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Abstract 
In this paper, we investigate the asymptotic behavior of the following quasilinear difference equa-
tions 

( ) ( )( ) ( ) ( ) ( )y n y n p n y n y n
1 1

,
α β− −

∆ ∆ ∆ =                      (E) 

where { }n N n n n0 0 0 0, 1, 2,∈ = + +  , n N0 ∈ . We classified the solutions into six types by means of 
their asymptotic behavior. We establish the necessary and/or sufficient conditions for such equa-
tions to possess a solution of each of these six types. 
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1. Introduction 
Recently, the asymptotic properties of the solutions of second order differential equations [1] [2] difference equ-
ations of the type (E) and/or related equations have been investigated by many authors, for example see, [3]-[19] 
and the references cited there in. Following this trend, we investigate the existence of these six types of solutions 
of the Equation (E) showing the necessary and/or sufficient conditions can be obtained for the existence of those 
solutions. For the general backward on difference equations, the reader is referred to the monographs [20]-[24]. 

In 1996, PJY Wang and R.P. Agarwal [25] considered the quasilinear equation 

( )( ) ( )1 1 0n n n na y q f yσ
− −∆ ∆ + =                                (1) 
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and obtained oscillation criteria for the Equation (1). 
In 1996, E. Thandapani, M.M.S. Manuel and R.P. Agarwal [26] have studied the quasi-linear difference equa-

tion 

( ) ( )1
1 1 1 0.n n n n na x x q f xα−
− − −∆ ∆ ∆ + =                              (2) 

In 2000, Pon Sundaram and E. Thandapani [27] considered the following quasi-linear functional difference 
equation 

( ) ( )( ) ( )( )( )1
, 0y n y n f n y n

α
σ

−
∆ ∆ ∆ + =                            (3) 

and they have established necessary and sufficient conditions for the solutions of Equation (3) to have various 
types of nonoscillatory solutions. Further they have established some new oscillation conditions for the oscilla-
tion of solutions of Equation (3). 

In 1997, E. Thandapani and R. Arul [28] studied, the following quasi-linear equation 

( )( ) ( )1, 0.n n np y f n yφ +∆ + =                                 (4) 

They established necessary and sufficient conditions for the solutions of (4) to have various type of nono- 
scillatory solutions. 

In 2004, E. Thandapani et al. [29] studied the equation 

( )( ) ( )1 00, 0,n n n k n na y py q f y n nα
− − +∆ ∆ − + = ≥ ≥



                       (5) 

and established conditions for the existence of non-oscillatory solutions. 
S.S. Cheng and W.T. Patula [30] studied the difference equation 

( ) 1 1
1 0p p

k k ky s y− −
−∆ ∆ + =                                   (6) 

where 1p >  and proved an existence theorem for Equation (6). 
In 2002, M. Mizukanmi et al. [1] discussed the asymptotic behavior of the following equation 

( ) ( )1 1 .y y p t y yα β− −′ ′ =                                   (7) 

Discrete models are more suitable for understanding the problems in Economics, genetics, population dy-
namics etc. In the qualitative theory of difference equations asymptotic behavior of solutions plays a vital role. 
Motivated by this, we consider the discrete analogue of (7) of the form 

( ) ( )( ) ( ) ( ) ( )1 1
y n y n p n y n y n

α β− −
∆ ∆ ∆ =                            (8) 

where { }0 0 0 0, 1, 2,n N n n n∈ = + +  , 0n N∈  and ∆  is the forward difference operator defined by 

( ) ( ) ( )1 .y n y n y n∆ = + −  

We assume the following conditions on Equation (8) 
1) α  and β  are positive constants 
2) ( ){ }p n  is a real sequence such that ( ) 0p n >  for all 0 0n n≥ > . 
For simplicity, we often employ the notation 

* 1 , , 0,x x x x sgn x x Rγ γγ γ−= = ∈ >  

interms of which Equation (8) can be expressed in 

( )( ) ( ) ( )( )
* *

.y n p n y n
α β

∆ ∆ =  

By a solution of Equation (8), we mean a real sequence ( ) 0:y n N R→ , together with ( ) ( )1
y n y n

α−
∆  ex-

ists and satisfies Equation (8) for all 0 0n n N≥ ∈ . 
We here call Equation (8) super-homogeneous or sub-homogeneous according as α < β or α > β If α = β 

Equation (8) is often called half-linear. Our attention is mainly paid to the super-homogeneous and sub-homo- 
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geneous cases, and the half-linear is almost excluded from our consideration. 

2. The Classification of All Solutions of Equation (8) 
To classify all solutions of Equation (8), we need the following lemma. 

Lemma 1. Let ( )y n  be a local solutions of Equation (8) near 0n N n= ≥  and [ ), ,N w w ≤ ∞ , be its right  
maximal interval of existence. Then we have either ( ) 0y n ≥  near w or ( ) 0y n ≤  near w. That is ( )y n  does  
not charge strictly its sign infinitely many times as n w↑ . 

The classification of all (local) solutions of Equation (8) are given on the basis of Lemma 1. Since the proof is 
easy, we leave it to the reader. 

Proposition 1. Each local solution ( ) 0y n ≡/  of Equation (8) falls into exactly one of the following six types. 
1) Singular solution of the first kind: type ( )1S  there exist a 1 0n n≥  such that 

( ) ( )1 10 for , and 0 for .y n n n y n n n≡ ≤ ≡ ≥/  

2) Decaying solution: type (D), ( )y n  can be continued to ∞, and satisfies ( ) ( ) 0y n y n∆ <  for all large n, 
and 

( )lim 0.
n

y n
→∞

=  

3) Asymptotically constant solution: type (AC) ( )y n  can be continued to ∞, and satisfies ( ) ( ) 0y n y n∆ <  
for all large n and 

( ) { }lim 0 .
n

y n R
→∞

∈ −  

4) Asymptotically linear solution: type (AL) ( )y n  can be continued to ∞ and satisfies ( ) ( ) 0y n y n∆ >  for 
all large n and 

( ) { }lim 0 .
n

y n
R

n→∞
∈ −  

5) Asymptotically super-linear solution: type (AS) ( )y n  can be continued to ∞ and satisfies ( ) ( ) 0y n y n∆ >  
for all large n and 

( )lim .
n

y n
n→∞

= ±∞  

6) Singular solution of second kind: type ( )2S  ( )y n  has the finite escape time; that is, there exists a 1 0n n>  
such that 

( )lim .
n

y n
→∞

= ±∞  

3. Main Results for the Super-Homogeneous Equations 
Before we list our main results for the case α β< . Throughout this section we assume that .α β<  

Theorem 2. Equation (8) has no solution of type ( )1S . 
Theorem 3. Equation (8) has a solution of type (D) if and only if 

( )
1

.
n

p s
α∞ ∞  = ∞ 

 
∑ ∑                                   (9) 

Theorem 4. Equation (8) has a solution of type (AC) if and only if 

( )
1

.
n

p s
α∞ ∞  < ∞ 

 
∑ ∑                                  (10) 

Theorem 5. Equation (8) has a solution of type (AL) if and only if 

( ) .n p nβ
∞

< ∞∑                                    (11) 
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Theorem 6. Equation (8) has a solution of type (AS) if (11) holds. 
Theorem 7. Equation (8) does not have solutions of type (AS) if there are constants 0ρ >  and ( )0,1σ ∈  

satisfying 

( )( )1lim inf 0
n n

n s p s
αρ βσ σ ρ

∞
+ − −

→∞
>∑                             (12) 

and 

1 0
1 0
βσ σ ρ

σ ασ αρ
+ − − ≥ 

− − − ≥ 
                                 (13) 

Remark 1. The set of all pairs ( ) ( ) ( ), 0, 0,1ρ τ ∈ ∞ ×  satisfying inequalities (13) is not empty. In fact, the pair  

( ) 1, ,
2 1 2 1

β α αρ σ
αβ α αβ α
 − +

=  + + + + 
 belongs to it. 

