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ABSTRACT 
 
In this paper, a rank-one updated method for solving symmetric nonlinear equations is proposed. This 
method possesses some features: 1) The updated matrix is positive definite whatever line search technique is 
used; 2) The search direction is descent for the norm function; 3) The global convergence of the given 
method is established under reasonable conditions. Numerical results show that the presented method is in-
teresting. 
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1.  Introduction 
 
Consider the following system of nonlinear equations: 

( ) 0, ,nF x x R                (1) 

where F:Rn→Rn is continuously differentiable and the 
Jacobian ▽F(x) of F(x) is symmetric for all x∈Rn. Let 
θ(x) be the norm function defined by  

21
( ) ( )

2
x F x    

then the nonlinear Equation (1) is equivalent to the fol-
lowing global optimization problem  

min ( ), nx x R                (2) 

The following iterative method is used for solving (1) 

kkkk dxx 1             (3) 

where xk is the current iterative point, dk is a search di-
rection, and ak is a positive step-size. 

It is well known that there are many methods [1–9] for 
the unconstrained optimization problems  

min ( )( )nx R
f x UP


 , 

where the BFGS method is  one of the most effective 
quasi-Newton methods [10–17]. These years, lots of 
modified BFGS methods (see [18–23]) have been pro-
posed for UP. Different from their techniques, Xu [24] 
presented a rank-one fitting algorithm for UP and the 

numerical examples are very interesting. Motivated by 
their idea, we give a new rank-one fitting algorithm for 
(1) which possesses the global convergence, the method 
can ensure that the updated matrices are positive definite 
without carrying out any line search, the search direction 
is descent for the normal function, and the numerical 
results is more competitive than those of the BFGS 
method for the test problem. 

For nonlinear equations, the global convergence is due 
to Griewank [25] for Broyden’s rank one method. Fan 
[1], Yuan [26], Yuan, Lu andWei [27], and Zhang [28] 
presented the trust region algorithms for nonlinear equa-
tions. Zhu [29] gave a family of nonmonotone back-
tracking inexact quasi-Newton algorithms for solving 
smooth nonlinear equations. In particular, a Gauss- 
Newton-based BFGS method is proposed by Li and Fu-
kushima [30] for solving symmetric nonlinear equations, 
and the modified methods [31,32] are studied. 

The line search rules play an important role for solving 
the optimization problems. In the following, we briefly 
review some line search technique to obtain the stepsize 
ak. 

Brown and Saad [33] proposed the following line 
search method: 

( ) ( ) ( )T
k k k k k k kx d x x        d

k

    (4) 

where 

( ) ( ) ( )T T
k k kx d F x F x d  

(0,1), , (0,1)ki
k r r   

, 
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k

[29] gave the nonmonotone line search technique: 

( )( ) ( ) ( )T
k k k l k k kx d x x        d

,m

 

( ) 0 ( )( ) max { ( )}, (0) 0

( ) min{ ( 1), }, 1

l k j m k k jx x

m k m k M k

    

  
 

and M is a nonnegative integer. Yuan and Lu [32] pre-
sented a new backtracking inexact technique to obtain 
the stepsize ak: 

2 2
( ) ( ) ( )T

k k k k k k kF x d F x F x d           (5) 

where δ∈(0,1) is a constant, and dk is a solution of the 
system of linear Equation (9). Li and Fukashima [11] 
give a line search technique to determine a positive 
step-size ak satisfying 

2 2

2 2

1 2

( ) ( )

( ) ( )

k k k k

k k k k k k

F x d F x

F x d F x



    

 

   2
        (6) 

where δ1 andδ2 are positive constants, and {εk} is a 
positive sequence such that 

0
k

k






                  (7) 

The Formula (7) means that {F(xk)} is approximately 
norm descent when k is sufficiently large. Gu, Li, Qi, 
and Zhou [14] presented a descent line search technique 
as follows 

2 2

2

1 2

( ) (

( )

k k k k

k k k k

F x d F x
2

)

F x d



   

 

 
                   (8) 

whereδ1 andδ2 are positive constants. In this paper, we 
also use the Formula (8) as line search to find the 
step-size ak: 

The search direction dk: play a main role in line search 
methods for solving optimization problems too, and dk: is 
a solution of the system of linear equation  

( ) 0k k kB d F x                 (9) 

where Bk is often generated by BFGS update formula 

1

T T
k k k k k k

k k T T
k k k k k

y y B s s B
B B

y s s B s             (10) 

where  

1k ky g g  k k and 1k ks x x   Is there another 

way to determine the update formula? Accordingly the 
search direction dk is determined by the way. In this pa-
per, the updated matrix Bk is generated by the following 
rank-one updated formula 

