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Abstract 
 
This work is a study of multivariate simulations of pollutants to assess the sampling uncertainty for the risk 
analysis of a contaminated site. The study started from data collected for a remediation project of a steel- 
works in northern Italy. The soil samples were taken from boreholes excavated a few years ago and analyzed 
by a chemical laboratory. The data set comprises concentrations of several pollutants, from which a subset of 
ten organic and inorganic compounds were selected. The first part of study is a univariate and bivariate sta- 
tistical analysis of the data. All data were spatially analyzed and transformed to the Gaussian space so as to 
reduce the effects of extreme high values due to contaminant hot spots and the requirements of Gaussian 
simulation procedures. The variography analysis quantified spatial correlation and cross-correlations, which 
led to a hypothesized linear model of coregionalization for all variables. Geostatistical simulation methods 
were applied to assess the uncertainty. Two types of simulations were performed: correlation correction of 
univariate sequential Gaussian simulations (SGS), and sequential Gaussian co-simulations (SGCOS). The 
outputs from the correlation correction simulations and SGCOS were analyzed and grade-tonnage curves 
were produced to assess basic environmental risk. 
 
Keywords: Uncertainty Modeling, Multivariate Geostatistical Simulations, Risk Analysis, Environmental 

Pollution, Remediation Project 

1. Introduction 

The assessment of the risks associated with contamina- 
tion by elevated levels of pollutants is a major issue in 
most parts of the world. Risk is generally taken to mean 
the probability of the occurrence of an adverse event, in 
this case contamination above legally and/or socially 
acceptable levels. Risk arises from the presence of a pol- 
lutant and from the uncertainty associated with estimate- 
ing its concentration, extent and trajectory. The uncer- 
tainty arises from the difficulty of measuring the pollut- 
ant concentration accurately at any given location and 
the impossibility of measuring it at all study. Estimations 
tend to give smoothed versions of reality (i.e. estimates 
are less variable than real values) with the smoothing 
effect being inversely proportional to the amount of data 
(i.e. directly proportional to the uncertainty). If risk is a 
measure of the probability of pollutant concentrations 
exceeding specified thresholds then variability, or vari- 
ance, is the key characteristic in risk assessment and risk 
analysis. For this reason, geostatistical simulation pro- 

vides an appropriate way of quantifying risk by simulate- 
ing possible “realities” and determining how many of 
these realities exceed the contamination thresholds [1]. 

Since the publication of the first applications of geo- 
statistics to soil data in the early 1980s ([2-6]), geostatis- 
tical methods have become popular in soil science, as 
illustrated by the increasing number of studies reported 
in the literature. 

Geostatistics involves the analysis and prediction of 
spatial or temporal phenomena, such as metal grades, 
porosities, pollutant concentrations, price of oil in time, 
and so forth. Nowadays, geostatistics is simply a name 
associated with a class of techniques utilized to analyze 
and predict values of a variable distributed in space or 
time. Such values are implicitly assumed to be spatially 
or/and temporally correlated with each other, and the 
study of such a correlation is usually called a “structural 
analysis” or “variogram modeling”. Following structural 
analysis, predictions at unsampled locations are made 
using any of the various forms of “kriging” or they can 
be simulated using “conditional simulations”. 



E. GUASTALDI 
 

Copyright © 2011 SciRes.                                                                               JWARP 

564 

The main geostatistical tools are used to model the lo- 
cal uncertainty of environmental attributes (e.g. pollutant 
concentrations), which prevail at any unsampled site, in 
particular by means of stochastic simulation. These mod- 
els of uncertainty can be used in decision-making proc- 
esses such as delineation of areas targeted for remedia- 
tion or design of sampling schemes. 

Methods of uncertainty propagation ([7,8]), such as 
Monte-Carlo simulation analysis, sequential Gaussian 
simulation and sequential indicator simulation are critical 
for estimating uncertainties associated with spatially- 
based policies in environmental problems and in dealing 
effectively with risks [9]. 

The study area was of a contaminated site in northern 
Italy, previously occupied by a steelworks. This work is 
based on a data set belonging exclusively to Studio Geo- 
tecnico Italiano S.r.l. (Milan, Italy), which has withheld 
permission to publish the exact geographical location of 
the site, but this is irrelevant to the purposes of this study. 
Therefore, the steelworks factory’s site is just roughly 
located in northwestern Italy in Figure 1, the study area 
is intentionally enormous compared to the actual site’s 
area, and the real location is somewhere inside the circle. 
Moreover, conventional geographical directions are used 
only in the sections covering descriptions of geomor- 
phology and geology. In the quantitative work reported 
here easting, northing and depth co-ordinates are given in 
local units keeping the scale ratio, to protect the confi- 
dentiality of the site. In addition, the actual co-ordinate 
system has been rotated by approximately 90˚ to provide 
a more convenient data layout. These assumptions, of 
course, do not affect any results. 

The author has conducted a geostatistical study, based 
on the preliminary reclamation study, to assess the con- 
tamination risk associated with the most important heavy 
metals and hydrocarbons measured at the site. The pre- 
liminary reclamation study outlines the reclamation pro- 
posed to mitigate the contamination risk based on 
groundwater analysis. The study here reported is based 
on soil samples taken from the surface down to different 
depths up to 20 m and provides a risk analysis method 
that could be extended to other variables together with 
results that could form part of a future, definitive recla- 
mation project. The significant number of variables pro- 
vides the basis for an extensive multivariate study. How- 
ever, multivariate analysis has been restricted to the sub- 
set of these variables with concentration values higher 
than limits imposed by law. 

A univariate geostatistical simulation of several vari- 
ables is performed independently for each variable and 
any spatial cross-correlation among the variables is ig- 
nored. However, in environmental applications it is 
common to find pollutants positively or negatively cor- 

related, as is the case with the site used for this project. 
One way of taking account of this correlation and im- 
proving the simulation results is by introducing a corre- 
lation correction between pairs of the independently si- 
mulated variables [10], another way is utilizing multi- 
variate simulations. Finally, following the validation 
analysis, the corrected variables were analyzed and com- 
pared with those of the co-simulation technique. 

The main objective of this study is to assess the un- 
certainty of the spatial variability of contamination by 
heavy metals and heavy hydrocarbons in order to per- 
form a risk analysis suitable for the definitive reclama- 
tion project. 

2. Outlines of Geology and Hydrogeology 

The study area is located in the western part of the Po 
river basin. The quaternary geological cover lies directly 
over the Tertiary bedrock by means of an erosional con- 
tact, the surface of which slopes gently toward northwest. 
In the study area, however, the sand-silt Pleistocene de- 
posits lie between the quaternary deposits and the Terti- 
ary bedrock [11]. 

Essentially, the quaternary sediments constituting the 
shallow quaternary geology of the plain are composed 
(from the bottom), by heterometric gravel deposits in a 
sand matrix laid down in the Middle Pleistocene by trib- 
utary streams of the Po (fluvial “Riass” period), and 
gravel fluvial deposits more recent than the present allu- 
vial sediments. In particular, a sub-division can be made 
on the basis of groundwater reservoirs, which are very 
well known in this zone [12].  

The stratigraphic logs of this area show: 1) a Superfi- 
cial Complex, with fluvial alluvial and glacial deposits 
principally composed of coarse gravels characterized by 
a high permeability thickness of 10 - 30 m (Middle Plei- 
stocene), housing an unconfined aquifer, directly con-
nected to the superficial stream network. Its potenti- ality 
is proportional to the thickness of the saturation zone and 
it is, therefore, highly variable; 2) a very low permeabil-
ity complex comprising silt-clay sediments lays down in 
the fluvial environment of the Upper Pliocene-Lower 
Pleistocene; 3) a Pliocene Complex comprising a series 
of fairly permeable sand, sometimes with silt-clay inter-
calations, laid down in a marine environment; 4) a suc-
cession of silt, silt-clay and clay levels starting from at 
least 300 m below the surface [13]. 