Theorem 8. Equation (8) has a solutions of type ( )2S . 
Remark 2. Theorem 7 has the same conclusion that these are not solutions of type (AS). However, Theorem 7 

is still valid for the case that p is nonnegative. For example, it is formed by this extended version of Theorem 7 
that the equation 

( ) ( )( ) ( ) ( ) ( )1 1
1 , 1y n y n t y n y n n

α β− −
∆ ∆ ∆ = + ≥  

does not have solutions of type (AS). 
Example 1 Let α β< , consider the Equation (8) with ( )p n nσ=  

( ) ( )( ) ( ) ( )1 1
, 1 and .y n y n n y n y n n R

α βα σ
− −

∆ ∆ ∆ = ≥ ∈                    (14) 

For this equation, we have the following results: 
1) Equation (14) has a solution of type (D) if and only if 1σ α≥ − −  (Theorem 3). 
2) Equation (14) has a solution of type (AC) if and only if 1σ α< − −  (Theorem 4). 
3) Equation (14) has a solution of type (AL) if and only if 1σ β< − −  (Theorem 5). 
4) Equation (14) has a solution of type (AS) if and only if 1σ β< − −  (Theorem 6). 

4. Main Results for the Sub-Homogeneous Equation 
Below we list our main results for the case α β> . Throughout this section we assume that α β> . 

Theorem 9. Equation (8) has a solutions of type ( )1S . 
Theorem 10. Equation (8) has a solution of type (D) if 

( )
1

.
n

p s
α∞ ∞  < ∞ 

 
∑ ∑                                    (15) 

Theorem 11. Equation (8) does not have solutions of type (D) if 

( )1lim inf 0.
n

n p nα+

→∞
>                                    (16) 

Theorem 12. Equation (8) does not have solutions of type (D) if there are constants 0ρ >  and ( )0,1σ ∈  
satisfying 

( ) ( )1lim inf 0
n n

n s p sσ ασ αρρα
∞

+ − −

→∞
>∑                              (17) 

and 

1 0
1 0.
βσ σ ρ

σ σα αρ
+ + − ≤

 − − + ≤
                                   (18) 

Remark 3. The set of all pairs ( ) ( ) ( ), 0, 0,1ρ σ ∈ ∞ ×  satisfying inequalities (18) is not empty. In fact, the 
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pair 

( ) 1, ,
2 1 2 1

α β αρ σ
αβ α αβ α
 − +

=  + + + + 
 

belongs to it. 
Theorem 13. Equation (8) has a solution of type (AC) if and only if (15) holds. 
Theorem 14. Equation (8) has a solution of type (AL) if and only if 

( ) .n p nβ
∞

< ∞∑  

Theorem 15. Equation (8) has a solution of type (AS) if and only if 

( ) .n p nβ
∞

= ∞∑                                    (19) 

Theorem 16. Equation (8) has no solutions of type ( )2S . 
Example 2. Let α β>  and consider the Equation (14) again. 
We have the following results: 
1) Equation (14) has a solution of type (D) if and only if 1σ α< − −  (Theorem 10 and 11). 
2) Equation (14) has a solution of type (AC) if and only if 1σ α< − −  (Theorem 14). 
3) Equation (14) has a solution of type (AL) if and only if 1σ β< − −  (Theorem 15). 
4) Equation (14) has a solution of type (AS) if and only if 1σ β≥ − −  (Theorem 16). 

5. Auxillary Lemma 
In this section, we collect axillary lemmas, which are mainly concerned with local solution of Equation (8). A 
comparison lemma of the following type is useful, and will be used in many places. 

Lemma 2. Suppose that ( ){ } ( ){ },p qp n p n  are such that ( ) ( )1 20 p n p n< <  for a n b≤ ≤ . Let ( ) ,iy n  
1,2i =  and a n b≤ ≤  be solutions of the equations 

( ) ( )( ) ( ) ( ) ( )1 1
, 1, 2i i i i iy n y n p n y n y n i

α β− −
∆ ∆ ∆ = =  

respectively. If ( ) ( )1 2y a y a≤  and ( ) ( )1 2y a y a∆ ≤ ∆ , then ( ) ( )1 2y n y n<  and ( ) ( )1 2y n y n∆ < ∆  for a < n 
≤ b. 

Proof. We have 

( )( ) ( )( ) ( ) ( )( )* * *
1

, , 1, 2
n

i i i i
a

y n y a p s y s a n b i
α α β−

∆ = ∆ + ≤ ≤ =∑                     (20) 

( ) ( ) ( )( ) ( ) ( )( )* *
11 1

, , 1, 2.
n s

i i i i i
a a

y n y a y a p r y r a n b i
α

α β
∗

− − = + ∆ + ≤ ≤ = 
 

∑ ∑            (21) 

By the hypotheses we have ( ) ( )1 2y n y n<  in some right neighborhood of a. If ( ) ( )1 2y n y n≥  for some 
point in a < n ≤ b, we can find a c such that a < c ≤ b satisfying ( ) ( )1 2y n y n<  for a < n < c and ( ) ( )1 2y c y c= . 
But, this yields a contradiction, because 

( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

* *

* *

1 2

11 1

1 2 1 1 1

11

2 2 2

0  

 

0.

c n

a a

n

a

y c y c

y a y a y a p s y s

y a p s y s

α
α β

α
α β

∗

∗

− −

−

= −

 = − + ∆ +  
  − ∆ + <    

∑ ∑

∑

 

Hence we see that ( ) ( )1 2y n y n<  for a n b< ≤ . Returning to (20), we find that ( ) ( )1 2y n y n∆ < ∆  for 
a n b≤ ≤ . The proof is complete.   
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The uniqueness of local solutions with non-zero initial data can be easily proved. That is, for given ( )0N n≥ , 
0y  and 1y , Equation (8) has a unique local solution ( )y n  satisfying ( ) 0y N y= , ( ) 1y N y∆ =  provided that 
0 1 0y y+ ≠ . The uniqueness of the trivial solution can be concluded for the case α β≤ . 
Lemma 3. Let α ≤ β and 0N n≥ . If ( )y n  is a local solution of Equation (1) satisfying ( ) ( ) 0y N y N= ∆ =  

then ( ) 0y n ≡  for 0n n≤ < ∞ . 
Proof. Assume the contrary. We may suppose that ( ) 0y n ≡/  for N n≤ < ∞ . Then, we can find 1 2,n n  such 

that 1 2N n n≤ <  satisfying ( ) ( )1 1 0y n y n+ ∆ =  and ( ) ( ) 0y n y n+ ∆ >  for 1 2n n n< ≤ . Summing (8), we 
obtain 

( ) ( ) ( )( ) *

1

1
1

,
n

n
y n p s y s

α
β

∗
− 

∆ =  
 
∑  

( ) ( ) ( )( ) *

1 1

1
1 1

1 2 , .
n s

n n
y n p r y r n n n

α
β

∗
− − 

= ≤ ≤ 
 

∑ ∑  

We therefore have 

( ) ( ) ( ) ( ){ }
1

1
1

 
n

n
y n p s y s y s

α
β− 

∆ ≤ + ∆ 
 
∑                                (22) 