1
T T

k k kB B v v   k                (11) 

1 1

T
k k k k

k k T
k k k

H v v H
H H

v B v  


           (12) 

where, as k = 0, B0 is the given symmetric positive defi-
nite matrix,  

1
kB H  k  and 0 0( ),k k kv F x     

is a positive constant. Then we use the following formula 
to get the search direction,  

1( )k kB d q 0                 (13) 

1
1

1

( )
( ) k k k k

k
k

( )F x F F x
q










 
        (14) 

Bk follows (11), ak-1 is the steplength used at the pre-
vious iteration, and the Equation (14) is inspired by [34]. 

Throughout the paper, we use these notations: . is the 

Euclidean norm, and F(xk) and F(xk+1) are replaced by Fk 
and Fk-1, respectively. 

This paper is organized as follows. In the next section, 
the algorithm is stated. The global convergence conver-
gence is established in Section 3. The numerical results 
are reported in Section 4. 
 
2.  Algorithm 
 
In this section, we state our new algorithm based on 
Formulas (3), (8), (11), (12) and (13) for solving (1). 
 

Rank-One Updated Algorithm (ROUA). 
Step 0: Choose an initial point x0∈Rn constants 

,0,1,,0),1,0( 1210  r
  

symmetric positive definite matrices B0 and B0
-1=H0 . Let: 

k = 0; 
Step 1: If ( ) 0kF x  , stop. Otherwise, solving lin-

ear Equation (13) to get dk;  
Step 2: Find ak is the largest number of {1,r,r2,…} 

such that (8); 
Step 3: Let the next iterative point be xk+1= xk+akdk; 
Step 4: Update Bk+1 and Hk+1 by the Formulas (11) and 

(12) respectively; 
Step 5: Set k: = k + 1. Go to Step 1. 
In this paper, we also give the normal BFGS method 

for solving (1), the algorithm which has the same condi-
tions to ROUA is stated as follows. 

 
BFGS Algorithm(BFGSA). 
In ROUA, the Step 4 is replaced by: Update Bk+1 by 

the Formula (10). 
Remark 1. a) By the Step 0 of ROUA, there should 

exist constants λ1≥λ0＞0 such that 

2 2

1 0

2 2

0 1

,

1 1
,

T
k

T n
k

d d B d d

d d H d d d R

 

 

 

   
           (15) 
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b) By the Step 4 of ROUA, it is easy to deduce that the 
updated matrices are symmetric 
 
3.  Convergence Analysis 
 
This section will establish the global convergence for 
ROUA. Let Ω be the level set defined by 

0{ | ( ) ( ) }x F x F x             (16) 

In order to establish the global convergence of ROUA, 
the following assumptions are needed [30,34,35]. 

 
Assumption A 1) F is continuously differentiable on 

an open convex set Ω1 containing Ω. 2) The Jacobian of 
F is symmetric, bounded and uniformly nonsingular on 
Ω1, i.e., there exist constants M≥m＞0 such that 

1( ) ,F x M x               (17) 

and 

1( ) , , nF x d m d x d R           (18) 

Remark Assumption A 2) implies that 

1( ) , , nM d F x d m d x d      R       (19) 

19 ) ( ) , ,M x y F x F y m x y x y         (20) 

In particular, for all x∈Ω1, we have 

* *( ) ( ) ( ) *M x x F x F x F x m x x        (21) 

where x* stand for the unique solution of (1) in Ω1. 
 

Lemma 3.1 Let Assumption A hold. Consider ROUA. 
Then for any d∈Rn, then there exist constants m0 such 
that 

2

0 ,T n
kd B d m d d R             (22) 

i.e., the matrix Bk is positive for all k. 
 

Proof. By ROUA, we know that the initial matrix B0 
is symmetric positive, and then we have (15). Using (11), 
for k≥1, we have 

1

2

1

2

1 0

T T T T
k k k k

T T
k k

T T
k

d B d d B d d v v d

d B d d v

d B d d B d d







 

 

    0

              (23) 

Let m0=λ0. Then we get (22). The proof is complete. 
Since Bk is positive definite, then dk which is deter-

mined by (13) has the unique solution. The following 
lemma can found in [34], here we also give the process 
of this proof. 