An accurate stratigraphic reconstruction of the study 
area from the surface to the depth of interest was pro- 
duced, by analyzing the results of field surveys con- 
ducted in the summer 2000 and borehole data collected 
in the summer 2002. In the earlier survey, the piezome- 
ters showed that the geological structure of the area was 
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heterogeneous, with a succession of layers of different 
and non-constant thicknesses. The more recent survey 
confirmed the initial geological model. Vertical geologi- 
cal cross-sections were produced and utilized as the geo- 
logical context for the geostatistical analysis. They show 
the studied volume completely lays in the above men- 
tioned Superficial Complex. 

These cross-sections, combined with the geotechnical 
laboratory analyses, support the conceptualization of geo- 
logical model of the study area (Figure 1), charac- ter-
ized as follows starting form the surface (Table 1): Unit 
0, mainly constituted by organic terrain (OS) and backfill 
material (BF), with a significantly variable thickness 
ranging from centimeters to meters; Unit 1, essentially 
composed by a unique gravel layer 10 m thick (GS), with 
a light silty sand fraction (SS), at times with polygenic 
pebbles with a maximum diameter of 15 cm (PG), and an 
average hydraulic conductivity of 4.85E-03 cm/s, so with 
a moderately high permeability in comparison with the 
other units; Unit 2, polygenic pebbles (PG) and gravel 
with silty sand (SS) in succession with levels of poly-

genic gravel and pebbles in an abundant silty-sandy ma-
trix (SG), with a maximum thickness of 10 m, an average 
hydraulic conductivity of 8.14E-03 cm/s; Unit 3, consti-
tuted by sandy silt (SS) moderately coherent, represents 
the base layer of the aquifer, its bed was not detected, 
because the borehole stops 24 m below the surface, how-
ever granulometric analysis shows an equal percentage 
of sand, silt and clay, an Atterberg’s liquidity limit less 
than 30%. These data allow the material to be classified 
as falling in a range between inorganic silt with low 
compressibility and inorganic clay with low plastic- ity. 
The Lefranc Permeability Tests performed on sam- ples 
of Unit 3 provided an average hydraulic conductive- ity 
coefficient equal to 0.027E-03 cm/s, denoting a low per- 
meability grade. 

3. Method 

3.1. Exploratory Raw Data Analysis 

There have been two sampling surveys since the recla-  
 

 

Figure 1. Study area, boreholes, and an example of two lithostratigraphic cross-sections performed (units: BF, Backfilling 
material mainly constituted by foundry scum; OS, Organic soil and/or backfilling material constituted mainly by sand with 
pebbles, bricks, rubble, concrete fragments; SG, Sandy gravel; GS, Gravely sand with sparse silt levels; PG, Pebbly gravel; 
SS, Sandy silt). 
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Table 1. Composition and hydraulic conductivity coefficient 
of principal lithostratigraphic units. 

Material 
Unit 

Prevalent Subordinate
Thickness 

Hydraulic 
Conductivity

0 OS, BF BF 0.3 m ÷ 2 m 0.525E-03 cm/s

1 GS, SS, PG SS, PG 10 m 4.850E-03 cm/s

2 PG, SS, SG SS, SG 10 m 8.140E-03 cm/s

3 SS _ _ 0.027E-03 cm/s

 
mation project started in 2000. The first took place in the 
summer of 2000, and comprised five vertical boreholes 
of 20 m length, which were used as piezometers. Water 
table measurements were made and ground water analy- 
ses were done. The second survey was done between 17 
June 2002 and 05 August 2002 and comprised 59 vertical 
boreholes (percussion type boreholes, continuous type 
boreholes, deep piezometers, superficial piezometers), 
together with three surface samples and two samples 
taken from the bottoms of the wells. The area measured 
by 276 samples, covers almost the entire zone occupied 
by the former industrial complex, within an area of 600 
m × 250 m. 

All data measurements are on core samples from the 
boreholes, the most frequent nearest neighbor distance 
between them is around 40 m. However, the number of 
samples per borehole is not constant, as the length of the 
wells is not constant. In fact, this number varies between 
a minimum of two and a maximum of seven samples, 
and on average there are five cores per borehole. There is 
no obvious pattern in the locations of the boreholes that 
have the most samples and they are fairly uniformly 
spread over the study area; moreover, the reason for the 
differing numbers of sample in boreholes is not known. 
The length of samples in each borehole varies from a 
minimum of 0.1m to a maximum of 1m, as shown by the 
statistics listed in Figure 2(a) together with the histo- 
gram of core lengths. 

The lengths of the data gaps caused by these disconti- 
nuities are summarized in the histogram and statistics 
shown in Figure 2(b) which indicate that the lengths of 
most gaps (i.e. missing data) are either between 0.5 m 
and 1.5m, or between 2.5 m and 3.0 m. Figure 2(b) does 
not give any indication of the locations of the gaps. Most 
of the 1.5m gaps are located at a depth of 4.5 m (22.9% 
of the total number of gaps), and most of the 1.0m gaps 
are located at a depth of 2.5 m (20.8%). These observa-
tions informed the choice of parameter values in the re-
compo- sition procedure. 

As the raw data values are measured on unequal sam- 
ple lengths, the grades must be composited over equal 
lengths to ensure that all data have the same support.  

 
(a) 

 
(b) 

Figure 2. Distribution and descriptive statistics of: (a) core 
lengths; (b) length gaps between sampled cores. 
 
From the histogram in Figure 2(a) a composite length of 
0.5 m was chosen, since it appears to be the most repre- 
sentative length, it is an appropriate scale of measure- 
ments and minimizes the number of actual sample 
lengths that are subdivided in the compositing procedure. 
As additional check on the compositing procedures pa- 
rameters, the lengths of the raw samples were analyzed 
in terms of the number with grades exceeding the terrain 
acceptable concentration limits (TACL) fixed by envi- 
ronmental Italian law [14]. These values may be spatial 
outliers that could mask the underlying variogram of 
each variable. As all such lengths are very close to the 
composite length their influence will not be diluted by 
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compositing to 0.5 m. 
Completely, Table 2 summarizes the statistics of the 

grades of the 50 small-scale (10 cm and 20 cm) samples 
below 7.4 m. For all variables but the nickel, mean and 
variance are less than those of the remaining heavy met- 
als and hydrocarbons (HY), and these values could be 
eliminated from the compositing procedure with negligi- 
ble effect on any subsequent estimations or simulations. 
Mean grade and variance of nickel are higher than those 
of the remaining variables and eliminating these values 
from the compositing procedure is likely to yield biased 
estimates and simulations.  Introducing the artificial 40 
cm and 30 cm samples, as described above, allows these 
isolated grades of all variables to be included in the 
compositing procedure. 

Totally, the data compositing process yielded 1007 
composites from 507 raw splits. 

Beside constructing the usual scatter plot maps, the spa-
tial distributions of the data have been analyzed through 
summary graphs, i.e. histograms of concentration and 
relative statistics of each variable under study. The his-
tograms of concentration values are based on slicing the 
three-dimensional soil volume that contains the data and 
then conducting a statistical analysis of each slice. These 
slices have been imposed different along the three axes 
of the space, because the geometry of the volume of con- 
taminated site, in fact the slicing along x-axis from West 
to East is each 50 m, from North to South along the y- 
axis the slices are 25 m wide, and from the surface to-
ward the deepest data value the slices are 1m thick. For 
each “slice histogram”, one for each main direction of 

space, some basic statistics are plotted, such as number 
of samples (bars), minimum, maximum and mean value 
of concentration, and coefficient of variation (an exam-
ple is shown in Figure 3). 

In general, all the variables show that concentration 
values in the first depth interval tend to be higher in the 
eastern part of the study area. Below 2 m the concentra- 
tion values decrease by increasing depth and higher val- 
ues tend to be distributed in the central-eastern part. The 
vertical slice histogram shown in Figure 3(c), Cr con- 
centration decreases quite quickly from the surface and 
at 10 m it is almost zero mg/kg. This is a logical cones- 
quence of the scarce presence of samples below 10m of 
depth. 

