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Abstract 
Various models have been proposed in the literature to study non-negative integer-valued time 
series. In this paper, we study estimators for the generalized Poisson autoregressive process of 
order 1, a model developed by Alzaid and Al-Osh [1]. We compare three estimation methods, the 
methods of moments, quasi-likelihood and conditional maximum likelihood and study their 
asymptotic properties. To compare the bias of the estimators in small samples, we perform a si-
mulation study for various parameter values. Using the theory of estimating equations, we obtain 
expressions for the variance-covariance matrices of those three estimators, and we compare their 
asymptotic efficiency. Finally, we apply the methods derived in the paper to a real time series. 
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1. Introduction 
Time series are used to model various phenomena measured over time. Successive observations are often 
correlated, since they may depend on some common external factors, but which remain unknown to the analyst. 
In this case, autoregressive models will be useful to model this dependence. 

In some situations, we might be interested in the number of events which occur during a certain period of time. 
Such observations will necessarily be non-negative and integer-valued. Models which have been used for 
sequences of dependent discrete random variables include the Poisson autoregressive process of order 1, denoted 
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( )1PAR , introduced by Al-Osh and Alzaid [2] and the generalized Poisson autoregressive process of order 1, 
denoted ( )1GPAR  (see Alzaid and Al-Osh [1]). The ( )1PAR  process, a stationary process with Poisson 
marginal distributions, is a special case of the ( )1GPAR . 

The paper is organized as follows. In Section 2, for completeness, we review some properties of the 
generalized Poisson autoregressive process of order 1. In Section 3, we derive the expressions for the moments 
estimators, the quasi-likelihood and the maximum likelihood estimators of the 3 parameters of the ( )1GPAR . 
These methods have appeared in the literature (see Al-Nachawati, Alwasel and Alzaid [3] for the quasilike- 
lihood and moments method and Brännäs [4] for likelihood methods). However, asymptotic properties such as 
efficiencies of these methods are not discussed in those papers. In this paper (Sections 4 and 5), we study 
properties of these estimators such as bias and asymptotic efficiency. The last section reanalyzes a real-data 
example which can be modelled with a ( )1GPAR  process, where testing is discussed. 

We hope that with this study, practitioners will have more information to select one estimation method versus 
another one and to perform tests concerning values of the parameters. 

2 GPAR(1) Process 
To define the ( )1GPAR  process, we need first to review the generalized Poisson and the quasi-binomial 
distributions. 

A random variable X has a generalized Poisson distribution with parameters λ  and θ , denoted ( ),GP λ θ , 
if its probability mass function (pmf) is defined by  

[ ] ( ) ( )1 e ! if 0,1, 2,...
0 for , when 0,

x xx x xP X x
x m

λ θλ λ θ
θ

− − + + == = 
> <

 

where 0λ > , ( )max 1, 1mλ θ− − < ≤  and ( )4m ≥  is the greatest positive integer for which 0mλ θ+ >  
when θ  is negative. Note that, for 0θ = , the random variable X becomes a Poisson ( λ ) distribution. In this 
paper, we will restrict ourselves to the case where 0θ ≥ . 

Consul [5] has shown that the expected value µ  and variance 2σ  of X are given, when 0 1θ≤ < , by  

( )
2

3and ,
1 1
λ λµ σ
θ θ

= =
− −

 

so that, for positive values of θ , we have overdispersion (i.e. [ ] [ ]Var X E X> ). 
The sum X Y+  of two independent random variables X and Y with ( )1,GP λ θ  and ( )2 ,GP λ θ  

distributions, also has a GP distribution, with parameters ( )1 2 ,λ λ θ+ . Ambagaspitiya and Balakrishnan [6] 
have derived the recurrence formula for the probability function of the compound generalized Poisson 
distribution, used in risk theory. 