( ) ( ) ( ) ( ){ }
1 1

1
1 1

1 2 , .
n s

n n
y n p r y r y r n n n

α
β− − 

≤ + ∆ ≤ ≤ 
 

∑ ∑                    (23) 

Put ( ) ( ) ( )( )
1
max
n n

w n y y
ξ

ξ ξ
≤ ≤

= + ∆ . We see that ( ) ( )1 0, 0w n w n= >  for 1 2n n n< ≤  and w is nondecreas- 

ing. From (22) and (23), we can get 

( ) ( )( ) ( )
1

1
1

 ,
n

n
y n w n p s

α
β α − 

∆ ≤  
 
∑  

( ) ( )( ) ( )
1 1

1
1 1

1 2 , .
n s

n n
y n w n p r n n n

α
β α − − 

≤ ≤ ≤ 
 

∑ ∑  

Let 1 2n n nτ≤ ≤ ≤ . Then from this observation we see that 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ,y y w G w n G n
β α β α

τ τ τ τ∆ + ≤ ≤  

where 

( ) ( ) ( )
1 1 1

1 1
1 1 1

.
v v s

n n n
G v p s p r

α α
− − −   

= +   
   
∑ ∑ ∑  

Consequently, we have 

( ) ( )( ) ( ) 1 2, .w n w n G n n n n
β α

≤ ≤ ≤                            (24) 

If α = β, from (24), we have ( )1 G n≤ , 1 2n n n< ≤ . This is a contradiction because ( )1 0G n = . If α < β, from  

(24) we have ( )( ) ( )w n G n
β α
α
−

−
≤ , 1 2n n n< ≤ . This is also a contraction because ( ) ( )1 10 0 0G n w n+ = + = .  

The proof is complete. 
Lemma 4. Let α β≥ . Then all local solutions of Equation (8) can be continued to ∞ and 0n , that is, all 

solutions of Equation (8) exist on the whole interval [ )0 ,n ∞ . 
Proof. Let ( )y n  be a local solution of Equation (8) is a neighborhood of 0N n≥ . Suppose the contrary that 

the right maximal interval of existence of ( )y n  is of the form [ ),N w , w < ∞ . Then, it is easily seen that 
( )0y w − = ±∞ . Summing (8) twice, we have 
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( ) ( ) ( )( ) **

11 1

0 1

n s

N N
y n c c p r y r

α
βα

∗
− − = + + 
 

∑ ∑  

where ( )0c y N=  and ( )1c y N= ∆ . Accordingly, 

( ) ( ) ( )
11 1

0 1 , .
n s

N N
y n c c p r y r N n w

α
βα

− − ≤ + + ≤ < 
 

∑ ∑  

Put ( ) ( )= max
N n

z n y
ξ

ξ
≤ ≤

. Then, 

( ) ( ) ( )
11 1

0 1 , .
n s

N N
y n c c z s p r N n w

α
βα

− − ≤ + + ≤ < 
 

∑ ∑  

Put moreover ( ) ( ){ }1max ,u n c z nα β= . Then, as in the proof of Lemma 3, we have 

( ) ( ) ( )( )
1

0 ,
n

N
z n c H s u s N n w

β α−

≤ + ≤ <∑                          (25) 

where ( ) ( )
11

1
n

N
H n p s

α− = + 
 

∑ . Since ( )0y w − = ±∞ , there is a N  such that N N w< <  such that 

( ) 1z n c α β≥  for N n w≤ < . Therefore it follows from (25) that 

( ) ( ) ( )( )
1

0 , .
n

N
u n c H s u s N n w

β α−

≤ + ≤ <∑                         (26) 

Let α β= . Then, using discrete Gronwall’s inequality, we see that ( )0u w − < ∞ , which is a contradiction. 
Next let α β> . Then (26) implies that 

( ) ( )( ) ( )
1

0 , .
n

N
u n c u n H s N n w

β α −

≤ + ≤ <∑  

Since 1β α < , we have ( )0u w − < ∞ . This is a contradiction too. Hence ( )y n  can be continued to ∞. 
The continuability to the left end point 0n  is verified in a similar way. The proof is complete.   

The following lemma establishes more than is stated in Theorem 8. Accordingly the proof of Theorem 8 will 
be omitted. 

Lemma 5. Let α β<  and 0N n≥  and 0c >  be given. Then there exists an ( ), 0M M N c= >  such that 
the right maximal interval of existence of each solution ( )y n  of Equation (1) satisfying ( )y N c≥  and  

( )y N M∆ ≥  is a finite interval ),N N , ( )y nN N= < ∞ , and ( )
0

lim
n N

y n
→ −

= ∞ . 

Proof. Let 1n N>  be fixed, and put ( )
1

min 0
N n n

p n m
≤ ≤

= > . There is an 0M >  satisfying 

( )( )( )( )
1

1 1
1 .

c
M m v n c n N

β αα β
−∞ + ++ − < −∑  

We first claim that the solution of Equation (8) with the initial condition ( )z n c= , ( )z n M∆ =  does not 
exist on [ )1,N n ; that is ( )z n  blow up at some ( ]1,N N n∈ . To see this suppose the contrary that ( )z n  ex-
ists at least [ )1,N n . By the definition of m, we have 

( )( ) ( ) ( )( ) ( )( ) 1, .z n p n z n m z n N n n
α β β

∆ ∆ = ≥ ≤ ≤  

Summing the inequality form N to 1n −  yields 

( )( ) ( )( )( ) 11 ,z n M m z n C N n n
α βα β∆ − ≥ + − ≤ ≤  

and hence 
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( )( ) ( )( )z n M m z n C
α βα β∆ ≥ + −  

( ) ( )( )( )( )
1

 z n M m z n C
β αα β∆ ≥ + −  

( ) ( )( )( )
1

11, .z n M m z n C N n n
β αα β

−
 ∆ + − ≥ ≤ ≤  

 

Finally, summing the above inequality both sides from N to 1 1n − , we obtain 
( )

( )( )( )1
1

1 ,
z n

n
M m w n C n N

β αα β
−

 + − ≥ −  ∑  

which is a contradiction to the choice of M. Hence ( )z n  must blow up at some ( ]1,N N n∈ , ( )
0

lim
n N

z n
→ −

= ∞ . 

If ( )y N c≥  and ( )y N M∆ ≥ , then Lemma 2 implies that ( ) ( )y n z n≥  on the common interval of exis-
tence of y and z and therefore ( )y n  blows up at some point before 1n . The proof is complete.   

6. Nonnegative Nonincreasing Solutions 
The main objective of this section is to prove the following theorem. 

Theorem 17. For each 0 0y > , the problem 

( ) ( )( ) ( ) ( ) ( )

( )

1 1

0 0

 

 

y n y n p n y n y n

y n y

α β− −∆ ∆ ∆ =

 =

 

has exactly one solution y  such that y  is defined for 0n n≥  and satisfies 

( ) ( ) 00, 0 for .y n y n n n≥ ∆ ≤ ≥                             (27) 

Furthermore, if ( )y n  is a solution for 0n n≥  of Equation (1) satisfying ( )0 0y n y=  and 

( ) ( ) ( ) ( )0 0 0 0 ,y n y n resp y n y n ∆ > ∆ ∆ < ∆   

then 

( ) ( )lim lim .
n n

y n resp y n
→∞ →∞

 = ∞ = −∞   

Remark 4. 
1) In the case α β≤ , employing Lemma 3, we can strengthen (27) to the property that 

( ) ( ) 00, 0 for .y n y n n n∆ > ∆ < ≥                            (28) 

2) In the case α β≥ , all local solutions of Equation (8) can be continued to the whole interval [ )0 ,n ∞  
Hence in this case property (6.2) always holds for all solutions ( )y n  with ( )0 0y n y=  and ( ) ( )0 0y n y n∆ > ∆  
[resp ( ) ( )0 0y n y n∆ < ∆ ]. 