Summary statistics describe numerically the frequency 
histogram of a variable and provide an initial assessment 
of the data [15]. The statistics of the 0.5 m composited 
data are given in Table 3. 

The univariate statistical analysis of concentration 
values shows that all frequency distributions have high 
positive values of skewness and the mean, the median 
and the mode are never coincident. These parameters, 
together with the high value of kurtosis, suggest that the 
data are not from a Normal (Gaussian) distribution, thus 
a transform into Gaussian space for sequential Gaussian 
simulation is necessary. Note that both Co and Ni show 
less skewed behavior than the other variables. However, 
even if they are not so skewed, transform in Gaussian 
space is required. It is assumed that the outliers in this 
data set are legitimate values. Discarding outliers in en- 
vironmental applications is not an advisable procedure, 

 
Table 2. Descriptive statistics of data to be eliminated before the recomposition because the short length (unit: mg/kg). 

 Cr Co Ni Cu Zn As Pb Cd Sn HY 

Mean 262.4 17.6 313.1 66.1 397.9 6.3 77.3 0.8 1.3 114.6 

Standard Error 15.1 1.0 14.9 5.5 202.2 0.5 40.7 0.3 0.3 49.6 

Median 275.0 16.3 320.6 55.3 96.4 5.5 20.3 0.5 0.5 28.5 

Mode 180.0 32.2 - 100.0 130.0 4.1 24.6 0.5 0.5 10.0 

Standard Deviation 106.6 6.9 105.4 38.7 1430.1 3.3 287.5 2.1 2.4 351.0 

Sample Variance 11369.6 47.6 11104.8 1498.0 2045178.2 11.2 82644.9 4.4 5.9 123166.4

Kurtosis -0.9 0.2 0.7 4.6 41.9 3.5 43.0 48.6 38.1 42.1 

Skewness 0.2 0.9 -0.7 1.8 6.3 1.7 6.4 6.9 5.9 6.3 

Range 410.0 28.6 425.3 201.8 9853.1 14.7 1994.2 14.8 17.1 2440.0 

Minimum 80.0 6.5 67.7 18.2 46.9 2.8 5.9 0.5 0.0 10.0 

Maximum 490.0 35.1 493.0 220.0 9900.0 17.5 2000.0 15.3 17.1 2450.0 

Sum 13120.0 882.0 15655.2 3305.0 19896.4 312.6 3864.3 42.2 64.0 5730.0 

Count 50 50 50 50 50 50 50 50 50 50 
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(a) 

  
(b) 

  
(c) 

Figure 3. Variation of number of samples (bars) and prin- 
cipal descriptive statistics of Cr concentration slicing the 
site volume: (a) East-West direction; (b) North-South direc- 
tion; (c) vertical direction. 
 
as these values are of prime concern and interest. Thus 
the only valid option is data transformation. There are 
many types of transformation that are used in statistical 
and geostatistical analyses, including square root of data 
values, logarithms of the data, a relative transform to the 
local mean of samples and the Normal scores transform. 
A normal transform (by normal scores or by some type 
of a functional form) is also required in this work for the 
application of the sequential Gaussian simulation method. 
The data were first assessed for lognormality using the 

3-paramenter lognormal distribution [16]. However, as- 
sessments for all variables failed and the log-transform 
option was discarded. 

The Normal score data transform is a non-parametric 
method which is used to transform the data into the 
Normal space, and to back-transform the data after the 
estimation and/or simulation calculations [17]. This 
method does not require the strong mathematical as- 
sumptions needed for the log-normal transform. The re- 
sults, in terms of statistics and normal-probability plots 
were satisfactory and this method was used for data 
transformation. 

The Normal distribution can be completely defined by 
mean and standard deviation, which for a standard cu- 
mulative density function are zero and one respectively. 
The transform of experimental z(x) values will generally 
produce results which approach the Gaussian theoretical 
ones, but it is unlikely to match exactly the theoretical 
zero mean and unit standard deviation. Generally, the 
closer these values are to the theoretical ones, the closer 
the Gaussian transformed distribution is to the standard 
Gaussian cumulative density function. 

Six on ten studied variables (for instance, Cobalt in 
Figure 4) have means relatively close to zero and stan- 
dard deviations close to one. However, four variables (Cr, 
Cd, Sn and HY) have not so good results. For Cd, Sn and 
HY this can be explained by the use of a default mini- 
mum value equal to the instrumental detection limit. 
Chromium (Figure 5) is quite well sampled and there are 
no apparent reasons for these differences, and two or 
more populations are possible. In fact, the normal-proba- 
bility curve shown in Figure 5(c) could be approximated 
by two straight lines, one from cumulative frequencies 
0% to 10%, and the other from 50% and 95%. Anyway, 
this conjecture was not explored any further by fieldwork 
measures and for all subsequent work it was assumed 
that the data come from a single population and that the 
Normal transform is acceptable. 

This multivariate data set provides an opportunity to 
conduct a complete multivariate analysis and further 
multivariate co-simulations, which can form the basis of 
a much more realistic risk assessment than a sequence of 
independent univariate analyses. This observation is, of 
course, only valid if the two or more of the variables are 
correlated in situ and/or spatially correlated. Calculating 
the correlation coefficient matrix, it is possible to assess 
the correlations between all pairs of variables. From Ta- 
ble 4 the correlations among Cr, Cu, Zn, As, Pb, Cd and 
Sn are greater than 0.6 and are statistically significant. 

Anyway, the correlation coefficient measures only the 
in situ linear relationship between a pair of variables, but 
it does not quantify spatial correlation among random 
variables.      
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Table 3. Descriptive Statistics of 0.5 m composited data (unit: mg/kg). 

 Cr Co Ni Cu Zn As Pb Cd Sn HY 

Mean 294.91 21.59 269.26 134.54 4633.19 7.09 841.73 9.05 20.35 670.74 

Standard Error 16.21 0.49 6.31 30.60 1839.33 0.82 337.34 3.74 4.35 181.17 

Median 240.00 20.66 262.75 29.69 101.00 3.62 24.70 0.50 3.60 35.00 

Mode 230 24 273 26 110 3.8 14 0.5 0.9 10 

Standard Deviation 242.66 7.29 94.37 458.01 27528.54 12.23 5048.79 56.04 65.15 2711.53 

Sample Variance 58882.54 53.21 8906.62 209769.77 757820314.40 149.63 25490275.62 3140.22 4245.01 7352421.08

Kurtosis 27.65 3.02 6.99 59.76 44.17 25.49 57.42 60.98 31.49 52.70 

Skewness 4.92 1.10 1.69 7.13 6.68 4.74 7.45 7.63 5.34 6.67 

Range 1930 48.773 723.48 4810.2 221486.4 93.6 45796.4 529.94 539.5 27594 

Minimum 100 7.817 86.52 7.8 13.6 1 3.6 0.06 0.5 6 

Maximum 2030 56.59 810 4818 221500 94.6 45800 530 540 27600 

Sum 66060 4837.161 60315.18 30137.958 1037835.358 1588.42 188546.876 2027.895 4557.968 150246.2

Count 224 224 224 224 224 224 224 224 224 224 

 
3.2. Coregionalization 

There are two aspects in the study of environmental 
variables, one is related to the factors determining the 
values of those variables at any location, and the other is 
the study of the relatively sample values of these vari- 
ables. Sample values are viewed as realizations of a ran- 
dom variable drawn from a probability distribution, so at 
each sample location xi there is a variation from the 
mean value of that variable. Probability distributions at 
neighboring locations are, more or less, related with the 
relationship decreasing with distance between any two 
locations. Such a variable is generally termed a regional- 
ized variable ([18,19]), which is composed of a random 
unpredictable component and a structured predictable 
component. The values of regionalized variables tend to 
be correlated, and this relation leads to a structure. The 
spatial correlation among samples generally decreases by 
increasing the separation distance between them, and 
may vary in different directions (Figure 6). 