 
Lemma 3.2 Let Assumption A hold. If xk is not a sta-

tionary point of (2), then there exists a constant a'＞0 
depending on k such that when ak-1∈(0, a'), the unique 
solution d(ak-1) of (13) such that 

1( ) ( ) 0T
k kx d               (24) 

Moreover, inequality 
2 2

1 1

2

1 1 1 2 1

( ( )) ( )

( ) ( )

k k k k

k k k k

F x d F x

d F

 

    

 

  

 

   2
x

)kx

k

k

           (25) 

 
Proof. By (14), we can deduce that 

1

1
0

( ) ( ) (lim
k

k kq F x F








                    (26) 

From (13), we get 

1

1

1
0

1
1

0

1

( ) ( )

( ). ( ) ( )

( ). ( ) ( ) ( )

lim

lim
k

k

T
k k

T
k k k k

T
k k k k

x d

F x F x B q

F x F x B F x F x





 





















  

   

        (27) 

Since xk is not a stationary point of (2), we have ▽
F(xk)F(xk)≠0. By ▽F(xk) is symmetric and Bk is posi-
tive. We obtain (24). 

1

1

2 2

1 1

0 1

1
0

1

( ( )) ( )

2 ( ) ( )

2 ( ). ( ) ( ) ( ) 0

lim

lim
k

k

k k k k

k

T
k k

T
k k k k k

F x d F x

x d

F x F x B F x F x





 


 







 

 






 

 

    

 

However, the right hand side of (25) is O(ak-1). Thus, 
inequality (25) holds for all ak-1＞0 sufficiently small. 
The proof is complete. 

The above lemma shows that line search technique (8) 
is reasonable, and the given algorithm is well defined. 
Lemma 3.2 also shows that the sequence {θ(xk)} is 
strictly decreasing. By Lemma 3.2, it is not difficult to 
get the following lemma. 

 
Lemma 3.3 Let {xk} be generated by ROUA. Con-

sider the line search (8). Then {xk}∈Ω moreover, 
{ ( ) }kF x  converges. 

 
Lemma 3.4 Let Assumption A hold and  

, 1{ , , }k k k kd x F    

be generated by ROUA. Then we have 
2

0
k k

k

F




                (28) 

and 
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2

0
k k

k

d




                (29) 

Proof. By the line search (8), we get 
2 2

1 1 1 2 1

2 2

1

( ) ( )k k k k

k k

d F

F F

      





 

x
             (30) 

Summing these inequalities (30) for k from 0 to ∞ we 
obtain (28) and (29). Then we complete the proof of this 
Lemma. 

 
Lemma 3.5 Let Assumption A hold. Consider ROUA. 

Then { }kB  converges, for all k and any d∈Rn then 

there exist constants m0 and M0 such that 
2

0 ,T n
kd B d M d d R            (31) 

and 

2 2

0 0

1 1
,T n

kd d H d d d R
M m

              (32) 

which mean that the updated matrices are all positive by 
ROUA. 
 
Proof. By the updated Formula (11), we have 

2

1

22
0

2
2

0 0
0

T
k k k k k

k k k

k

i i
i

B B v v B v

B F

B F

 

 





   

 

  

k

              (33) 

By (28), we know that  
2

0

k

i i
i

F

  

is convergent. Then we can deduce that { kB }  is con-

vergent. So there exists a constant M0 such that 

0kB M  for all k             (34) 

Accordingly, we get (28). By (32), (31), and the Re-
mark 1(b), we can deduce that the updated matrices are 
all symmetric and positive. Consider 1

k kH B  we ob-

tain (32) immediately. So, we complete the lemma. 
By (32), (31), and (34), we have 

1 0
0

1
( ) , ( )k k k k k k k kq B d M d d q

m
     1 (35) 

Now we establish the global convergence theorem of 
ROUA. 

 
Theorem 3.1 Let Assumption A hold and 

, 1{ , , }k k k kd x F   be generated by ROUA. Then the se-

quence {xk} converges to the unique solution x* of (1) in 

sense of 

0lim k
k

F


                 (36) 

Proof. By Lemma 3.3, we know that { k }F  con-

verges. By Lemma 3.4, we get 

0lim k k
k

F


               (37) 

then, we have 

0lim k
k

F


                (38) 

or 

0lim k
k




                (39) 

Therefore, we only discuss the case of (38). In this 
case, for all k sufficiently large and  

' k
k r


    

by (8), we obtain 
2 2

2

1 2

( ' ( )

( )

k k k k

k k k k

F x d F x

F x d



   

 

  
               (40) 