The property of nonnegative nonincreasing solutions y  described in Theorem 17 will play important roles 
through the paper. This section is entirely derided to proving Theorem 17. To this end we prepare several lem-
mas. 

Lemma 6. Let ,A B R∈  and t be a bounded function on [ ],a b R× . Then, the two point boundary value 
problem 

( ) ( )( ) ( )( )
( ) ( )

1
 , , ,

 , ,

y n y n f n y n a n b

y a A y b B

α−∆ ∆ ∆ = ≤ ≤

 = =

                     (29) 

has a solution. 
Proof. Let 0K >  be a constant such that 
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( )( ) ( )( ) [ ], , for , , .f n y n K n y n a b R≤ ∈ ×  

We first claim that with each ( )y n , we can associate a unique constant ( )c y  satisfying 

( ) ( )( )
1

, .
b s

a a
c y f r y r B A

α∗

 + = − 
 

∑ ∑                           (30) 

Further this ( )c y  satisfies 

( ) ( ) ( )
* *

.B A B AK b a c y K b a
b a b a

α α− −   − − + ≤ ≤ − +   − −   
                  (31) 

To see this let ( )y n  be fixed, and consider the function 

( ) ( )( )
1

, , .
b s

a a
I f r y r R

α

λ λ λ
∗

 = + ∈ 
 

∑ ∑  

If ( )
*B AK b a

b a

α

λ − < − − +  − 
, then ( )I B Aλ < − . If ( )

*B AK b a
b a

α

λ − > − +  − 
, then ( )I B Aλ > − . Since  

I is a strictly increasing continuous function, there is a unique constant ( )c y  satisfying ( )( )I c y B A= − , 
namely (30). Then (31) is clearly satisfied. 

By (31), we see that there is a constant ( ), , , , 0M M a b A B K= >  satisfying ( )c y M≤  for all ( )y n . 
Choose 0L >  so large that 

( ) ( )1and .A L M K b a b a Lα≤ + − − ≤  

Consider the Banach space BN of all real sequences ( ){ }n N
y y n

≥
=  with the supernum norm ( )sup

n N
y y n

≥
= .  

Now we define the set Ny B⊂  and the mapping : NF Y B→  by 

( ) ( )
0

: 2 forNY y n B y n L a n b = ∈ ≤ ≤ ≤   

and 

( )( ) ( ) ( )( )
1

, ,
n s

a a
F y n A c y f r y r a n b

α∗

 = + + ≤ ≤ 
 

∑ ∑  

respectively. Then the boundary value problem (29) is equivalent to finding a fixed element of  . We show 
that F has a fixed element in Y (via) the Schavder fixed point theorem 

( )( ) ( ) ( )( )

( )

( ) ( )

1

1

1

 ,

 

 
 2 , .

n s

a a

n

a

F y n A c y f r y r

A M K s a

A M b a b a
L L L a n b

α

α

α

 ≤ + + 
 

≤ + + −

≤ + − −

≤ + = ≤ ≤

∑ ∑

∑  

Hence F maps Y into itself. 
Next, to see the continuity of F, assume that ( )ky n  be a sequence converging to y Y∈  uniformly in [ ],a b . 

We must prove that ( )( )kF y n  converges to ( )kFy n  uniformly in [ ],a b . As a first step, we show that  
( )( ) ( )( )lim kn

c y n c y n
→∞

= . Assume that this is not the case. Then because of the boundedness of ( )( ){ }kc y n ,  

there is a subsequence ( )( ){ }ikc y n  satisfying ( ) ( )
ikcy n c c y→ ≠  for some finite value c . Noting the relation 

( )( ) ( )( )
*1

, .
i i

b s

k k
a a

c y n f r y r B A
α

 + = − 
 

∑ ∑  



V. Sadhasivam et al. 
 

 
1621 

We have 

( )( ) ( )( )

( )( )
1

 lim ,

 , .

i i
i

b s

k kK a a

b b

a a

B A c y n f r y r

c f r y r
α∗

→∞

 − = + 
 

 = + 
 

∑ ∑

∑ ∑
 

This contradicts the uniqueness of the number ( )c y . Hence ( )( ) ( )lim
n

c y n c y
→∞

= . Then we find similarly 

that ( )( ) ( )( )lim kn
F y n F y n

→∞
=  uniformly on [ ],a b . 

It will be easily seen that the sets 

{ } ( )( ){ }: and :FY Fy y Y F y y Y= ∈ Λ ∈  

are uniformly bounded on [ ],a b . Then FY  is compact. 
From the above observations we see that F has a fixed element in Y. Then this fixed element is a solution of 

boundary value problem (29) is easily proved. The proof is now complete. 
Lemma 7. Let 1 0n n>  and 0 0n > . Then the two point boundary value problem 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

1 1
0 1

0 0 1

 for

 , 0

y n y n p n y n y n n n n

y n y y n

α β− −∆ ∆ ∆ = ≤ ≤

 = =

                   (32) 

has a solution ( )y n  such that ( ) 0y n ≥  and ( ) 0y n∆ ≤  for 0 1n n n≤ ≤ . 
Proof. Define the bounded function f on [ ]0 1,n n R×  by 

( )( )
( )
( )

0 0 1 0

0 1 0

0 1

for ,

, for , 0
0 for , 0.

p n y n n n y y

f n y n p n y n n n y y
n n n y

β

β

 ≤ ≤ ≥
= ≤ ≤ ≤ ≤
 ≤ ≤ ≤

 

By Lemma 6, the boundary value problem 

( ) ( )( ) ( )( )
( )

1
0 1

0 0 1

 , ,

 , ( ) 0

y n y n f n y n n n n

y n y y n

α−∆ ∆ ∆ = ≤ ≤

 = =

 

has a solution y. 
We show that y satisfies ( ) 0y n ≥  for 0 1n n n≤ ≤ . If this is not the case, we can find an interval 

[ ] [ ]0 1 0 1, ,n nτ τ ⊂  such that ( ) 0y n <  on [ ]0 1,τ τ  and ( ) ( )0 1 0y yτ τ= = . The definition of f implies that y  

satisfies the equation ( ) ( )( )1
0y n y n

α−
∆ ∆ ∆ =  on 0 1nτ τ≤ ≤ . Hence ( )y n  is a linear function on [ ]0 1,τ τ .  

Obviously that this is a contradiction. We see therefore that ( ) 0y n ≥  on [ ]0 1,n n . 

Since ( )1 0y n∆ ≤  and ( ) ( )( )1
0y n y n

α−
∆ ∆ ∆ ≥  on [ ]0 1,n n , by the definition of t, we find that ( ) 0y n∆ ≤   

on [ ]0 1,n n . Hence ( ) 0y n y≤ , which implies that y is a desired solution of problem (32). The proof is complete. 
  