An important tool for the analysis of spatial correla- 
tion is the experimental semi-variogram (ESV), which 
measures the average spatial variability between values 
separated by a vector h. It can be expressed by the aver- 
age square difference of each pair of values as follows: 

 
( )

2

1

1
( ) ( ) ( )

2 ( )

n h

i i
i

z z
n




  h x x h
h

       (1) 

where  iz x  and  iz x h  are values of the same 
regionalized variable separated by the vector h. More 
details about the semi-variogram and applications can be 
found in any Geostatistics book (for instance [17,19-22]). 

The objective of the structural analysis is to generate 
ESVs, fit models on them and interpret the models in the 

context of the local geology and other possible factors 
conditioning the spatial distribution of pollutants. These 
models of the variability are then used to simulate reali- 
zations of the random variables at unsampled locations. 
ESVs have been calculated in the horizontal plane for the 
four main geographical directions and in vertical direc- 
tion. In addition, omnidirectional ESVs have been calcu- 
lated. The sparse data provided are characterized by very 
large variability making it difficult to detect underlying 
spatial correlation. 

The parameters required for calculating the ESV are 
related to the search pair criteria: lag distance, conical 
search angle and maximum distance limit [17]. These 
parameters are used to define orientations for irregular 
grids. In this study, as the cores are discontinuously 
sampled in irregularly spaced boreholes, in a 600 m × 
250 m area, the lag distance chosen was 40 m, and, a 
conical search angle of 15˚ was necessary. If this cone 
extends too far the ESV calculation will average sample 
values in significantly different directions; so, to prevent 
this, the cone was bounded by a maximum distance limit 
of 5 - 15 m. 

For vertical variograms the lag distance used varied 
between 1 m and 2 m, because the most frequent sample 
distance along a borehole is 0.5 m (in a range of 0.1 m - 
9.8 m) and the maximum length of a borehole is 20m. A 
lag interval of 1 - 2 m assures a sufficient number of lags 
in the ESV. As the boreholes are vertical a conical search 
is meaningless in this direction. 

The ESV summarizes the spatial relationships among 
the data, but it does not describe properly the variance of 
the regionalized variable, because each particular lag is 
exclusively an evaluation of the mean semi-variance for 
that lag and is subject to sampling variability, which in- 
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) Frequency distribution of Co raw values; (b) 
Frequency distribution of Normal Scores transformed val- 
ues of Co; (c) normal-probability plot of normal scores 
transformed values of Co. 
 
creases as the number of samples decreases, and it is 
interpolated by a model, i.e. a mathematical function 
defined for all real distance h, which is used in both es- 
timation and simulation procedures. 

The variogram model is completely defined by its pa- 
rameters: the type of mathematical function adopted (the 
model γ(h)); the behavior near the origin and the positive  

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) Frequency distribution of Cr raw values; (b) 
Frequency distribution of Normal Scores transformed val- 
ues of Cr; (c) normal-probability plot of normal scores trans-
formed values of Cr. 
 
intercept on the ordinate (the nugget variance C0); the 
range of the variogram (or autocorrelation distance) that 
changes with direction if there is anisotropy, and from 
which the curve reaches a constant maximum or an as- 
ymptotic value (the sill Ci) [21]. 

The ESVs were not modeled independently of each 
other and several attempts were made to find a valid linear   
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Table 4. Correlation coefficients matrix of raw recompo- 
sited data (highlighted cells in this table represent the ab- 
solute values of correlation coefficient greater than 0.5). 

 Cr Co Ni Cu Zn As Pb Cd Sn HY

Cr 1          

Co 0.16 1         

Ni 0.20 0.40 1        

Cu 0.61 0.02 –0.09 1       

Zn 0.82 –0.07 –0.07 0.65 1      

As 0.74 0.24 –0.05 0.66 0.71 1     

Pb 0.83 –0.02 –0.08 0.66 0.93 0.75 1    

Cd 0.84 –0.04 –0.08 0.67 0.95 0.76 0.97 1   

Sn 0.72 0.01 –0.11 0.74 0.85 0.68 0.83 0.85 1  

HY 0.36 –0.04 –0.07 0.25 0.37 0.39 0.40 0.38 0.26 1

 

 
(a)                          (b) 

Figure 6. Spatial auto-correlation: (a) example sampling 
map and relationships between a sample with the other 
sampled localizations in three distance classes; (b) empirical 
relationships between spatial correlation vs distance. 
 
model of coregionalization, which requires the same 
range for each directional ESV for each variable. This 
was an iterative procedure that started from a rough fit- 
ting of the ESV by a simple model for each variable. The 
models were validated by means of cross-validation and 
then the parameters of each model were adjusted to 
achieve a balance between the requirements of a posi- 
tive-definite linear coregionalization model and the need 
for the variogram models to reflect the behavior of the 
ESVs. 

By definition, the linear model of coregionalization is 
a sum of proportional covariance models [21]. Propor- 
tional covariance models are models in which all co- 
variances (or all variograms) are proportional to the same 
covariance (or variogram) function [20]. The variables 

  ,  1,iZ i nx  are considered to be a linear combina- 
tion of   ,  1,jY j mx  independent variables with 
covariance  jK h , and expressed as follows: 

   
1

m

i ij j
j

Z a Y


 x x              (2) 

The variables  iZ x  are inter-correlated with cross- 
covariances given by: 

     
1 1 1

m m m

ik ij kj j ij kj j
j j

C a a K a a K
  

  h h h


    (3) 

or, either in terms of variograms or in matrix form: 

   
1

m
j

ik ik
j

V b


 h h  or      ik ik V h b h    (4) 

where [bik] is the positive definite matrix of symmetric 
coefficients bik. The positive definiteness of these matri- 
ces is achieved by checking that the eigenvalues of each 
matrix are real and positive. The structural part of the 
variogram (i.e. V(h)) remains the same for every coeffi- 
cient. This is the reason for which all variograms and 
cross-variograms have the same range in a particular 
direction. 

There are automatic procedures that can fit linear 
models of coregionalization among whatsoever number 
of variograms and cross-variograms. However, like other 
automatic procedures, there is no guarantee that they will 
work properly in all applications. In such cases manual 
adjustments of the fitted models are needed. Two prob- 
lems were encountered in the manual adjustment of pa- 
rameters in this project: 
 Fixed range of anisotropy in any direction; 
 Assumption of positive definite variance-covariance 

matrix. 
Often, if the ESV was to be respected, the range of 

possible values for adjusting parameters was very narrow, 
and even small changes in values contravened the posi- 
tive definiteness requirements. A linear model of core- 
gionalization was fitted (or at least refined) by trial and 
error. 

The models comprise two structures: a nugget vari- 
ance (C0) and one nested spherical structure (C1) with 
three different range of anisotropy. The ESV identifies 
the anisotropic behavior of the variables, even though it 
is difficult to detect this from the raw data. The axes of 
the anisotropy ellipsoid are: E-W direction (aNS) = 130 m; 
N-S direction (aEW) = 80 m; Vertical direction (aVert) = 6 
m. The vertical range might be limited by the maximum 
length (20 m) of the boreholes. It is unlikely, however, 
that the high levels of contamination in the first few me- 
ters are related to the low values of concentration at 
depths below 10 m (see for instance); it is also unlikely 
that very high values of concentration will be found in 
deeper samples if and when they are collected. Thus, the 
vertical range found in this study for the first nested 
spherical structure C1 would probably not change with 
additional deeper sampling but it is possible that such 
sampling might reveal an additional longer-range struc- 
ture. This is because deeper samples are likely to reflect 
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the natural background concentrations of the variables. 
As there are nine heavy metals variables above the 

TCAL, the next step is to assess spatial covariability 
among the variables. One variable can be spatially re- 
lated with another in the sense that its values are spatially 
correlated with the values of the other variable. This in- 
ter-correlation among variables should be included in 
any realistic simulation of pollutant concentrations, es- 
pecially when they are genetically similar, like in this 
case study (all variables are metals). This concept forms 
part of the general principle of coregionalization [22]. 