A non-negative integer-valued random variable X has a quasi-binomial distribution, denoted ( ), ,QB p nθ , if 
its pmf is given by  

[ ]
( ) ( )

( )

11

1 , 0,1, 2, , ,
1

n xx

n

n
pq p x q n x

x
P X x x n

n

θ θ

θ

− −−

−

 
+ + −    

 = = =
+

  

where 0 1, 1p q p< < = −  and θ  is such that ( )min ,n p qθ < . Its mean, equal to pn , is independent of the 
parameter θ . 

The following proposition, proved in Alzaid and Al-Osh [1], shows the relation between the QB and GP 
distributions. 

Proposition 1: If X and ( )S n  are two independent random variables with ( ),GP λ θ  and ( ), ,QB p nθ λ  
distributions, then ( )S X  follows a ( ),GP pλ θ  distribution. 

The ( )1GPAR  process generalizes the ( )1PAR  process introduced by Al-Osh and Alzaid [2]. The 
( )1PAR  model, where [ ] [ ]Var t tX E X= , has been used to model time series in various fields, for example in 

insurance for short-term workers' compensation because of work-related injuries (Freeland and McCabe [7]) and 
in medicine for the incidence of infectious diseases (Cardinal, Roy and Lambert [8]). 

In practice, many integer-valued series will often exhibit overdispersion, (i.e. [ ]tVar X  is greater than 



L. G. Doray et al. 
 

 
639 

[ ]tE X ). The ( )1PAR  model would therefore not be appropriate for those time series. In cases where the extra 
variation can be explained in a deterministic way, adding regressors would be adequate (see Freeland and 
McCabe [7]), but where the extra variation is of a stochastic nature, the ( )1GPAR  model could be used for 
modelling overdispersed time series. 

The ( )1GPAR  model, introduced by Alzaid and Al-Osh [1], is defined as  

( )1 , 1, 2,t t t tX S X tε−= + =                                 (1) 

where  
1) ( ){ }, 1, 2,tS t• =   is a sequence of iid random variables with a ( ), ,QB p θ λ •  distribution.  
2) { }tε  is a sequence of iid random variables with a ( ),GP qλ θ  distribution.  
3) These two sequences are independent of each other.  
4) 0X  has a ( ),GP λ θ  distribution independent of { }tε  and ( ){ }tS • . 
Proposition 2: The ( )1GPAR  process { }tX  has a GP marginal distribution. 
Proof: See Alzaid and Al-Osh [1]. The ( )1GPAR  process is obtained from the ( ), ,QB p θ λ •  and 
( ),GP qλ θ  distributions, and not from the ( ), ,QB p θ •  and ( ),GP qλ θ  distributions, as stated in Al- 

Nachawati et al. [3]. 
The autocorrelation function (acf) of the ( )1GPAR  process { }tX  is equal to  

( ) [ ]Corr , , for 0,1, 2, .k
X t t kk X X p kρ −= = =   

The acf of this process is the same as that of an ( )1AR  process except that it is always non-negative, since 
( )0,1p∈ . The partial autocorrelation function (pacf) of the ( )1GPAR  process is equal to  

if 1
0 if 2,3,kk

p k
k

φ
=

=  = 

 

The sample acf and pacf will be useful to identify the ( )1GPAR  model from an observed time series. 

3. Estimation of the Parameters 
Estimating the parameters in a ( )1GPAR  process will present some challenges, since the conditional 
distribution of tX , given 1 1t tX x− −= , is the convolution of a ( )1, , tQB p xθ λ −  and a ( ),GP qλ θ  distri- 
bution. 

In this section, we will review three estimation methods for the parameter vector ( ), ,p λ θΘ =  of the 
( )1GPAR  process, the methods of moments, quasi-likelihood and conditional maximum likelihood. These 

methods have been proposed in the literature, see for example, Al-Nachawati et al. [3] or Brännäs [4]. However, 
less emphasis is placed on their asymptotic properties, such as efficiency. In Section 4, we study the bias of 
these estimators, and in Section 5 their efficiency. 