Proof of Theorem 17. The uniqueness of y  satisfying the properties mentored here is easily established as 
in the proof Lemma 2. Therefore we prove only the existence of such a y . 

By Lemma 7, for each k N∈ , we have a solution 0y y=  of the boundary value problem 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

1 1

0 0 0 0 0

 

 , 0, for

y n y n p n y n y n

y n y y n k n n n k

α β− −∆ ∆ ∆ =

 = + = ≤ ≤ +

 

satisfying ( ) 0ky n ≥  and ( ) 0ky n∆ ≤  for 0 0n n n k≤ ≤ +  let us extend each ky  over the interval [ )0 ,n ∞  
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by defining 0ky ≡  for 0n n k≥ + . Below we show that ( ){ }ky n  contains a subsequence converging to a 
desired solution of (8). 

As a first step, we prove that 

( ) ( ) ( )1 0 2 0 0 0.ky n y n y n∆ ≤ ∆ ≤ ≤ ≤                            (33) 

In fact, if this is not case, then ( ) ( )0 1 0i iy n y n+∆ > ∆  for some i. Since ( ) ( )0 1 0i iy n y n+= . Lemma 2 implies 
that ( ) ( )1i iy n y n+>  for 0 0n n n i≤ ≤ + . Putting 0n n i= + , we have ( ) ( )0 1 00 0i iy n i y n i+= + > + ≥  a con-  
tradiction. Accordingly (33) holds, and so ( ) ( ]0lim ,0kn

y n l
→∞

∆ = ∈ −∞  exists, since ( ) 00 ky n y≤ ≤  on [ ]0 0,n n k+  

for any k N∈ , ( ){ }ky n  is uniformly bounded on each compact subinterval of [ )0 ,n ∞ . Noting that ( )ky n∆  
is nondecreasing and nonpositive on [ ]0 0,n n k+ , we have 

( ) ( ) ( ) [ ]1 0 0 0 00 on , , .k ky n y n y n n n k k N∆ ≤ ∆ ≤ ∆ ≤ + ∈  

Hence ( ){ }ky n  is equicontinuous on each compact subinterval of [ )0 ,n ∞ . From these consideration we  
find that there is a subsequence ( ){ } ( ){ }ik ky n y n⊂  and a function y  satisfying ( )( ) ( )lim

i
i

kk
y n y n

→∞
=  uni-  

formly on each compact subinterval of [ )0 ,n ∞ . Finally we shall show that y  is a desired solution of Equation 
(8). Let [ )0 ,n n∈ ∞  be fixed arbitrarily. For all sufficiently large ik ’s we have 

( ) ( ) ( ) ( )*

0 0

1
1

0 0i i i

n s

k k k
n n

y n y y n p r y r
α

α β
∗

−  
= + ∆ + 

 
∑ ∑  

letting ik →∞ , we obtain 

( ) ( ) ( )*

0 0

1
1

0 .
n s

n n
y n y l p r y r

α
βα

∗
−  

= + +    
 

∑ ∑  

Taking difference in this above equality, we are that y  solves Equation (8) on [ )0 ,n ∞ . That y  satisfies 
(27) is evident. The proof of Theorem 17 is complete. 

7. Proofs of Main Results for the Super-Homogeneous Equations 
Throughout this section, we assume that α β< . 

Proof of Theorem 2. The theorem is an immediate consequence of the uniqueness of the trivial solution 
(Lemma 3). 

Proof of Theorem 4. Necessity Part: Let ( )y n  be a positive solution of Equation (8) for 1n n≥  of type  
(AC). It is easy to see that ( ) 0y n∆ ↑  and ( ) ( ) 0y n y↓ ∞ >  as n ↑ ∞ . Hence summing (8) twice, we have 

( ) ( ) ( ) ( )
1

1

1
n s

y y n p r y r
α

β∞ ∞ − ∞ + =  
 

∑ ∑  

from which we find that 

( )( ) ( )
1

1

.
n s

y p r
α

β α ∞ ∞ ∞ < ∞ 
 

∑ ∑  

This is equivalent to (10). 
Sufficiency Part: Let (10) hold. Fix an 0l >  and choose 1 0n n≥  so that 

( ) ( )
1

1 2
.

2n s

l
p r

α β
α

α
−

∞ ∞  ≤ 
 

∑ ∑  

We introduce the Banach space l∞  of all bounded, real sequences ( ){ }y n  with norm ( )sup
n

y y n= .  

Define the set ( ) ( ){ }1: 2 ,Y y n l l y n l n n∞= ∈ ≤ ≤ ≥  and the mapping :F Y l∞−  by 
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( ) ( ) ( )
1

1, .
n s

Fy n l p r y r n n
α

β∞ ∞ = + ≥ 
 

∑ ∑  

We below show via the Schauder-Tychonoff fixed point theorem that F has at least one fixed element in Y. 
Firstly, let ( )y n Y∈ . Then 

( ) ( ) ( )
1

1

12 2 , .
n s

l Fy n l l p r l l l n n
α

β α
∞ ∞ ≤ ≤ + ≤ + = ≥ 
 

∑ ∑  

Thus Fy Y∈ , and hence FY Y⊂ . Secondly, to see the continuity of F, let ( ){ }ky n  be a sequence in Y 
covering to ( )y n Y∈  uniformly on each compact subinterval of [ )1,n ∞  since ( )p n  is bounded for 

1n n≤ ≤ ∞  and 

( ) ( ) ( ) ( )0 2 .k
s s

p r y r l p r
β β

∞ ∞

≤ ≤ < ∞  ∑ ∑  

The Lebesgue dominated convergence theorem implies that ( ) ( )kFy n Fy n→  uniformly on each compact 
subinterval of [ )1,n ∞  since for ( )y n Y∈ , 

( )( ) ( ) ( ) ( ) ( )
1

11

12 , .
n n

Fy n p s y s l p s n n
αα

β β α
∞ ∞  ∆ ≤ ≤ ≥        
∑ ∑  

The set ( )( ){ }:Fy n y Y∆ ∈  is uniformly bounded on [ )1,n ∞ . This implies that YF  is compact. 

From there observations we find that F has a proved element y in Y such that Fy y= . That this y is a solution 
of Equation (1) of type (AC) is easily proved. The proof is complete. 

Proof of Theorem 3. Sufficiency Part: Let ( )y n  be a solution of Equation (8) satisfying ( ) 0,y n >  
( ) 0y n∆ <  for 0n n≥ . The existence of such a solution is ensured by Theorem 17. Obviously, ( )y n  is either 

of type (D) or type (AC). Theorem 4 shows that under assumption (9), Equation (8) does not posses solutions of 
type (AC). Hence ( )y n  must be of type (D). 

Necessity Part: Let ( )y n  be a positive solution of Equation (8) for 1n n≥  of type (D). Clearly ( )y n  sa-
tisfies 

( ) ( ) ( )
1

1, .
n s

y n p r y r n n
α

β∞ ∞ = ≥ 
 

∑ ∑  

To verify (9), suppose the contrary that (9) fails to hold. Then, nothing that ( )y n  is decreasing for 1n n≥ , 
we have 

( ) ( ) ( )
1

1, .
n s

y n y n p r n n
α

β α ∞ ∞ ≤ ≥ 
 

∑ ∑  

Accordingly, 

( ) ( )
1

1
1, .

n s
y n p r n n

α
β α ∞ ∞−  ≤ ≥ 

 
∑ ∑  

The left hand side tends to ∞ as n →∞  because of α β< , where as the right hand side tends to 0 as 
n →∞ . This contradiction verifies (9). The proof is complete. 