A tool for studying coregionalizations between two 
regionalized variables  iZ x  and  jZ x  is the 
cross-semivariogram or, more simply, the cross- 
variogram  ij h , which describes the spatial variability 
between  iZ x  and  jZ x  with increasing distance 
between samples. The experimental cross semi-variogram 
(X-ESV) is calculated as follows: 

 

     

 

( )

1

( )

2

ij

n h

i i j jz z z z

n

   








         

h

x x h x x h

h

  (5) 

where  iz x  and  iz  x h  are values of the same 
regionalized variable  iZ x  separated by the vector h, 
and  jz x  and  jz  x h  are values of the same 
regionalized variable  iZ x  separated by the same vec- 
tor h [17]. The cross-variogram is a measure of the vari- 
ability of two variables at the same locations. 

X-ESV is symmetric and can be calculated only for 
the locations where there are values of both variables. In 
this project, the variables under study have not been 
measured in the same way everywhere, so cross- 
variograms can be calculated just in some locations. 
X-ESV can be modeled in the same way as variograms 
using the same types of models. The only inconvenient is 
that cross-variograms must be calculated for every pos- 
sible pair of variables: in particular for this project, nine 
ESVs and 39 cross-variograms must be calculated, mod- 
eled and adjusted to conform to a linear coregionaliza- 
tion model together with direct variograms (ESVs) de- 
fined by the anisotropic structures (same range for all 
ESVs and X-ESVs). The two structures, C0 and C1, fitted 
to each experimental variograms and cross-variogram are 
listed in Tables 5(a) and (b). In these tables the variance 
components of each direct variogram are highlighted. 
The respective eigenvalues are also listed in both of ta- 
bles, because they define the real positive condition of 
this matrix, mandatory constriction for establishing a 
linear coregionalization model. For most X-ESVs the 
two structures are positive and only al pairs where Ni is 
present and some variables pairs where C0 is present 

have negative X-ESVs’ trend. This agrees with the cor- 
relation coefficients shown in Table 4. 

Note that C0 generally contributes significantly more 
than C1 to the total covariance (upper triangle in Table 
5(a)). This randomized background noise may indicate 
that there is a very short-range structure, which is not 
detected by the data because of the sampling configure- 
tion and sampling grid.  

Upper triangle in Table 5(a) provides a quicker way 
of understanding how the random component affects the 
spatial correlation modeled between each pair of vari- 
ables. On average in this case study, the C0 component 
contributes around 50% to the total variability (C0 + C1) 
and sometimes it is the only significant component, e.g. 
for the cross-variograms for Ni-Co, Ni-Zn or Ni-Pb. This 
implies that Ni is not significantly spatially correlated 
with the other variables in the study area, because there 
is almost a complete absence of structure in most of the 
cross-variograms in which it appears. On the other hand, 
Cr, Co, Zn, Pb, which are highly correlated each other, 
and highly spatially correlated too in terms of cross- 
variograms. 

Given the large number of cross-variograms produced, 
only a few examples are given here in Figure 7. Consid- 
ering the pair Zn-Pb, horizontal cross-variograms show 
good structure (Figure 7(b)), even though the anisotropy 
is not so evident. The vertical cross-variogram for the 
same pair shows some structure up to the range of 6m 
(Figure 7(d)). 

Cross-Validation is a back estimation technique for 
testing different variogram models fitted to an ESV and 
X-ESV, providing comparisons between the actual value 
z at each sampled location xi  and the (kriged) esti- 
mated value z*(xi ) . It is a powerful method of valida- 
tion to check the performance of the variogram model for 
kriging [20]. Performing this procedure, the mean stan- 
dard error should ideally be equal to zero, and the stan- 
dard deviation of the estimation errors, when standard- 
ized by dividing by the square root of the kriging vari- 
ance, should be 1.0, that means in the ideal case the error 
distribution tends to be similar to the parameters corre- 
sponding to the standard Gaussian distribution. 

In this project, none of the above conditions were 
theoretically respected. However, the variogram models 
were considered validated after several iterations of 
cross-validation and refining the model parameters. So, 
the variogram parameters entered for the cross-validation 
satisfy the requirements of a linear coregionalization 
model. 

Factors affecting the coregionalization can be related 
to the general geological and hydrological sketches. The 
vertical range of 6m may represent the average thickness 
of Unit 0, i.e. the backfill material. Generally, this mate-      
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Table 5. Matrices of linear coregionalization model fitted and respective eigenvalues: (a) structure C0, or nugget effect (lower 
triangle and first value in diagonal’s cells), and percentage contribution of C0 to the total variance (C0 + C1) for ESV (second 
value in diagonal’s cells) and X-ESV model of each variables pairs (upper triangle; (b) structure C1, sill of spherical structure. 

(a) 

 Cr Co Ni Cu Zn As Pb Cd Sn Eigenvalues 

Cr 
0.2225 
53.7% 

57.3% 76.8% 0.5% 5.7% 16.5% 0.0% 38.0% 34.4% 1.922756918 

Co 0.1910 
0.7005 
68.6% 

100.0% 0.0% 0.0% 39.4% 36.4% 55.6% 2.4% 1.095305648 

Ni 0.2182 0.4609 
0.4784 
45.3% 

78.0% 89.5% 48.3% 86.2% 83.9% 79.7% 0.588625631 

Cu 0.0010 0.0000 –0.2433 
0.6265 
62.9% 

59.3% 48.2% 56.0% 50.3% 56.8% 0.00116294 

Zn 0.0120 0.0000 –0.2212 0.3907 
0.5591 
61.1% 

52.3% 58.8% 25.8% 51.9% 0.259421399 

As 0.0370 0.0769 –0.0660 0.2936 0.2374 
0.3605 
36.4% 

48.7% 49.8% 44.8% 0.083746756 

Pb 0.0000 0.0524 –0.2648 0.3797 0.4194 0.2590 
0.6170 
63.7% 

47.5% 66.4% 0.137065492 

Cd 0.0544 0.0480 –0.0298 0.1262 0.0483 0.1126 0.1422 
0.1912 
66.0% 

71.2% 0.165810723 

Sn 0.0305 0.0006 –0.1463 0.2368 0.1700 0.1078 0.2512 0.1726 
0.7194 
70.4% 

0.221204493 

(b) 

 Cr Co Ni Cu Zn As Pb Cd Sn Eigenvalues 

Cr 0.1915         1.581894138 

Co 0.1422 0.3204        0.594739375 

Ni 0.0658 0.0000 0.5770       0.346543386 

Cu 0.2086 0.1350 –0.0687 0.3691      0.299318159 

Zn 0.2000 0.0549 –0.0260 0.2685 0.3555     0.001359736 

As 0.1871 0.1184 –0.0707 0.3154 0.2167 0.6292    0.024017023 

Pb 0.1796 0.0915 –0.0425 0.2986 0.2939 0.2724 0.3516   0.070723747 

Cd 0.0886 0.0383 –0.0057 0.1248 0.1389 0.1134 0.1572 0.0984  0.063609257 

Sn 0.0582 0.0239 –0.0373 0.1804 0.1575 0.1329 0.1269 0.0697 0.3032 0.213695178 

 
rial comprises industrial waste and is spread almost eve- 
rywhere over the study area to a depth of approximately 
4m. It is, however, unlikely that the metals do not pene- 
trate at least a further two meters below this unit. Fur- 
thermore, lenses of different materials can be detected 
over the entire area at depths of 5 - 6 m. These lenses are 
composed of gravely sand and/or silty sand, inside a 
thicker volume of pebbly gravel. Vertical cross-sections 
in Figure 1) show a succession of three different materi- 
als in the first 6m and three more types of material be- 
tween depths of 6m and 12 m. This should explain the 
generally well-defined 6 m range on the vertical 
variograms and cross-variograms. 