By Lemma 3.3, we know that {xk}∈Ω is bounded, 
considering (35), it is easy to deduce that {qk(ak-1) and 
{dk} are bounded. Let {xk} and {dk(a)} converge to x* 
and dx*, respectively. Then we have  

*
1( ) (lim k k

k

q  


  )x           (41) 

Let both sides of (40) be divided by ak' and take limits 
as k→∞ we obtain  

* *( ) 0Tx d                (42) 

By (31) and (13), we have 

1

2

0 1

0 (

( )

T T
k k k k k k

T
k k k

d B d q d

m d q d








 

 

)

k

                  (43) 

As k→∞ taking limits in both of (43) yields 
2* *

0( )T
kx d m d    

This together with (42) implies d*=0. From (35), we 
have 

1( )lim k k
k

q  


0   

which together with (41), we obtain 
*( ) 0x               (44) 

By * *( ) ( ) ( )*x F x F x    and using *( )F x  is 

nonsingular, we have . This implies (36). The 

proof is complete. 

*( )F x  0



A RANK-ONE FITTING METHOD WITH DESCENT DIRECTION FOR                              
SOLVING SYMMECTRIC NONLINEAR EQUATIONS 

 

Copyright © 2009 SciRes.                                                                                IJCNS 

559

 
Table 1. Test results for ROUA. 

 
x0 (5,5,…,5) (20,20,…,20) (–20,…, –20) (–60, –60,…, –60) (–100,…, –100) 

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF 

n=10 40/121/8.132565e-007 43/130/8.142272e-007 43/130/8.143256e-007 45/136/9.711997e-007 47/142/6.423242e-007

n=40 43/130/7.823362e-007 46/139/8.163385e-007 46/139/8.163465e-007 49/148/6.389598e-007 50/151/6.806303e-007

n=100 44/133/8.517388e-007 47/142/8.916340e-007 47/142/8.916354e-007 50/151/7.002112e-007 51/154/7.468255e-007

n=500 46/139/8.076481e-007 49/148/8.467259e-007 49/148/8.467260e-007 52/157/6.664491e-007 53/160/7.124612e-007

n=1000 47/142/7.340784e-007 50/151/7.698173e-007 50/151/7.698173e-007 52/157/9.480059e-007 54/163/6.502176e-007

x0 (5,0, 5,0,…) (20, 0, 20, 0…) (–20, 0, –20, 0…) (–60, 0, –60, 0…) (–100,0,–100,0…) 

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF 

n=10 39/118/6.440181e-007 42/127/6.456963e-007 42/127/6.458627e-007 44/133/7.690322e-007 45/136/8.088567e-007

n=40 41/124/9.581725e-007 44/133/9.998342e-007 44/133/9.998539e-007 47/142/7.823915e-007 48/145/8.333429e-007

n=100 43/130/6.657874e-007 46/139/6.969606e-007 46/139/6.969629e-007 48/145/8.555192e-007 49/148/9.121694e-007

n=500 44/133/9.861003e-007 48/145/6.615057e-007 48/145/6.615058e-007 50/151/8.129150e-007 51/154/8.675076e-007

n=1000 45/136/8.961735e-007 48/145/9.396191e-007 48/145/9.396192e-007 51/154/7.392479e-007 52/157/7.893927e-007

x0 (5, –5, 5, –5…) (20, –20, 20, –20…) (–20, 20, –20, 20…) (–20, 20, –20, 20…) (–100, 100…) 

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF 

n=10 30/91/8.710675e-007 33/100/7.545800e-007 33/100/7.545800e-007 35/106/8.150523e-007 36/109/8.146625e-007

n=40 31/94/8.893379e-007 34/103/8.687998e-007 34/103/8.687998e-007 37/112/6.403068e-007 38/115/6.691432e-007

n=100 31/94/8.918405e-007 34/103/8.713106e-007 34/103/8.713106e-007 37/112/6.423164e-007 38/115/6.713147e-007

n=500 31/94/8.923155e-007 34/103/8.717867e-007 34/103/8.717867e-007 37/112/6.426974e-007 38/115/6.717265e-007

n=1000 31/94/8.923306e-007 34/103/8.718018e-007 34/103/8.718018e-007 37/112/6.427095e-007 38/115/6.717395e-007

 
Table 2. Test results for BFGSA. 

 
x0 (5,5,…,5) (20,20,…,20) (–20,…, –20) (–60, –60,…, –60) (–100,…, –100) 