3.1. Method of Moments or Yule-Walker 
The first autocovariance of the ( )1GPAR  process is equal to  

[ ] [ ]1 0Cov , Var .t tX X p X+ =                                 (2) 

By taking the expected value of both sides of the equation given in (1), we find [ ] ( )1 .
tt tE X E S X εµ− = +   

Since  

( ) ( ){ } [ ]
11 1 1 1 1| ,

tt X t t t tE S X E E S X X x E pX
−− − − − −   = = =     

we obtain [ ] [ ]1 .
1t t
qE X pE X λ
θ−= +

−
                                                         (3) 

We also know that  

[ ]
( )3Var .
1

tX λ
θ

=
−

                                    (4) 

From the observations 1 2, , , nx x x , we estimate the means [ ]tE X , [ ]1tE X − , the variance Var [ ]tX  and 
the autocovariance [ ]1Cov ,t tX X+  by their sample analogs  
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Solving the system of Equations (2), (3), (4) with [ ]tE X , [ ]1tE X − , [ ]Var tX  and [ ]1Cov ,t tX X+  replaced 

by their sample values, we obtain the moments estimators ( ), ,p λ θΘ =  of parameter vector ( ), ,p λ θΘ = ,  
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( )0

1 q
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where 1q p= − . 
We have corrected here misprints in the formulas for the moment estimators of the parameters λ  and θ  

given by Al-Nachawati et al. [3]. 

3.2. Quasi-Likelihood Method 
This method, proposed initially by Whittle [9], replaces the true likelihood by the one which assumes that the 
observations come from a normal distribution with the same conditional mean and variance. Al-Nachawati et al. 
[3] obtained the quasi-likelihood estimators ( ), ,p λ θΘ =  

  by maximizing  

( ) ( )2 22

21

1, , e
2π

t t t
n
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t t

L p µ σλ θ
σ

− −

=

=∏  

where tµ  and 2
tσ  are given by  
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and  
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We have used the expression in Shenton [10] for the formula of the variance of a quasi-binomial distribution, 
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which is a bit different from the one given in Al-Nachawati et al. [3]. Since the ( )1GPAR  process is restricted 
to non-negative integers and therefore not symmetrical, one might suspect that the estimators are less efficient 
than the maximum likelihood estimators, which is indeed the case (see Section 5 for numerical results). 

3.3. Conditional Maximum Likelihood Method 
To obtain the conditional maximum likelihood estimators (MLE’s) ( )ˆ ˆˆ ˆ , ,p λ θΘ = , we need the conditional 
distribution of ( )1 1|t t tX X x− −= , which is the convolution of a ( )1, , tQB p xθ λ −  distribution and a 

( ),GP qλ θ  distribution. Given the observations 0 1 2, , , , nx x x x , we have to maximize the function  
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We will work with the loglikelihood function ( ), , ,l p λ θ  equal to ( )ln , ,L p λ θ , which will have to be 
maximized numerically to obtain the MLE Θ̂ . 

Under normal regularity conditions, using likelihood theory (see Gouriéroux and Monfort [11] or Hamilton 
[12]), the vector Θ̂  has an asymptotic multinormal distribution, i.e.  

( ) ( )( )1ˆ 0, ,n N I −Θ −Θ → Θ  

where →  denotes convergence in law, 0 is the vector of zeros of dimension 3, and  

( ) ( )
2

i j

I E l
θ θ

  ∂
Θ = − Θ   ∂ ∂   

 is Fisher’s expected information matrix, of dimension 3 3× . 

4. Bias of Estimators 
With simulations, we will study the bias of the moments estimators and the MLE’s. Setting the values of the 3 
parameters to those in Table 1, two series of 50 and 200 observations were generated from model (1) in C++. 
This experiment was repeated 200 times. 

