The Proof of Hilbert's Seventh Problem about Transcendence of $e+\pi$

Jiaming Zhu
School of Mathematical Sciences, Jinggangshan University, Ji'an, China
Email: 2838213324@qq.com

Received 11 July 2016; accepted 20 August 2016; published 23 August 2016

Copyright © 2016 by author and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

We prove that $e+\pi$ is a transcendental number. We use proof by contradiction. The key to solve the problem is to establish a function that doesn't satisfy the relational expression that we derive, thereby produce a conflicting result which can verify our assumption is incorrect.

Keywords

Hilbert's Conjecture, Transcendental Number, The Transcendence of $e+\pi$

Subject Areas: Algebra, Algebraic Geometry

1. Introduction

Hilbert's seventh problem is about transcendental number. The proof of transcendental number is not very easy. We have proved the transcendence of " e " and " π ". However, for over a hundred years, no one can prove the transcendence of " $e+\pi$ " [1]. The purpose of this article is to solve this problem and prove that $e+\pi$ is a transcendental number.

2. Proof

1) Assuming $f(x)$ is any one polynomial of degree n. $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}, \quad c_{0} \neq 0$, Let
$F(x)=\frac{f(x)}{\ln (e+\pi)}+\frac{f^{\prime}(x)}{\ln ^{2}(e+\pi)}+\frac{f^{\prime \prime}(x)}{\ln ^{3}(e+\pi)}+\ldots+\frac{f^{(n)}(x)}{\ln ^{n+1}(e+\pi)}$.
Now we consider this integral: $\int_{0}^{b} f(x)(e+\pi)^{-x} \mathrm{~d} x$. By integrability by parts, we can get the following Formula (2.1):

$$
\begin{equation*}
\int_{0}^{b} f(x)(e+\pi)^{-x} \mathrm{~d} x=-(e+\pi)^{-b} F(b)+F(0) \tag{2.1}
\end{equation*}
$$

2) Assuming $e+\pi$ is a algebraic number, so it should satisfy some one algebraic equation with integral coefficients: $c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}=0, \quad c_{0} \neq 0$.

According to Formula (2.1), using $(e+\pi)^{-b}$ multiplies both sides of Formula (2.1) and let be separately equal to $0,1,2, \cdots, n$. We get the following result.

$$
\begin{align*}
\sum_{k=0}^{n} c_{k} F(k) & =F(0) \sum_{k=0}^{n} c_{k}(e+\pi)^{k}-\sum_{k=0}^{n} c_{k}(e+\pi)^{k} \int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x \tag{2.2}\\
& =-\sum_{k=0}^{n} c_{k}(e+\pi)^{k} \int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x
\end{align*}
$$

So, all we need to do or the key to solve the problem is to find a suitable $f(x)$ that it doesn't satisfy the Formula (2.2) above.
3) So we let $f(x)=\frac{x^{p-1}(x-1)^{p}(x-2)^{p} \cdots(x-n)^{p}}{(p-1)!}$ [2], $b>n, b>c_{0}$ and b is a prime number Because of $(x-i)^{p} \mid f(x), i=1,2, \cdots, n$, so $f(x), \cdots, f^{(p-1)}(x)$ can be divisible by $(x-i)$ and when $x=1,2, \cdots, n$, all of $f(x), \cdots, f^{(p-1)}(x)$ equal zero.

Furthermore, we consider x^{k} whose $(p+a)$-th derivative ($a \geq 0$); when $k<p+a$, the derivative is zero. And when $k \geq p+a$, the derivative is $k(k-1)(k-2) \cdots(k-(p+a)+1) x^{k-(p+a)}$. What's more, the coefficient of x^{k} is a multiple of $(p+a)$!, so it's alse a multiple of $(p-1)$! and p.

By the analysis above, we can know that $F(1), F(2), \cdots, F(n)$ are multiples of p.
Now we see $F(0)$; we know,

$$
F(0)=\frac{f(0)}{\ln (e+\pi)}+\frac{f^{\prime}(0)}{\ln ^{2}(e+\pi)}+\cdots+\frac{f^{(P-2)}(0)}{\ln ^{P-1}(e+\pi)}+\frac{f^{(P-1)}(0)}{\ln ^{P}(e+\pi)}+\frac{f^{(P)}(0)}{\ln ^{P+1}(e+\pi)}+\cdots+\frac{f^{((n+1) P-1)}(0)}{\ln ^{(n+1)}(e+\pi)}
$$