The range of variograms is 130m in the E-W direction 
and 80m in the N-S direction, implying some type of 
geological structure, or succession of levels, which is 
more continuous in the E-W direction than in the N-S 
direction. One possible explanation for the major axis of 
the anisotropy ellipsoid in the E-W direction is related to 
the several lenses of different material included in a lar- 
ger and more homogeneous volume. These lenses could 

be the remainder of meanders of some small tributary 
stream of the Po River, or the residual of a small, local 
alluvial event in the quaternary period rather than a 
stream. There are, however, no indications of a meander 
or channel in the cross-sections provided for this study. 

The major range of anisotropy (E-W) can be related to 
the main flow direction of the stream in this area. Slopes 
tend to decrease from East to West, toward the major 
stream, the Po River. Thus, the tributary streams, the 
meander and the alluvial event tend to be more extended 
in the E-W direction than in the N-S direction. Thus, a 
plausible interpretation of the E-W and N-S ranges is that 
they reflect a quasi-random dispersion of long and rela- 
tively narrow lenses of different material. 

Another explanation could be based on geochemistry 
considerations. The slice histograms (example in Figure 
3) show that there are almost always concentrations are 
extremely high in the first 2 - 3 m and then decrease very 
quickly down to a depth of 5 - 6 m, below which there is 
a relatively low, homogeneous concentration. The vertical 
variogram should reflect this aspect. Indeed the first lags      
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 (a)                                                     (b) 

  

*E–02 

 
(c)                                                     (d) 

Figure 7. Examples of experimental cross-variograms and models for variables pairs: (a) Ni-Sn; (b) Pb-Zn; (c) Cr-Co. Exam-
ple of vertical experimental cross-variograms and models for Pb-Zn variables pairs. 
 
show good correlation up to 6 m, after which spatial cor- 
relation decreases and becomes erratic, implying that 
almost everywhere there are strong relationships between 
the closer samples. 

Moreover, as the coefficient of permeability is quite 
high in the first geological units, the contaminants tend 
to be dispersed along the main groundwater flow direc- 
tion, which is gently sloping from East to West. This 
could explain why the narrow dimension of the anisot- 
ropy ellipse is oriented in the East-West direction. 

3.3. Simulations 

The objective of geostatistical simulation is to provide 
alternate realizations of regionalized variables on any 
specified scale ([17,19,20]). It does not create data but 
provides a possible reality at unsampled locations. Esti- 
mation algorithms tend to smooth the spatial variation of 
a variable; in particular they overestimate small values 
and underestimate large values. This complicates to de- 
tect patterns of extreme high values, for instance metal 
concentrations above TACL. Moreover, the estimation 
smoothing effect is not the same everywhere as it de- 
pends on the data configuration and it will be low for 
dense samples. A smooth interpolator should not be used 

for applications in which the pattern of continuity of ex- 
tremely high values is critical [17]. Geostatistical simula- 
tion can be applied to the assessment of the variability of 
a regionalized variable and the quantification of the un- 
certainty associated with the value of a regionalized var- 
iable sampled at specified locations. 

Once the contaminants of the volume have been simu- 
lated, the volume can be subjected to any number of 
simulated operational activities and it can be used to as- 
sess the likely concentration of a metal above the law 
limit [1]. Moreover, remediation projects can be de- 
signed on the basis of the sampled data and the results 
compared with the simulated “reality” of the variable. 

Following the initial Turning Bands Method many 
other geostatistical simulation techniques have been de- 
veloped [23]. The choice of one method over another is 
based essentially on the application. For this project se- 
quential conditional methods were chosen. These tech- 
niques are easy to implement and provide a simple, ro- 
bust and manageable implementation. The do, however, 
requires a few assumptions [24]. A simulation in which 
the simulated values coincide with the actual data (or 
conditioning) values at the sampled locations is termed a 
conditional simulation and meets the following criteria: 
 They coincide with the actual values at all data loca- 
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tions; 
 They have the same spatial correlations, i.e. the same 

variogram, as the data values; 
 They have the same distribution as the data values; 
 They are coregionalized with other variables in the 

same way as the data. 
 Two different methods of geostatistical simulation 

have been implemented in this project: 
 Correlation correction of univariate Sequential Gaus- 

sian Simulations; 
 Sequential Gaussian Co-Simulations. 

3.3.1. Correlation Correction of Univariate 
Sequential Gaussian Simulations 

Sequential Gaussian Simulation is a direct conditioning 
method of simulation ([23,25]). It is principally a data 
driven technique and is only valid for multi-Gaussian 
random variables. The main steps of the procedure are: 
1) Transform data to standard Gaussian values (condi- 

tioning data); 
2) Calculate the ESV of conditioning normal trans- 

formed data, then fit and validate a model; 
3) Define a random path through all grid points (grid 

nodes) to be simulated; 
4) Choose a simulation grid node and krige the value at 

that point using conditioning data and all previously 
simulated values; 

5) Draw a value for the grid node from a normal distri- 
bution having the estimated kriging value as mean 
and the kriging variance as variance; 

6) Add this point to the conditioning data as a realize- 
tion of the random variable and include it in kriging 
the value at all subsequent grid nodes; 

7) Repeat steps 4 - 7 until all grid nodes have been vis- 
ited; 

8) Take the inverse transform of the Gaussian condi- 

tionally simulated values; 
9) Correlation correction of univariate simulations. 

The basic assumption and the only apparent limitation 
of SGS is that it works with intermediary Gaussian dis- 
tribution. So, the normal transformed variables  iY x  
must follow a multi-Gaussian distribution. As it is im- 
possible to check whether these variables are multi- 
Gaussian, the verification is limited to checking for uni- 
variate and bivariate normality. 

A test for a bi-variate Gaussian distribution can be 
performed by means of h-scatter plots, which plot all the 
pairs of measurements of the same attribute z at locations 
separated by a constant distance h  in a given direction. 
The shape of the cloud of points on the h-scatter plot 
indicates whether there is any correlation between adja- 
cent z values [17]. 

A bi-Gaussian distribution will plot as an approximate 
spherical cloud of points. So, h-scatter plots were plotted 
for three different distances (30 m, 50 m and 80 m) for 
each variable (an example is given in Figure 8 for Zn). 
This visual checking was performed for all variables, and 
in practice all of them satisfy the bivariate normal re- 
quirement, from which it could be conjectured the multi- 
variate Gaussian condition. For each variable, 500 simu-
lations were generated. SGS was used to simulate reali-
zations of regionalized variables at each node of a regu-
lar three-dimensional grid (voxel size: 5 m × 5 m × 1 m; 
No. voxel: 130 × 75 × 22) that included all condi- tioning 
points, i.e. all samples The composited data were used 
for SGS. However this introduces more uncertainty into 
the simulation, because of the isolated shortest sam- ples, 
adjacent unsampled lengths were added to the dataset 
with grades equal to mean grades of each variable. Both 
kriging and variogram model parameters are the same as 
those used to define the linear coregionalization model 
and to do the cross-validation, and they will not bere-
peated here. The only difference is the number of pre- 

 

 
(a)                                         (b)                                       (c) 

Figure 8. H-scatter plots for Zn at (a): 30 m, (b): 50 m, (c): 80 m distances. 
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viously simulated points that must be used in kriging 
each new simulation grid node. This number was set 
equal to the maximum number of conditioning data to be 
used in kriging within the imposed search radius. 

After simulating, a back transform to the original 
sample space was automatically performed. The linear 
extrapolation method was used to deal with the upper 
and lower tails of the Gaussian distribution, i.e. it was 
assumed that the values in the lower and upper tails fol- 
low a uniform distribution [10]. As the simulation was 
done for blocks, the volume has been sliced for visual- 
izeing the simulation before validating it. For instance, 
comparing the map in Figure 9 with the row sampled As 
data, it is obvious that the higher data and simulated val-
ues are in roughly the same position. 