For each series, the moments estimators were calculated, as well as their average, and the bias. The 
conditional MLE's were calculated using the iterative Downhill Simplex method (see Press, Teukolsky, 
Vetterling and Flannery [13]), which does not require the calculation of the derivatives of the function to be 
maximized. As initial values, we used the moments estimators. The results of the simulations appear in Figures 
1-3. 

From Figures 1-3, we see that the bias of the MLE’s is smaller than that of the moments estimators, and that  
 

Table 1. Values of parameters.                                                          

p λ θ 

0.2 1 0.2 

0.4 3 0.4 

0.6 5 0.6 

0.8 10 0.8 
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Figure 1. Bias of the estimators of p (Moment: ----- MLE: - - -).                                                            

 

 
Figure 2. Bias of the estimators of λ (Moment: ----- MLE: - - -).                                                            
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Figure 3. Bias of the estimators of θ  (Moment: ----- MLE: - - -).                                                            

 
it decreases when the size of the series increases. Figure 1 shows that the bias of p̂  is much smaller than that 
of p , except when 200n =  and 0.2θ =  where they are almost equal to 0. The bias of the two estimators is 
negative. In Figure 2, we see that the bias of λ̂  and λ  is close to 0 when 1λ = ; as λ  increases, λ̂  and 
λ  are more biased. In all cases, the bias of the estimator of λ  is positive. The bias of the estimator of θ  
behaves like that of p (Figure 3); for the two estimation methods, it is similar for 5λ =  or 10. 

Since the moments estimators and the conditional MLE’s are almost unbiased for large n, we study their 
asymptotic efficiency in the next section. 

5. Asymptotic Efficiency of Estimators 
We will first discuss the techniques by which we can obtain the asymptotic variance-covariance matrix of the 
estimators under the three estimation methods. To study efficiencies, we calculate, in subsection 5.4, the ratios 
of the variances of the estimators and the ratio of the determinants of their variance-covariance matrix using 
observations simulated from a ( )1GPAR  process for various values of the parameters. The results are 
summarized in Table 2 and Table 3 of this section. 
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Table 2. Efficiency of moments estimators.                                                                                                                       

λ  p  θ  ( ) ( )ˆVar Varp p  ( ) ( )ˆVar Varλ λ  ( ) ( )ˆVar Varθ θ  ˆΘ Θ  

1 0.2 0.2 2.27 1.10 1.33 1.79 

  0.4 4.12 1.38 1.84 3.75 

  0.6 8.55 2.07 2.11 8.18 

  0.8 19.9 4.88 2.78 23.6 

 0.4 0.2 5.11 1.19 1.44 2.46 

  0.4 9.61 1.47 1.63 4.92 

  0.6 17.5 1.96 1.65 10.8 

  0.8 38.1 3.88 1.94 32.7 

 0.6 0.2 16.9 1.21 1.56 3.81 

  0.4 28.2 1.48 1.44 7.48 

  0.6 57.4 2.14 1.53 18.8 

  0.8 151.6 5.08 1.81 69.2 

 0.8 0.2 76.4 1.37 2.69 6.68 

  0.4 153.9 2.09 2.32 13.9 

  0.6 295.3 4.56 2.09 25.2 

  0.8 688.3 16.3 2.20 58.1 

3 0.2 0.2 1.42 1.03 1.10 1.10 

  0.4 1.96 1.23 1.34 1.68 

  0.6 3.37 1.71 1.69 3.19 

  0.8 8.02 3.38 2.23 10.4 

 0.4 0.2 2.85 1.07 1.02 1.21 

  0.4 4.52 1.24 1.21 1.97 

  0.6 7.88 1.63 1.41 3.99 

  0.8 18.5 2.99 1.70 14.1 

 0.6 0.2 9.65 1.19 1.21 1.79 

  0.4 16.2 1.35 1.27 3.15 

  0.6 30.6 1.75 1.36 7.60 

  0.8 78.2 3.25 1.51 30.6 

 0.8 0.2 84.1 1.55 2.99 5.93 

  0.4 126.4 1.90 2.42 10.5 

  0.6 215.2 2.62 1.99 20.8 

  0.8 501.4 7.21 2.01 67.1 

5.1. Method of Moments 
By using an asymptotically equivalent factor of 1 n  instead of 1 1n −  in Equation (3), moments estimators 