Proof of Theorem 5. Necessity Part: Let ( )y n  be a positive solution of Equation (8) near ∞ of type (AL). 
There is a constant 0c >  and 1 0n n≥  satisfying 

( ) 1, .y n cn n n≥ ≥                                  (34) 

Summation of Equation (8) from 1n  to 1n −  yields 

( ) ( ) ( ) ( )( )* *

1

1

1 1, .
n

n
y n y n p s y s n n

α α β−

∆ − ∆ = ≥       ∑  
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Since ( ) ( ) ( )lim 0,
n

y n y
→∞

∆ = ∆ ∞ ∈ ∞ , this in equality implies that 

( ) ( )
1

.
n

p n y n
β∞

< ∞  ∑                                 (35) 

Combining (35) with (34), we find that (11) holds. 
Sufficiency Part: We fix 0l >  arbitrarily, and choose 1 0n n≥  large enough so that 

( ) ( )
1

12 1 .
2n

n p n l α ββ
α

∞
−  ≤ − 
 

∑  

Let lα  be the Banach space as in the proof Theorem 4. Define the set Y l∞∈  as follows 

( ) ( ) ( ) ( ){ }1 1 1: 2 , .Y y n l l n n y n l n n n n∞= ∈ − ≤ ≤ − ≥  

The mapping :F Y l∞→  defined by 

( ) ( ) ( ) ( )
1

11

12 , .
n

n s
Fy n l p r y r n n

α
βα

− ∞ = − ≥    
∑ ∑  

As in the proof of the sufficiency part of Theorem 4, we can show that F has a fixed element ( )y n Y∈  by 
the Schavder-Tyehonoff fixed point Theorem 

( ) ( ) ( ) ( )
1

11

12 , .
n

n s
y n l p r y r n n

α
βα

− ∞ = − ≥    
∑ ∑  

Taking ∆ twice for this formula we see that ( )y n  is a positive solution of Equation (8) for 1n n≥ .  

L’Hospital’s rule shows that ( )lim 2
n

y n
l

n→∞
= . Thus ( )y n  is a solution of Equation (8) of type (AL). The proof  

is complete. 
Lemma 8. Let ( )0 0y > . If (11) holds, then there is a positive solution of Equation (8) for 0n n≥  of type 

(AL) satisfying ( ) ( )0 0y n y= . 
Proof. By Theorem 5, there is an (AL)-type positive solution ( )z n  of Equation (8) defined in some neigh-  

borhood of ( ) ( ): 0 lim lim
n n

z n
z n

n→∞ →∞
∞ < = ∆ < ∞ . Let ( )y n  be a positive solution of Equation (8) for 0n n≥   

satisfying ( ) ( )0 0y n y=  and ( ) 0y n > , ( ) 0y n∆ <  for 0n n≥ . Take a 1 0n n>  such that ( ) ( )y n z n<  and  
( ) ( )y n z n∆ < ∆  for 1n n≥ . By Lemma 2 if ( )0y nλ > ∆  is sufficiently elver to ( )0y n∆ , then the solution  
( )y n  of Equation (8) with ( ) ( )0 0y n y=  and ( )0y n λ∆ =  exists at least on [ ]0 1,n n  and satisfies 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1, .y n y n z n y n y n z n< < ∆ < ∆ < ∆  

Then Lemma 2 again implies that ( ) ( ) ( )y n y n z n< <  as long as ( )y n  exists. Since ( )y n  and ( )z n  
exists for 1n n≥ , this means that ( )y n  exists for 1n n≥  and satisfies ( ) ( ) ( )y n y n z n< < , 1n n≥ . Then we 
have 

( ) ( ) ( )
1, .

y n y n z n
n n

n n n
< < ≥  

Noting that ( )y n  is the unique solution of (8) satisfying ( )lim 0
n

y n
n→∞

=  and passing through the point 

( )( )0 , 0n y  we have ( ) ( )lim lim 0,
n

y n
n→∞

∈ ∞ . Therefore ( )y n  is of type (AL). The proof is complete. 

Proof of Theorem 6. For 0λ > , we denote by ( )y nλ , the unique solution of Equation (8) with in initial 
condition ( ) ( )0 0y n y=  and ( )0y n λ∆ = . The maximal interval of existence of ( )ky n  may be finite or infi-
nite. 

Define the set ( )0,S ⊂ ∞  by 
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( ) ( ){ }00 : exists for and is of typeS y n n n ALλλ= > ≥  

We know by Lemma 8 that S Q≠  and by Lemma 5 that Sλ ∉  for all sufficiently large 0λ > . Hence 
( )sup 0,S λ= ∈ ∞  exists. For λ  there are three possibilities: 

1) Sλ ∈  
2) Sλ ∉  and ( )y nλ  is of type (AS) 
3) Sλ ∉  and ( )nλλ  is of type ( )2S . 
To prove the theorem, we below show that case (b) occurs. For simplicity, we write y  for yλ  below.  

Suppose that the case (a) occurs. Then ( ) ( ) ( )lim 0,
n

y n y l
→∞

∆ = ∆ ∞ = ∈ ∞  and ( ) 0,y n l n n∆ < ≥ . By condition  

(11) we can find a 1 0n n>  satisfying 

( ) ( ) ( )
0

0 2 2
n

p s y ls l lβ α α
∞

+ < −∑  

Choose λ λ>  close enough to λ  so that ( )y nλ  exists at least on [ ]0 1,n n  and ( )1y n lλ∆ < . Then, for 
such a λ , ( )y nλ  can be extended to ∞ , and satisfies ( ) 12 ,y n l n nλ∆ < ≥ . In fact, if this is not the case, there 
is 1n n>  satisfying ( ) 2y n lλ∆ <  for 0n n n≤ <  and ( ) 2y n lλ∆ = . It follows therefore that 

( ) ( )0 2y n y ltλ ≤ +  for 0n n n≤ ≤ . Summing the Equation (8) (with y yλ= ) for 1n n n≤ ≤  yields 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1

1 1

1

1

1

2  

 0 2  0 2  2 .

n

s
n

n

n n

l y n y n p s y

l p s y ls l p s y ls l

βα αα
λ λ λ

β β αα α

−

− ∞

= ∆ = ∆ +

≤ + + ≤ + + <

∑

∑ ∑
 

This contradiction implies that ( )y nλ  exists for 0n n≥  and satisfies ( ) 02 ,y n l n nλ∆ < ≥ . These observa-
tions show that S λ λ> , which contradicts the definition of λ . Hence case (a) does not occur. 

Next, suppose that case (c) occurs. Let 0N n>  be the point such that ( ) ( )0 0y N y N− = ∆ − = ∞ . By Le- 
mma 5, there is an 0M >  such that solution ( )y n  of Equation (8) satisfying ( ) 1y N ≥ , ( )y N M∆ ≥  must  
blow up at some finite ( ) ( ) ( ) ( ), : 0 0N N y N y N y N= ∈ ∞ − = ∆ − = ∞ . For sufficiently small 0> , we have  

( ) 1y N − >  ( )y N M∆ − > . Then if λ λ<  is sufficiently close to λ , then ( )y nλ  can be continued at 
least to N −  , and satisfies ( ) 1y Nλ − > , ( )y N Mλ∆ − > . Then, even through yλ  can be continued to N, 

( )y nλ  blows up at some finite point by the definition of M. This fact shows that such a ( )λ λ<  does not be-
long to S, contradicting the definition of λ , again. Consequently case (b) occurs, and hence the proof of Theo-
rem 6 is complete. 