and its the sum of the first $p-1$ item is zero (because the degree of each term of $f(x)$ is not lower than $p-1)$. All from the $(p+1)$-th item to the end are multiples of p. But the p-th item $\left(\frac{f^{(P-1)}(0)}{\ln ^{P}(e+\pi)}\right)$ is the $(p-1)$-th derivative of $\frac{\left((-1)^{m} m!\right)^{p} x^{p-1}}{(p-1)!\ln ^{P}(e+\pi)}$. So, $\frac{f^{(P-1)}(0)}{\ln ^{P}(e+\pi)}=\frac{\left((-1)^{m} m!\right)^{p}}{\ln ^{P}(e+\pi)}$, and $F(0)$ and $\frac{\left((-1)^{m} m!\right)^{p}}{\ln ^{P}(e+\pi)}$ are congruence, written $F(0) \equiv \frac{\left((-1)^{m} m!\right)^{p}}{\ln ^{P}(e+\pi)}(\bmod p)$. Thereby, $\sum_{k=0}^{n} c_{k} F(k) \equiv c_{0} F(0) \equiv c_{0} \frac{\left((-1)^{m} m!\right)^{p}}{\ln ^{P}(e+\pi)}(\bmod p)$, but $b>n, \quad b>c_{0}$, and b is a prime number, so

$$
\begin{equation*}
p \nmid c_{0} \frac{\left((-1)^{m} m!\right)^{p}}{\ln ^{P}(e+\pi)}, \quad \sum_{k=0}^{n} c_{k} F(k) \not \equiv 0(\bmod p) \tag{2.3}
\end{equation*}
$$

4) Next, we need to prove that $\left|-\sum_{k=0}^{n} c_{k}(e+\pi)^{k} \int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x\right|<1$ when p tends to be sufficiently large.

When x changes from 0 to n, the absolute value of each factor $x-i(i=0,1, \cdots, n)$ of $f(x)$ is not more than n, so $|f(x)| \leq \frac{n(n+1)^{p-1}}{(p-1)!}, \quad 0 \leq x \leq n$.

So by integral property: when $0 \leq k \leq n$,

$$
\left|\int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x\right| \leq \int_{0}^{k}|f(x)|(e+\pi)^{-x} \mathrm{~d} x \leq \frac{n^{(n+1) p-1}}{(p-1)!} \int_{0}^{k}(e+\pi)^{-x} \mathrm{~d} x<\frac{n^{(n+1) p-1}}{(p-1)!}
$$

Let M equal $\left|c_{0}\right|+\left|c_{1}\right|+\cdots+\left|c_{n}\right|$,

$$
\begin{align*}
& \left|-\sum_{k=0}^{n} c_{k}(e+\pi)^{k} \int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x\right| \leq \sum_{k=0}^{n}\left|c_{k}(e+\pi)^{k} \int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x\right| \\
& \text { thus, } \\
& <\left(\sum_{k=0}^{n}\left|c_{k}\right|\right)(e+\pi)^{n} \frac{n^{(n+1) p-1}}{(p-1)!}=M(e+\pi)^{n} \frac{n^{(n+1) p-1}}{(p-1)!} \\
& \text { When } \quad p \rightarrow \infty, M(e+\pi)^{n} \frac{n^{(n+1) p-1}}{(p-1)!} \rightarrow 0 \text {. So, }\left|-\sum_{k=0}^{n} c_{k}(e+\pi)^{k} \int_{0}^{k} f(x)(e+\pi)^{-x} \mathrm{~d} x\right|<1 \tag{2.4}
\end{align*}
$$

Finally, according to (2.3) and (2.4), we know (2.2) is incorrect. So, $e+\pi$ is a transcendental number.

3. Conjecture

By the proof above, we conclude that $e+\pi$ is a transcendental number. Besides, I suppose $\ln (e+\pi)$ is also a transcendental number. What's more, when a and b are two real numbers, and $\frac{b}{1-a} \geq \frac{e}{\pi}$, I suppose that $a e+b \pi$ is a transcendental number.

Acknowledgements

I am grateful to my friends and my classmates for supporting and encouraging me.

References

[1] Wang, Y. (2011) About Prime Number. Harbin Institute of Technology Press, Harbin.
[2] Min, S.H. and Yan, S.J. (2003) Elementary Number Theory. 3rd Edition, Higher Education Press, Beijing.

Submit or recommend next manuscript to OALib Journal and we will provide best service for you:

- Publication frequency: Monthly
- 9 subject areas of science, technology and medicine
- Fair and rigorous peer-review system
- Fast publication process
- Article promotion in various social networking sites (LinkedIn, Facebook, Twitter, etc.)
- Maximum dissemination of your research work

Submit Your Paper Online: Click Here to Submit

Contact Us: service@oalib.com