( ), ,p λ θΘ =  are given as solutions of the system of equations  

( ) ( ) ( )
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1
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21

1

1
0

n
t t

n
t

t
t

n X X X X
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−
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=

=

 
 − − −
 − =
 −  

∑
∑
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Table 3. Efficiency of quasi-likelihood estimators.                                                                                                                       

λ  p  θ  ( ) ( )ˆVar Varp p  ( ) ( )ˆVar Varλ λ  ( ) ( )ˆVar Varθ θ  ˆΘ Θ  

1 0.2 0.2 2.06 1.07 1.18 2.25 

  0.4 3.16 1.25 1.73 5.09 
  0.6 7.17 2.30 1.82 15.3 
  0.8 12.4 7.39 2.48 48.5 

 0.4 0.2 2.03 1.08 1.35 2.49 

  0.4 3.07 1.36 1.67 5.14 

  0.6 5.79 2.73 1.99 15.9 

  0.8 14.7 15.4 3.22 98.4 

 0.6 0.2 1.94 1.30 1.66 3.63 

  0.4 2.46 1.46 1.97 5.95 

  0.6 5.91 4.08 2.83 23.0 
  0.8 30.6 19.8 5.62 38.2 
 0.8 0.2 2.27 2.14 2.94 12.0 
  0.4 4.03 2.94 4.45 19.0 

  0.6 14.8 13.7 6.61 90.6 

  0.8 120.1 44.4 16.1 41.9 

3 0.2 0.2 1.37 1.03 1.09 1.40 

  0.4 1.79 1.16 1.25 2.12 

  0.6 2.72 1.52 1.50 4.24 

  0.8 6.23 3.04 1.94 17.6 

 0.4 0.2 1.39 1.08 1.12 1.37 

  0.4 1.82 1.19 1.23 2.12 

  0.6 2.72 1.58 1.52 4.55 

  0.8 5.47 3.29 2.03 17.5 

 0.6 0.2 1.76 1.27 1.41 1.88 
  0.4 2.32 1.44 1.49 3.21 
  0.6 3.01 1.87 1.82 6.87 
  0.8 6.36 4.15 2.69 26.0 

 0.8 0.2 3.67 1.88 3.01 6.50 

  0.4 3.92 2.19 2.52 12.6 

  0.6 6.61 2.94 2.97 32.4 

  0.8 12.0 8.34 5.39 58.5 
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Let us define the functions  
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λ θ
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1
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and the vector  
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= = =
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The expected values ( ), ,tE f p λ θ   , ( ), ,tE g p λ θ    and ( ), ,tE h p λ θ    are asymptotically equal to 0. 
Using a Taylor series expansion around ( )0 0 0 0, ,p λ θΘ = , the true parameter value, we obtain  

( ) ( ) ( ) ( )0 0 0 ,n n nF F F εΘ = Θ +∇ Θ Θ −Θ +                           (5) 

where 0pnε → , with p→  denoting convergence in probability. 
Since Θ  is a solution of ( ) 0nF Θ = , Equation (5) can rewritten as  