However, the common way of validating simulation 
results is via descriptive statistics and the spatial varia- 
tion of the simulated values in comparison to the condi- 
tioning data. Descriptive statistics, frequency distribution, 
normal-probability plot, and variograms have been cal- 
culated for all variables. The frequency distributions of 
the back-transformed simulated values for all variables 
reproduce the raw data histograms, although the former 
are slightly less variable than the latter. The nor- 
mal-probability plots of the Gaussian simulated values 
reproduces that of the normal transformed conditioning 
data. As the variogram modeling was done in the Gaus- 
sian space, the variograms were validated by comparing 
the ESV of the simulated normal scores values with the 
(input) variogram models fitted to the normal trans- 
formed conditioning data. By way of example, Figure 10 
shows the validation for As variable, three different uni- 
variate simulations and the spherical model deriving 
from the linear model of coregionalization for the EW, 
NS and vertical directions are shown. The reproduction 
of the variograms is satisfactory in the three major direc- 
tions of the space. In general the ESV for all simulated 
variables tends to show a higher nugget variance and a 
slightly longer range than the corresponding parameters 
of the specified model. This could be caused by the 
 

 

Figure 9. Example of three-dimensional SGS result for AS 
(legend unit: mg/kg): horizontal cross-section at 3 m below 
the surface. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Simulation results of As ESV and imposed va- 
riogram model for: (a) EW direction; (b) NS direction; (c) 
vertical direction. 
 
presence of the extremely high values in the shallower 
levels, surrounded by low values. SGS is a data driven 
method and any structure implicit in the data will tend to 
enforce precedence over the specified model. In terms of 
the variograms the simulations are deemed acceptable. 
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Correlation correction method simplifies the co-simu- 
lation by using directly the univariate SGS results to in- 
troduce correlation among the simulated values. In a 
multivariate Gaussian context, if all covariances are 
proportional, the co-simulation by parallel simulations 
combines the variables linearly to impose specified cor- 
relations among them [20]. 

Multivariate datasets are common in environmental 
applications and generally these variables are negatively 
or positively correlated. The “Variable Correlation Cor- 
rection” module of GeostatWin software [10] allowed 
to impose the specified correlations on the independently 
simulated variables. The only limitation of this software 
is that it can handle a maximum of five variables and so 
the most highly correlated variables were chosen, i.e. Cr, 
Zn, As, Pb, and Sn. 

The variable correlation correction procedure can be 
applied to both generic simulated variables and corre- 
lated simulated variables. However, univariate simula- 
tions performed by SGS are not correlated before im- 
posing this correlation correction. The correlation coeffi- 
cients of the back-transformed simulated values are less 
than 0.1, so there is not “a priori” correlation (Table 6). 

The correction was made by imposing the correlation 
coefficients of the raw conditioning data and performed 
in the Gaussian space, and than back-transformed to the 
sample data space. 

The correlation correction simulations reproduce the 
conditioning distribution although the former is slightly 
smoother than the latter. From the variography these 
corrected simulations display higher spatial variability 
than the uncorrected simulations. By way of example, 
variograms for the corrected simulations of lead and zinc 
are shown in Figure 11, from which it can be seen that 
the directional variogram models are consistently lower 
in all directions, especially for the vertical direction. 
Furthermore, the ranges of corrected simulated values 
are generally shorter than those of the linear coregion- 
alization model. 

Comparing these variograms with those of the uncork- 
rected SGS (Figure 10) it is evident that the latter pro- 

 
Table 6. Correlation coefficient for back-transformed simu- 
lated values of five variables to be corrected. 

 Cr Zn As Pb Sn

Cr 1     

Zn 0.0597 1    

As 0.1819 0.1007 1   

Pb 0.0459 0.0262 0.0500 1  

Sn 0.0950 0.0829 0.0885 0.0221 1

 
(a) 

 
(b) 

Figure 11. ESVs of simulation managed by correlation cor- 
rection: (a) lead; (b) zinc. 

 
duce better results in terms of spatial variability (better 
fitting) so the correction increased the simulation effi- 
ciency. 

3.3.2. Sequential Gaussian Co-Simulation (SGCOS) 

SGCOS is essentially a direct conditioning method of 
simulation which takes into account the spatial correla- 
tion among a set of regionalized variables by using the 
parameters of a linear coregionalization model [21]. It is 
essentially a data driven technique valid for multi-Gaus- 
sian random variables and is very similar to SGS, except 
that kriging is replaced by cokriging for estimating any 
single node to be simulated. The draw- backs for this 
method is the difficult in finding the same range of ani- 
sotropies, the significant increasing in com- puting time 
over SGS, and it is more effective for two or three vari- 
ables and a relatively small dataset [10]. This step of the 
project was conducted in the Gaussian space using the 
Geovariance ISATIS software [26]. 

For each variable, five co-simulations were generated. 
As performed for SGS simulations, also the co-simua- 
tions were validated by comparing the frequency distri- 
butions of simulated values with those of the normal 
transformed conditioning data for all variables together 
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with the normal-probability plots. The simulated values 
respect the distributions of the actual values, although the 
former are slightly smoother than the latter. 

Spatial structures were validated by comparing the 
variograms and cross-variograms of the co-simulated 
values with those of the conditioning data. By way of 
example, Figure 12 shows two direct variograms and 
two cross-variograms. These are just an example of the 
total of nine direct variograms and 36 cross-variograms 
produced for the linear coregionalization model estab- 
lished among the heavy metals variables. Note also that 
these variograms relate to only one simulation. Five hun-
dreds simulations were generated and a complete valida-
tion would include variogram and cross-variogram syn-
optic comparisons for all simulations. 

The horizontal direct variograms (Figure 12(a) and (b)) 

reproduce the linear coregionalization model quite well. 
The ESVs of co-simulated values have generally higher 
nugget variance, but they have the same ranges and sill 
values of the linear coregionalization model of the condi-
tioning data. For the vertical direction the direct ESVs 
for each variable are differ from the theoretical coregion-
alization model, but tend to have the same range. 

Almost every cross-variogram between tin and any 
other variable does not match the coregionalization model. 
Low cross-correlation is also shown for nickel and arse-
nic. On the other hand the cross-variograms for cobalt 
and all other variables reproduce the coregionalization 
model. 

In conclusion, SGCOS (an example is shown in Fig- 
ure 13) can improve the simulation of high statistically 
and spatially correlated regionalized variables but for 

 

      
(a)                                                   (b) 

      
(c)                                                   (d) 

Figure 12. Example of direct variograms and cross-variograms (thin lines) and respective models (thick lines) for 
co-simulated values, together with the boundary of positive definition of the model (dashed lines).     
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moderate to low correlations the co-simulation procedure 
does not improve the results regarding to the correlation 
correction of univariate simulations. 

4. Risk Analysis 

Risk is a measure of the probability and severity of ad- 
verse or unexpected effects, whereas safety is the degree 
to which risks are judged acceptable. Risks can be dis- 
tributed over part of a population or over geographical 
areas and these distributions may be more important than 
the magnitude of the risk itself [1]. Diffuse risks of con- 
tamination by inorganic compounds slightly above ac- 
ceptable limits, but over large areas, may affect the po- 
pulation more than rare high concentrations in local- ized 
zones. The acceptability of risk is determined for a par-
ticular area by technical considerations and/or politi- cal 
law on the basis of quantified risk. 

A percentage of risk is always present and cannot be 
removed. So, the best way of dealing with the risk is to 
reduce it to the minimum by identifying, assessing and 
identifying the risk, determining the minimum acceptable 
level of risk, reducing the risk to the minimum and, fi- 

nally, managing the residual risk [1]. 
In general, realistic quantification of risk requires 

adequate models of the processes causing risk. The ac- 
ceptability of risk is determined by risk-benefit analyses, 
i.e. by analyzing whether the benefit is worth the residual 
risk. In the case of a contaminated site, this benefit could 
be measured by the cost of a remediation project in rela- 
tion to the further industrial use of the site. The benefit 
depends on whether the site is used as a new comer- 
cial/industrial site, rather than new urbanization area. For 
the latter case the decision-maker must take into account 
more restrictive parameters in risk-benefit analysis. 