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF 

n=10 26/62/4.019133e-007 28/67/7.629739e-007 26/62/7.836022e-007 28/67/7.942352e-007 29/69/8.843658e-007 

n=40 53/141/8.955174e-007 56/151/9.298740e-007 54/145/7.883733e-007 57/152/9.506096e-007 61/162/6.146640e-007

n=100 89/247/6.293858e-007 93/258/6.009680e-007 95/263/4.620386e-007 95/263/4.877714e-007 103/283/6.719347e-007

n=500 121/347/9.502010e-007 129/371/9.550139e-007 129/371/9.550162e-007 136/391/9.229412e-007 140/402/8.368401e-007

n=1000 122/350/9.130277e-007 131/376/8.492495e-007 131/376/8.492495e-007 137/393/9.697413e-007 141/404/9.845929e-007

x0 (5,0, 5,0,…) (20, 0, 20, 0…) (–20, 0, –20, 0…) (–60, 0, –60, 0…) (–100,0,–100,0…) 

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF 

n=10 29/70/5.384995e-007 30/72/8.024920e-007 30/72/8.022076e-007 31/74/7.737379e-007 32/76/6.247863e-007 

n=40 72/198/5.245237e-007 74/203/5.317215e-007 74/203/5.325755e-007 75/205/6.538916e-007 75/204/9.700355e-007

n=100 110/313/8.802791e-007 118/336/9.964184e-007 118/336/9.966396e-007 125/357/9.676773e-007 128/366/8.655033e-007

n=500 116/332/9.424860e-007 126/360/9.585718e-007 126/360/9.586065e-007 133/380/9.648650e-007 136/389/9.324697e-007

n=1000 113/325/8.970304e-007 122/351/8.659330e-007 122/351/8.659334e-007 129/371/8.270087e-007 132/380/8.530508e-007

x0 (5, –5, 5, –5…) (20, –20, 20, –20…) (–20, 20, –20, 20…) (–20, 20, –20, 20…) (–100, 100…) 

Dim NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF NI/NG/GF 

n=10 29/71/5.110057e-007 28/69/4.091687e-007 28/69/4.091687e-007 29/70/7.916413e-007 28/68/7.221453e-007 

n=40 68/183/9.825927e-007 69/188/5.723010e-007 69/188/5.722966e-007 69/185/9.294491e-007 69/189/8.093485e-007

n=100 87/239/7.675976e-007 92/254/9.416435e-007 92/254/9.413503e-007 92/255/9.920299e-007 98/269/9.349510e-007

n=500 98/281/9.381734e-007 106/304/9.843192e-007 106/304/9.843192e-007 113/324/9.911432e-007 116/333/9.971433e-007

n=1000 98/281/9.925145e-007 107/307/9.345099e-007 107/307/9.345099e-007 113/325/9.830913e-007 117/336/8.588496e-007
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4.  Numerical Results 
 
In this section, we report results of some preliminary 
numerical experiments with ROUA. Problem. The dis-
cretized two-point boundary value problem is similar to 
the problem in [36] 

2

1
( ) ( )

( 1)
F x Ax T x

n
 


 

where A is the n×n tridiagonal matrix given by 

8 1

1 8 1

1 8 1

1

1 8

A

 
   
  

  
 
 
 

  

  

 

 

and  
))(,),(),(()( 21 xTxTxTxT n

 
with In the experiments, .,,2,1,1sin)( nixxT ii 
the parameters in ROUA were chosen as 0.1r  ，

. The program was coded in MATLAB 

Subsection 6.5.1. We stopped the iteration when the con-
dition 

4
0 1 2 10     

60( ) 1F x   was satisfied. 

The columns of the tables have the following mean-
ing: 

Dim: the dimension of the problem. 
NI: the total number of iterations. 
NG: the number of the function evaluations. 
GF: the function norm evaluations. 
In the next table, the numerical results are to test 

ROUA. 
In the Table 2, the numerical results are to test 

BFGSA. 
From these two tables, we can see that the numerical 

results of the two methods are all interesting. The nu-
merical results of the proposed method perform better, 
and more stationary than the method BFGSA. Moreover, 
for the method ROUA, the initial points and the dimen-
sion do not influence the number of iterations very much. 
However, for the BFGSA, the number of the iteration 
will increase quickly with the dimension becoming larger. 
One thing we like to point out is that δ0 should be chosen 
in such a way that it is not too large. Overall, from the 
numerical results, we can see that the ROUA is one of 
the robust methods for symmetric nonlinear equations. 
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