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Abstract 
We prove that e + π is a transcendental number. We use proof by contradiction. The key to solve 
the problem is to establish a function that doesn’t satisfy the relational expression that we derive, 
thereby produce a conflicting result which can verify our assumption is incorrect.  
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1. Introduction 
Hilbert’s seventh problem is about transcendental number. The proof of transcendental number is not very easy. 
We have proved the transcendence of “e” and “π”. However, for over a hundred years, no one can prove the 
transcendence of “e + π” [1]. The purpose of this article is to solve this problem and prove that e + π is a tran-
scendental number. 

2. Proof 

1) Assuming ( )f x  is any one polynomial of degree n. ( ) 2
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Now we consider this integral: ( ) ( )
0

d
b xf x e xπ −+∫ . By integrability by parts, we can get the following For- 

mula (2.1):  
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2) Assuming e π+  is a algebraic number, so it should satisfy some one algebraic equation with integral 
coefficients: 2

0 1 2 0n
nc c x c x c x+ + + + = , 0 0c ≠ . 

According to Formula (2.1), using ( ) be π −+  multiplies both sides of Formula (2.1) and let be separately 
equal to 0,1, 2, , n . We get the following result. 
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               (2.2) 

So, all we need to do or the key to solve the problem is to find a suitable ( )f x  that it doesn’t satisfy the 
Formula (2.2) above. 

3) So we let ( ) ( ) ( ) ( )
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 [2], b n> , 0b c>  and b is a prime number Because 

of ( ) ( )|px i f x− , 1, 2, ,i n=  , so ( ) ( ) ( )1, , pf x f x−
 can be divisible by ( )x i−  and when 1, 2, ,x n=  , 

all of ( ) ( ) ( )1, , pf x f x−
  equal zero. 

Furthermore, we consider kx  whose (p + a)-th derivative ( 0a ≥ ); when k p a< + , the derivative is zero. 

And when k p a≥ + , the derivative is ( ) ( ) ( )( ) ( )1 2 1 k p ak k k k p a x − +− − − + + . What’s more, the coefficient 

of kx  is a multiple of (p + a)!, so it’s alse a multiple of (p − 1)! and p. 
By the analysis above, we can know that ( ) ( ) ( )1 , 2 , ,F F F n  are multiples of p. 
Now we see ( )0F ; we know, 
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and its the sum of the first p − 1 item is zero (because the degree of each term of ( )f x  is not lower than 

1p − ). All from the (p + 1)-th item to the end are multiples of p. But the p-th item 
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4) Next, we need to prove that ( ) ( ) ( )0 0
– d 1

kn k x
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+ + <∑ ∫  when p tends to be sufficiently 

large. 
When x changes from 0 to n, the absolute value of each factor ( )0,1, ,x i i n− =   of ( )f x  is not more 

than n, so ( ) ( )
( )

11
1 !

pn n
f x

p

−+
≤

−
, 0 x n≤ ≤ . 

So by integral property: when 0 k n≤ ≤ , 
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thus, 
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Finally, according to (2.3) and (2.4), we know (2.2) is incorrect. So, e + π is a transcendental number. 

3. Conjecture 
By the proof above, we conclude that e + π is a transcendental number. Besides, I suppose ( )ln e π+  is also a 

transcendental number. What’s more, when a and b are two real numbers, and 
1

b e
a π
≥

−
, I suppose that 

ae bπ+  is a transcendental number. 
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