  are given as an initial data. 
For square plates with dimensions 3a b H= =  the value of eigenfrequency is 1 0.7469p = . With increasing 

dimensions of the plate up to 5a b H= =  the value of eigenfrequency is 1 0.3906p = . For square plates with 
dimensions 8a b H= =  the value of eigenfrequency is 1 0.1983p = . 

Table 1 shows the results obtained for the displacements, moments and forces in fixed square plates  

3a b H= =  under different values of dimensionless frequency 
2

0
0

1

H
E

ρ ωω = . When the value of the frequency  

of external effect 0ω  approaches the eigenfrequency 1 0.7469p =  the values of the displacements, forces and 
moments dramatically increase; this testifies of gradual transition of the motion of plate points into resonant 
mode. As seen, an abrupt increase in the values of displacements, forces and moments could be observed. 

Table 2 and Table 3 show numeric values of displacements, moments and forces, calculated for the fixed 
square plates with dimensions 5a b H= =  and 8a b H= = , respectively, for different values of dimensionless 
frequency 0ω .  

Calculations show that when the value of the frequency of external effect 0ω  approaches eigenfrequency, an 
increase in the values of displacements, forces and moments is observed; this testifies of gradual transition of the 
motion of plate points into resonant mode.  

 
Table 1. Displacements, forces and moments at 3a b H= = . 

0ω  
1 1

0

E
Hq
ψ

 

1

0

rE
Hq


 

1

0

WE
Hq



 11M  13Q  

0.0000 −0.0158 0.8560 0.9402 0.0113 0.4591 

0.3000 −0.0190 0.9882 1.0769 −0.0108 0.5277 

0.4000 −0.0226 1.1302 1.2240 −0.0356 0.6010 

0.5000 −0.0294 1.4039 1.5074 −0.0852 0.7419 

0.6000 −0.0463 2.0663 2.1937 −0.2098 1.0816 

0.7000 −0.1365 5.5665 5.8213 −0.8909 2.8704 

 
Table 2. Displacements, forces and moments at 5a b H= = . 

0ω  
1 1

0

E
Hq
ψ

 

1

0

rE
Hq


 

1

0

WE
Hq



 
11M  13Q  

0.0000 −0.0751 2.6428 2.7386 −0.1047 0.7774 

0.1000 −0.0802 2.7835 2.8825 −0.1263 0.8155 

0.2000 −0.1007 3.3478 3.4601 −0.2158 0.9676 

0.3000 −0.1783 5.4420 5.6053 −0.5650 1.5275 

 
Table 3. Displacements, forces and moments at 8a b H= = . 

0ω  
1 1

0

E
Hq
ψ

 

1

0

rE
Hq


 

1

0

WE
Hq



 
11M  13Q  

0.0000 −0.3067 8.3941 8.5060 −0.3487 1.2598 

0.1000 −0.3993 10.4739 10.6163 −0.6033 1.5244 

0.1300 −0.5105 12.9496 13.1296 −0.9163 1.8364 

0.1600 −0.8082 19.5290 19.8115 −1.7691 2.6596 

0.1700 −1.0499 24.8541 25.2206 −2.4678 3.3234 

0.1800 −1.5560 35.9866 36.5297 −3.9369 4.7087 
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Calculations show that the equations of motion of a plate (23) may be substituted by kinematic conditions rel-
ative to tangential stresses:  

1 1 2 2
13 31 1 23 32 2

1 2

12 30 , 12 30 ,u uW WG q G q
H H x H H x

ψ ψσ σ
   ∂ ∂

≡ − + = ≡ − + =   ∂ ∂   

 

  

               (26) 

Kinematic equations serve to determine the generalized displacements 1 2,u u  .  
The equations (26) are determined by the solution of the system of linear algebraic equations relative to coef-

ficients of the series (5) ( ) ( ) ( )1 2
2 1 2 1 2, , , 0,1, 2,i i iB B A i+ + =  , which are obtained by the substitution of the series (5) 

into the conditions on the face surfaces at z h= −  and z h=  (4) and designations (13), (14). 

6. Conclusion 
Based on these studies, we would note that using the method of expansion in a series as part of three-dimen- 
sional dynamic theory of elasticity, a two-dimensional bimoment theory of orthotropic thick plates was devel-
oped and the equations of motion of the plate relative tot forces, moments and bimoments were built. It is shown 
that the problem in the general case is reduced to the definition of twelve unknown functions of two spatial 
coordinates and time. New expressions to determine the forces, moments and bimoments of the plates were built, 
as well as the methods for solving the problems of free and forced vibrations of plates based on Finite Differ-
ence Method. 
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