Ultimately, quantified risk analysis requires an esti- 
mate of the likelihood of an event occurring. This quan- 
tification can be done by geostatistical simulation for a 
given variable over a studied volume. Risk can be as- 
-sessed by repeating simulations and generating additional 
images of possible realities. The greater the number of 
simulations is, the more accurate the risk quantification 
will be. A curve showing the concentration (grade) and 
tonnage of a particular contaminant is a simple way of 
assessing the probability that the contaminant will ex-
ceed acceptable limits. A realistic risk analysis must be 

 

 

Figure 13. Three-dimensional representation of the mean of 500 SGCOS results for Cd variable (color ramp) and standard 
deviation for simulation (isolines). 
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based on block tonnages and grades estimated from the 
‘sample’ obtained by ‘drilling’ the simulated volume to 
be subjected to remediation [1]. 

Risk quantification in the form of contaminant con- 
centration/grade-tonnage curves (G-T curves) is critical 
for capital investment in mining and environmental pro- 
jects and can be obtained through geostatistical simula- 
tions of the studied volume [27]. 

These curves display simultaneously the tonnage of 
terrain above a particular threshold grade and the average 
concentration of the contaminant above that threshold (or 
cut-off). In practice, G-T curves provide a means of de- 
termining how much of the population is likely to lie 
above or below a threshold value, i.e. the acceptable 
concentration limit. In addition it provides the average 
grade of the material above the threshold value [28]. For 
instance, if soil below the legal limit is ignored, the av- 
erage value of the remaining soil volume will be higher 
than the original average of the population. 

G-T curves are normally derived from estimated val- 
ues, i.e. by some type of kriging interpolator. In this pro- 
ject these curves are based on simulated correlation cor- 
rection simulations as well as on the co-simulated reali- 
zation of inorganic compounds (Figure 14). For each 
graph, a given cut-off grade is drawn (example in), equal 
to the TACL fixed by environmental Italian Authorities 
[14]. 

SGCOS results for chromium do not agree with those 
generated by the correlation correction simulation. In the 
former there are less 0.01 million tons of contaminated 
soil with mean grade of around 1400 mg/kg at a TACL 
of 800 mg/kg. Moreover these values are confirmed for 
every co-simulation performed For cobalt more than 99% 
of the blocks have grades less than a TACL of 250 mg/kg. 
There are about 0.002 - 0.003 million tons of contami- 
nated soil with mean grades of lead of around 17000 
mg/kg above its cut-off grade (.D). For arsenic, there are 
less than 0.001 million tons of contaminated soil with a 
mean concentration of 80 mg/kg at the TACL threshold. 

5. Conclusions 

Environmental risk in this contaminated site arises from 
the presence of several pollutants and from the uncer- 
tainty in estimating their concentrations, extents and tra- 
jectories. This uncertainty arises essentially from the im- 
possibility of measuring all possible values of pollut- 
ants within a volume, but only a few samples are avail- 
able. The preliminary reclamation project proposed both 
remediation procedures and recommendations on the 
basis of a groundwater study. This work provides an al- 
ternative way of studying pollutant concentrations in 
terrain by assessing the spatial uncertainty and using it as 

the basis for a risk analysis. 
Assessment of spatial uncertainty was performed by 

means of geostatistical simulation of realizations of the 
random variables conditioned by the data values. Given 
the significant number of variables, an extensive multi- 
variate study was performed to assess spatial correlation 
and cross-correlation (linear model of coregionalization). 
The most demanding task in terms of time spent was in 
establishing a valid linear coregionalization model. The 
erratic nature of many of the experimental variograms 
and cross-variograms resulted in a range of possible 
models. 

Geostatistical simulation is particularly useful when 
data are sparse and variability is erratic. This project is 
an example of this condition. However, because of their 
sparse and discontinuous nature, the data were processed 
and partially modified to make them suitable for geosta- 
tistical calculations. 

Different conditional simulation methods, both uni- 
variate and multivariate, were used. Univariate sequen- 
tial Gaussian simulation provides good results for simu- 
lating some of the regionalized variables (nearly half the 
total number of variables). Variograms of the simulated 
realizations of those variables demonstrate the same spa- 
tial variability as that of the original data. For the other 
variables, however, the variograms of the simulated val- 
ues do not reproduce the characteristics of spatial vari- 
ability found for the original samples. 

Thus, these univariate simulations were considered 
together and simulated values were corrected on the ba- 
sis of the correlation coefficients among the variables. 
This correction was applied to a subset of the simulated 
values to provide the basis for a comparison with the 
output from a complete co-simulation. This affected the 
simulation output especially by increasing variability in 
the vertical direction, probably because the range was 
comparable with the vertical size of the simulated grid. 
However, horizontal variograms of the simulated values 
adequately reproduce the variograms of the conditioning 
data for most variables. The correlation correction of the 
simulated variables thus improves the simulation output 
for relatively highly correlated variables. The great ad- 
vantages of this method are its simplicity and rapid 
computation. 

Finally a complete co-simulation was performed by 
using SGCOS. The results are similar to those obtained 
by correcting the correlation between univariate simula- 
tions. In fact, all direct variograms of the original data 
are reproduced and the cross-variograms between simu- 
lated values are adequate reflections of those of the 
original data. 

Finally, this study can be taken as the basis for a com- 
plete risk assessment for further complete remediation        
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(a)                                                   (b) 

   
(c)                                                   (d) 

Figure 14. G-T curves for five different SGCOS of: a) Cr; (b) Co; (c) As; (d) Pb. 
 
projects, in parallel with a numerical model of contami- 
nant transport in groundwater. 

The main issues in this project were related to the na- 
ture of the data set. The boreholes are on an irregular 
sampling grid and there are very few samples in each 
borehole. Moreover, the lengths of the boreholes vary 
from 5 m to 20 m, the lengths of cores vary from 0.1m to 
1.0 m) and sampling within a borehole is often discon- 
tinuous. The usual approach is to recomposite the sam- 
ples to approximately the same length but the discon- 
tinuous nature of much of the sampling made this diffi- 
cult.  

The systematic nature of this discontinuous, small- 
scale sampling towards the bottom of the wells at, more 
or less, the same depth, indicates a logical reason for 
sampling in this way. In most applications the choice of a 
significantly smaller sample size indicates a significant 
increase in the variability of the variable being measured, 
which in turn implies an increase in the mean value of 
the variable (a proportional effect is present). This inter-
pretation is borne out by the nickel grades for which 

there is a significant increase in the mean grade of the 
small (10 - 20 cm) samples collected at depths below 7.4 
m. The mean grades of all other variables measured in 
these small-scale samples below 7.4 m are, however, 
lower than the mean grades of samples above 7.4 m. 
There are at least two possible reasons that could be ad-
vanced for the small scale sampling. The simpler, opera-
tional, reason is budgetary restrictions. This seems un- 
likely because the holes were sampled at different times 
and the small-scale samples are always below the 7.4m 
deep. The more complex, and more interesting, reason 
relates directly to the variable (s) and the geology of the 
subsurface. There may be a change in structure, or sim-
ply a change in porosity and/or permeability at, or 
around, 7.4 m that causes some of the pollutants (in par-
ticular, nickel) to accumulate in small intervals. Alterna-
tively, there may be a natural nickel anomaly below a 
depth of 7.4 m. Whilst the reasons for this small-scale, 
discontinuous sampling are, at present, unknown, the 
nickel grades of the samples are significant and must be 
included in the study. 
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Finally, it would be advisable to perform further sam- 
pling based on the simulation results obtained. The 
sparse data, especially in the vertical direction, affected 
the results of the simulations, in particular for the corre- 
lation correction simulations. More continuous and 
denser sampling undertaken in a few new boreholes 
could significantly improve the simulation results. 
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