Proof of Theorem 7. The proof is done by contradiction. Let ( )y n  be a solution of Equation (1) of type 
(AS). We suppose that ( )y n  exists for 1n n≥  and satisfies 

( ) ( )1 1 1 1, , for some 0y n C n y n C n n C≥ ∆ ≥ ≥ >                     (36) 

Put ( ) ( ) ( )( ) ( )0z n y n y n
α

= ∆ >  1n n≥ . Then 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )

( )( ) ( )
( )( )

( )( )
( )

( )
( ) ( ) ( )( )

( )( )

( ) ( )
( )

1

1
1

1

1

 

 

 

1
 

 .

n

n

n
n

z n y y n y n y n

y y n y n p n

yy n y p n
y n

y n y ny n
p n

y n y n y n

y yz n p n
y y

α α

α β

β
α

α

α β

α

β

α

+

+

+

+

+

∆ = ∆ + ∆ ∆

= ∆ +

 
 = ∆ +
 ∆ 
 ∆ + = +
 ∆ 

 ∆
≥ + 

∆  
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Now, we employ the Young inequality of the form 

( ) ( )1 11 for , 0 and 0 1X Y X Y X Yσσ σ σσ σ σ− −− −+ ≥ − > < <                  (37) 

in the last inequality. It follows therefore that 

( ) ( ) ( )( ) ( )( ) ( )( )1 1
2 1,z n C z n y n y n p n n n

σ σα βσ σ σ− − + −
∆ ≥ ∆ ≥  

where ( )2 2 , , 0C C σ α β= >  is a constant. We rewrite is inequality as 

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1
2 1, .z n C y n y n p n z n n n

βσ σ ρ σ σα ρα σ ρ− − − − − − +
∆ ≥ ∆ ≥  

Noting (7.3) and condition (13), we obtain 

( ) ( )( ) ( )( )11
3 1, ,z n C n p n z n n n

σ ρβσ α ρ ++ − −∆ ≥ ≥  

where ( )3 3 2 1, , , , , 0C C C Cα β σ ρ= >  is a constant. Dividing both sides by ( )( )1z n
ρ+

 and summing from n to  

∞, we have 

( )( ) ( ) ( )1
3 1

1 ,
n

z n C s p s n n
σρ βσ σ ρ

ρ

∞− + − −≥ ≥  ∑  

because ( )lim
n

z n
→∞

= ∞ . Consequently, we have 

( ) ( )( ) ( ) ( )1
3 1

1 , .
n

n y n C n s p s n n
y n

ρ
σαρ βα σ ρρ

ρ

∞− + − − 
∆ ≥ ≥     

 
∑  

Letting n →∞ , we get a contradiction to assumption (12). This completes the proof. 
As was mentioned in Section 5, the proof of Theorem 8 is omitted. In fact, a more general result is proved in 

Lemma 5. 

8. Proofs of Main Results for the Sub-Homogeneous Equations 
Throughout this section, we assume that α β> . 

Proof of Theorem 9. Let 1 2,n n  be fixed so that 0 1 2n n n≤ ≤  and put 

( )
1 2

1min 0 and 0.
n n n

m p n αρ
α β≤ ≤

+
= > = >

−
 

Then there are constants 0L >  and 0c >  satisfying 

( )
2 2

1

11 1

  ,
n n

n s
L p r L

α
β α

− − 
≤ 

 
∑ ∑  

( )

1

1  
11

C m c
β α α

α
α

α ρβρβ
⋅ ≥

+ ++
 

and 

( )2 1 2  for .c n n L n n nρ− ≤ ≤ ≤  

Consider the Banach space NB  of all real sequences ( ){ }n N
y y n

≥
=  with sup norm sup

n N
y y

≥
= . Define  

the subset Y of NB  by 

( ) [ ] ( ) ( ){ }1 2 2 1 2, : forenY y C n n c n n y n L n n n= ∈ − ≤ ≤ ≤ ≤  
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and 

( ) ( ) ( )
2 2

11 1

1 2 , ,

 0, other wise.

n n

n
n s

p r y r n n nFy

α
β− −  

= ≤ ≤      
=

∑ ∑  

We show that the hypothesis of the Schavder fixed point theorem is satisfied for Y and F. Let y Y∈ . Then, 
obviously ( )Fy n L≤  for 1 2n n n≤ ≤ . Moreover 

( ) ( )

( ) ( )
( )

( )

2 2
11 1

1
2

1 1

21

2 1 2

 

 
1 1

 , for .

n n

n s
Fy n m c n r

m c n n

c n n n n n

α
ρβα β α

α β α α ρβ
α

α

ρ

α
ρβ α ρβ

− −

+ +

 
≥ − 

 

≥ −
+ + +

≥ − ≤ ≤

∑ ∑

 

Hence FY Y⊂ . The continuity of F and the boundedness of the sets FY and { }:FY y Y∆ ∈  can be easily 
established. Accordingly there is a y Y∈  satisfying FY y= . By taking difference twice, we find that ( )y n  
is a solution of Equation (1) for 1 2n n n≤ ≤  and that ( ) 0y n >  for 1 2n n n≤ ≤  and ( ) ( )2 2 0y n y n= ∆ = . 
Now, we put 

( ) ( ) 1 2

20 .
y n n n n

y n
n n

 ≤ ≤= 
≥

 

It is easy to see that ( )y n  is a solution of equation (8) for 1n n≥  and is of type ( )1S . The proof is com-
plete. 

Theorems 14 and 15 can be proved easily as in the proofs of Theorems 4 and 5 respectively. We therefore 
omit the proofs. 

Proof of Theorem 10. By our assumption we can find a positive solution ( ) ,ky n k N∈  of Equation (8) sat-  

isfying ( ) 1 .ky
K

∞ =  Since α β> , we see by Lemma 4 that each ( )ky n  exists for 0n n≥ . We show that the  

sequence ( ){ }ky n  has the limit function ( )y n , and it gives rise to a positive solution of Equation (8) of type 
(D). 

We first claim that 

( ) ( ) ( ) ( )1 2 1 00, .k ky n y n y n y n n n+> > > > > > ≥                      (38) 

If this is not true, then ( ) ( )1i iy n y n+=  for some i N∈  and 0n n≥ . This means however that there are two 
nonnegative nonincreasing solutions of Equation (8) passing through the point ( )( ), in y n . This contradiction to  
Theorem 17. We therefore have (38) and so ( ) ( )lim kk

y n y n
→∞

=  exists observe that ( )ky n  satisfies 

( ) ( ) ( )
1

0
1 , .k i

n s
y n p r y r n n

K

α
β∞ ∞ = + ≥    

∑ ∑  

Letting k →∞ , we obtain via the dominated convergence theorem 

( ) ( ) ( )
1

0, .
n s

y n p r y r n n
α

β∞ ∞ = ≥    
∑ ∑  

We see that ( )y n  is a nonnegative solution of Equation (8) satisfying ( ) 0y ∞ = . It remains to prove that 
( ) 0y n >  for n ≥ n0 Fix N > n0 arbitrarily. The proof of Theorem 2 implies that there is a solution ( ) 0Ny n >  

for 0n n N≤ <  and ( ) 0Ny n =  for n N≥ . We claim that 

( ) ( ) 0for for all .k Ny n y n n n N k N> ≤ ≤ ∈                        (39) 

In fact, if this fails to hold, then 
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( ) ( ) 0for some and .i Ny n y n i N n n N= ∈ ≤ <  

By this means, as before, that there are two nonnegative nonincreasing solution fo Equation (8) passing 
through the point ( )( ), Nn y n . This contradiction shows that (39) holds. Hence by letting i →∞  in (39) we 
have ( ) ( ) 0Ny n y n≥ >  for 0n n N≤ < . Since 0N n>  is arbitrary, we see that ( ) 0y n >  for 0n n≥ . The 
proof is complete. 