( ) ( ) ( )0 0 0 ,n nF F ε∇ Θ Θ −Θ = − Θ −  

or ( ) ( ) ( ) ( )0 0 0
1 1 1 .n n pF n F o
n n

−
∇ Θ Θ −Θ = Θ +  

Using Slutsky’s theorem, we find that  

( ) ( ) ( )0 0 0
1 1 ,n nF n F
n n
∇ Θ Θ −Θ → Θ  

or ( ) ( ) ( )1 1
0 0, Var ,n N A Y A− − ′Θ −Θ →  

 
                         (6) 

where, with probability 1,  
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Matrix A evaluated at 0Θ  can be estimated by  
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If 0 0,θ λ  and 0p  are unknown, they can be replaced by appropriate estimates. The variance-covariance 
matrix of Y is equal to  
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Let us consider the first element of this matrix:  
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since asymptotically [ ] ( )Cov ,t k t kE f f f f=  (because [ ] 0tE f =  as n →∞ ). In practice, we truncate these 
expressions, since ( )Cov , 0t kf f → , as t k− →∞ . If we limit ourselves to a difference of 5t k− ≤ , the last 
equality becomes  

[ ]
1

=1 5

1 1Var ) .
n

t t k
t t k

f E f f
n n

−

− ≤

 
 
 
∑ ∑ ∑  

Using the law of large numbers, we can estimate this last term by  

5

1 .t k
t k

f f
n − ≤
∑ ∑  

The other elements of the matrix can be estimated in the same way. 

5.2. Quasi-Likelihood Method 
To determine the quasi-likelihood estimator ( )Θ , we have to maximize  

( ) ( ) ( ) ( )2
2

2
1

, , 0.5 ln 2π 0.5 ln .
n

t t
t

t t

x
l p n

µ
λ θ σ

σ=

 −
= − − + 

  
∑                     (7) 

Let us define the quasi-score vector  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 2 3, , , , .t t t tS l S S S l l l
p λ θ

′ ∂ ∂ ∂′Θ = ∇ Θ = = Θ Θ Θ ∂ ∂ ∂ 
 

From Hamilton [12], using quasi-likelihood theory, we conclude that  

( ) ( )1 1
0 0, ,n N D SD− −′Θ −Θ →

                              (8) 

where with probability 1, D and S are limits in probability matrices. They are defined as  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( )

1 1 1
1 1 11 1 1

2 2 2
1 1 11 1 1

3 3
1 11 1 1

| | |

1lim | | |

| |

n n n
t t t t t tt t t

n n n
t t t t t tt t tn

n n n
t t t tt t t

E S X E S X E S X
p

D E S X E S X E S X
n p

E S X E S X
p

λ θ

λ θ

λ

− − −= = =

− − −= = =→∞

− −= = =

 ∂ ∂ ∂   
     ∂ ∂ ∂    
 ∂ ∂ ∂   = −      ∂ ∂ ∂    
 ∂ ∂ 
   ∂ ∂  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ( )( )3
1

,

|t tE S X
θ −

 
 
 
 
 
 
 

∂  
  ∂  

 

and  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 1 3
1 1 1

2 1 2 2 2 3
1 1 1

3 1 3 2 3 3
1 1 1

1lim ,

n n n
t t t t t tt t t

n n n
t t t t t tt t tn

n n n
t t t t t tt t t

S S S S S S

S S S S S S S
n

S S S S S S

= = =

= = =→∞

= = =

 
 
 =
 
  
 

∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑

 

evaluated at 0Θ , the true parameter. We can obtain estimates for D̂  and Ŝ , where matrix D̂  is defined as  

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1 1
1 1 11 1 1

2 2 2
1 1 11 1 1

3 3 3
1 1 11 1 1

| | |

1ˆ | | | ,

| | |

n n n
t t t t t tt t t

n n n
t t t t t tt t t

n n n
t t t t t tt t t

S X S X S X
p

D S X S X S X
n p

S X S X S X
p

λ θ

λ θ

λ θ

− − −= = =

− − −= = =

− − −= = =

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

= −  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

and Ŝ  is the finite version of S evaluated at 0Θ ; the elements of D̂  are evaluated numerically using 
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expression (7). Packages such as MATHEMATICA can handle these derivatives calculations numerically. 
Consequently, the variance-covariance matrix of Θ  can be estimated by 1 1ˆˆ ˆD SD− − . 

5.3. Conditional Maximum Likelihood 
Using the true loglikelihood function from section 4.3, we define the score vector  

( ) ( ) ( ) ( ) ( )( )1 2 3, , .t t t tS l S S S ′Θ = ∇ Θ =  

From Hamilton [12], using likelihood theory, we find that  

( ) ( )1
0

ˆ 0, ,n N S −Θ −Θ →                               (9) 

where matrix S is defined analogously as in the previous section, but with a different loglikelihood function. 

5.4. Numerical Comparisons 
Table 2 and Table 4 give the estimate of the asymptotic efficiency of the moment and the quasi-likelihood 
estimators compared to the MLE, calculated from 20,000 observations (10 series of 2000 observations) gene- 
rated from a ( )1GPAR  process with various parameter values. 

Comparing Table 2 and Table 3, the quasi-likelihood estimator for p has a smaller variance than the moments 
estimator; for λ , it depends on the values of the parameters. The moments estimator of θ  has a smaller 
variance than the quasi-likelihood estimator, except when 0.2p = , where θ  is better than θ . 

The estimated determinant of the variance-covariance matrix of Θ̂  using the average of the determinants is 
always smaller than that of Θ  and Θ  (last column of Table 2 and Table 3). The MLE is more efficient than 
the moment or the quasi-likelihood estimator, and the moment estimator more efficient than the quasi-likelihood 
estimator, in general. 

6. Applications: Number of Computer Breakdowns 
In this section, we perform some tests on a real time series presented by Al-Nachawati et al. [3] on the number 
of weekly computer breakdowns for 128 consecutive weeks. This series is overdispersed, since its mean and 
variance are equal to 4.016 and 14.504. In Figure 4, the acf function is seen to decrease with the lag, while the 
pacf is high for lag 1 and low thereafter; a ( )1GPAR  model could therefore be appropriate for this series. We 
use the ( )1GPAR  model in the analysis. 

Since the MLE was shown to be the best asymptotic estimator in the previous section, the parameters were 
estimated with this method; the estimates appear in Table 4, with the estimated variance-covariance matrix. 

With the estimated variance-covariance matrices based on expressions (6), (8) and (9) of Section 5, Wald tests 
can be performed quite easily depending on which estimator has been chosen. 

For example, to test 0 0:H θ θ=  using θ , the quasilikelihood estimator, the statistic can be based on the  

statistic ( ) ( )0Z Vθ θ θ= −  , where ( )V θ  is an estimate of the variance of θ , which can be obtained from  

the corresponding diagonal element of 1 1ˆˆ ˆ ˆV D SD− −= . Since ( ) ( )0 Vθ θ θ−   is asymptotically ( )0,1N , we 
reject 0H  at level α  if Z  is greater than 1 2.z α−  

To test 0 0 0 0: , ,H p p λ λ θ θ= = = , the test statistic can be based on  

1
0 0

ˆ ,V − ′   Θ −Θ Θ −Θ   
   

which follows a ( )2 3χ  distribution asymptotically. It is expected that the more efficient the estimator is, the  
 

Table 4. MLE’s of the parameters.                                                                                                                       

p̂  λ̂  θ̂  Variance-covariance matrix 

0.323 2.125 0.471 0.0055 0.0017 0.0008 

   0.0017 0.0493 −0.0040 

   0.0008 −0.0040 0.0026 
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Figure 4. Acf and pacf.                                                                                       

 
more powerful the test will be. 

With the estimated parameters, we can test the ( )1GPAR  model versus the simpler ( )1PAR  model. Since 
the conditional MLE θ̂  equals 0.471, with a variance of 0.0026, performing the test 0 : 0H θ =  vs 1 : 0H θ >  
gives 0.471 0.0026 9.24Z = = . This leads us to reject 0H  and to conclude that the ( )1GPAR  model is 
more appropriate: there is overdispersion in the observations. 
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