Proof of Theorem 11. The proof is done by contradiction. Let ( )y n  be a positive solution of equation (8) 
for 0n n≥  of type (D). Using (16). We obtain from Equation (8) 

( )( ) ( )( )1 1, .y n C n y n n n
α βα−∆ ∆ ≥ ≥                           (40) 

where 1C  is a positive constant. We fix a 1N n≥  arbitrary and consider inequality (42) only on the interval 
[ ], 2N N  for a moment. A summation of (42) from n to 2N, given 

( )( ) ( )( ) ( )( )
2

12 1  
N

n
y N y n C s y s

α βα α−∆ + − ∆ ≥ ∑  

( )( ) ( )( ) ( )( )1
1 2y n C y N y n

N
α β β

α− ∆ ≥ −  

( ) ( )( ) ( )( )
1

1
1 2 , 2y n C y N y n N n N
N

β β α −∆ ≥ − ≤ ≤  
 

( )

( )( ) ( )( )
1

11  , 2 .

2

y n
C N N n N

y N y n
β β α

−−∆
≥ ≤ ≤

 −  

 

From which, we have 

( )

( )

( )( )

2

2 11
d ,

2

y N

y N

u C N n

u y N
β αβ

≥ ≥
 −  

∫  

( )( )
( ) ( )

( )
1

2 1
2

2 1 d , .
y N y N

y N v v C N n
α βα β

β αα
−−

− ≥ ≥∫                        (41) 

We can find a constant 0C >  satisfying 

( ) ( )
11

11 d 1 , 0.
x

v v C x x
α β

β α α
−−
+− ≤ − →∫  

Therefore (43) implies that 

( )( ) ( )
( ) 2 12 1 ,
2

y N
C y N C N n

y N

α β
α β α
α

−
−   

− ≥ ≥      
 

from which we have 

( )( ) ( )( ) 2 12 , .C y N y N C N n
α β
α
−

 − ≥ ≥   

Letting N →∞ , we have a contradiction. The proof is complete. 
Proof of Theorem 12. The proof is done by contradiction. Let ( )y n  be a solution of Equation (8) of type 

(D). We notice first that 

( )lim 0.
n

n y n
→∞

∆ =                                     (42) 

In fact, since ( )2 0y n∆ > , we can compute as follows 
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( ) ( )( ) ( )( )

( ) ( ) ( )

2

2

 

 2 2 0 for large .

n

n n

n

n

y n y s y s

y n p s y n n n

∞

∆ = −∆ ≥ −∆

≥ −∆ = −∆ ⋅ ≥

∑ ∑

∑
 

Therefore (42) holds. 
We may suppose that for some 1 0C >  and 1 0n n≥  

( ) ( )1 1 10 , 0 , .y n C n y n C n n< ≤ < − ∆ ≤ ≥                           (43) 

But ( ) ( ) ( ) 10z n y y n nα= −∆ > ≥ . Then 

( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )( )

( )( ) ( )( )
( ) ( ) ( )( ) ( )

( )

( )( ) ( )( )
( ) ( ) ( )( )

( )( )

1

1
1

 

 

 1

 

n n

n

z n y n y n y y

y n y p n y n

y n y n
y y n p n y n

y n y n

y n y n
y y n p n

y n y n

α α

α β

α β

β
α

α

+

+

+

−∆ = −∆ −∆ − ∆ −∆

= −∆ +

 −∆  
= −∆ + −   −∆   

 −∆
 ≥ −∆ +
 −∆ 

 

proceeding as in the proof of Theorem 8, we obtain 

( ) ( )( ) ( )( ) ( ) ( )( )1 1 1
2 1,z n C y n y n p n z n n n

ασ σα ρα σ σα ρσ ρ+ − − − − + −
−∆ ≥ −∆ ≥    

where 2C  is a constant. We obtain from (43) and assumption (18) 

( ) ( ) ( )( )11
3 1,z n C n p n z n n n

σ ρσ σα ρα −+ − −−∆ ≥ ≥    

where 3 0C >  is a constant. Dividing both sides by ( )( )1z n
ρ−

 and summing from n to ∞, we have 

( )( ) ( ) ( )1
3 1

1 ,
n

z n C s p s n n
σρ σ σα ρα

ρ

∞
+ − −≥ ≥  ∑  

that is, 

( )( ) ( )( ) ( ) ( )1
3 1

1 , .
n

y n n y n C n s p s n n
σρ σρ σ σα ρασρ

ρ

∞
+ − −− ∆ ≥ ≥  ∑  

Letting n →∞ , we get a contradiction to assumption (17) by (42). The proof is complete. 
Proof of Theorem 16. Sufficiency Part: By Theorem 17 and (2) of Remark 6.2, there is a positive solution 
( )y n  of equation (8) satisfying ( )y ∞ = ∞ . This ( )y n  is either of type (AL) or of type (AS). But by Theorem 

15, we see that ( )y n  must be of type (AS). 
Necessity Part: Let ( )y n  be a positive solution of Equation (8) for 1n n≥  of type (AS). To prove (19), we  

suppose the contrary that ( )n p nβ
∞

< ∞∑ . As in the proof of Lemma 5.3, we have 

( ) ( ) ( )
1 1

1
1 1

0 1 1,
n s

n n
y n C p r y r n n

α
βαρ

− − 
= + + ≥ 

 
∑ ∑  

where ( )0 1c y n=  and ( )1 1c y n= ∆  let ( ) ( )
11

max
n n

y
z n

ξ

ξ
ξ≤ ≤ −

= . It follows that 
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( ) ( ) ( )

( ) ( )

1 1

1

1
1 1

2 1

1
1

2 1 1

1 

 ,

n s

n n

n

n

y n
C c z s r p r

n n

c c z s r p r n n

α
βα β

α
βα β

− −

−

 
≤ + +    

 

 
≤ + + ≥   

 

∑ ∑

∑
 

where 2c  is a constant. put ( ) ( ){ }1max ,w n c z nα β= . We then have 

( ) ( ) ( )
1

1
1

2 1 , .
n

n
z n c w n r f r n m

α
β α β

− 
≤ + + ≥    

 
∑  

Since ( )y n  is of type (AS), 
( )y n
n

 is unbounded for 1n n≥  and so is ( )z n . Accordingly, there is a 

2n n≥ , satisfying ( ) ( )w n z n≡  for 2n n≥ . Thus 

( ) ( )( ) ( )

( )( ) ( )

1

1

1
1

2

1

2 2

 1

 1 , .

n

n

n

w n c w n r p r

c w n r p r n n

α
β α β

α
β α β

−

∞

 
≤ + + 

 

 
≤ + + ≥ 

 

∑

∑
 

Since 1β α < , this implies the boundedness of w, which is a contraction. Hence, we must have (19). The 
proof is complete. 

Theorem 16 is clear because of all solutions of equation (8) with α β<  exist for 0n n≥  [see Lemma 5]. 
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