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Abstract 
For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and second-
ary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl 
group acts on the sets of all their Diophantine solutions. This provides two realizations (primary 
and secondary) of the Weyl group on the sets of Diophantine solutions of the equations of the el-
lipsoids. The primary realization of the Weyl group suggests an order on the Weyl group, which is 
stronger than the Chevalley-Bruhat ordering of the Weyl group, and which provides an algorithm 
for the Chevalley-Bruhat ordering. The secondary realization of the Weyl group provides an algo-
rithm for constructing all reduced expressions for any of its elements, and thus provides another 
way for the Chevalley-Bruhat ordering of the Weyl group. 
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1. Introduction 
For any complex semisimple Lie algebra, there are a number of mathematical objects that are traditionally 
attached to it, and which determine it to some extent. The most widely used mathematical objects are: the 
Dynkin diagram, the Cartan matrix, the system of positive roots, the system of simple roots, the Weyl group, the 
universal enveloping algebra, etc. These objects have proved their usefulness in dealing with complex semi- 
simple Lie algebras, and most of them have been generalized in order to deal with the new classes of mathe- 
matical structures, such as Kac-Moody algebras, superalgebras, quantum groups and Coxeter systems. 

In this paper, two alternative mathematical objects are defined for any complex semisimple Lie algebra G . 
These objects are ellipsoids in the real linear space n , where n is the rank of G . 

Given a complex semisimple Lie algebra G  and a Cartan subalgebra H , the pair (G ,H ) determines the 
system of roots ∆ , a subsystem +∆  of all positive roots, and the subsystem Π  of all simple roots, see [1] [2]. 
In the space n , define an inner product < , >  in such a way that 
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where ija  is an element of the Cartan matrix A defined by the system Π  of simple roots, and ie  is an 
element of the standard basis of n , which we identify with the simple root iα . 

Denote by n
+  the subset of n  consisting of all 1 2( , ,..., )nx x x x=  with 0ix ≥  for 1, 2,...,i n= . Then, 

+∆  can be considered as a subset of n
+ . Let δ  be the half-sum of all positive roots in this realization of +∆ . 

The element nδ +∈  satisfies the equation  

1 (1,...,1),Aδ = =                                        (2) 

that will be used in this paper. 
We assume the linear space n  to be partially ordered as follows: x y≤  if and only if for any 1 i n≤ ≤  

we have i ix y≤ . 

2. Primary and Secondary Ellipsoids 
The principal object of study in this paper is the subset of n  defined by the equation  

, 2 0.x x δ< − >=                                        (3) 

This equation determines an ellipsoid in the space n  with the center at the point δ , and with the extreme 
points 0 and 2δ . We shall call this ellipsoid the primary ellipsoid and denote it by ( )PE G . 

For the case of G  belonging to the class 1A , Equation (3) acquires the form  
2 0,x x− =  (4) 

and so the primary ellipsoid in this case is the two-point subset {0,1}  of 1 . 
For G  belonging to the class 1 1A A⊕ , Equation (3) becomes  

2 2
1 1 2 2( ) ( ) 0,x x x x− + − =                                     (5) 

which is the equation of a circle passing through the points (0,0), (0,1), (1,0), and (1,1) of 2 . 
In cases of 2A , 2B , and 2G , Equation (3) turns to be  

2 2
1 1 2 2 1 2( ) ( ) 0,x x k x x kx x− + − − =                                 (6) 

with k = 1 for 2A , k = 2 for 2B , and k = 3 for 2G , which in all the three cases is equation of an ellipse passing 
through the points (0,0), (0,1), (1,0), (1,2), and 2δ . 

In general case, the easiest way to write down Equation (3) in coordinate form is through the Dynkin diagram 
for the semisimple Lie algebra G , [2] [3]. The Dynkin diagram has n vertices ia . Each vertice has a weight 
denoted by ik , which is an integer equal to 1, 2, or 3. Some of the vertices are connected by links, the number 
of edges in a link can also be equal to 1, 2, or 3. For any link connecting verices ia  and ja , let ( , )ij i jl max k k= , 
otherwise put 0ijl = .  

Theorem 2.1. Equation (3) in coordinate form is as follows:  

2

1 1
( ) 0,

n

i i i ij i j
i i j n

k x x l x x
= ≤ < ≤

− − =∑ ∑                                  (7) 

where the first sum is taken over all the vertices, and the second sum is taken over all the links in the Dynkin 
diagram for the complex semisimple Lie algebra G .  

Proof. By direct substitution of the vector 1 1 1( ,..., ) ...n n nx x x x e x e= = + +  into Equation (3).            □ 
Remark 2.1. As a matter of fact, the coefficients ijl  are not always equal to the number of edges in the link 

connecting the vertices ia  and ja , this is essential for the cases nB  and 4F ; in all the other cases the 
coefficients ijl  are equal to the number of edges in the link connecting the corresponding vertices.  

Owing to the fact that the Cartan matrix is positive definite, Equation (7) is equation of an ellipsoid in the 
space n . This ellipsoid contains the origin 0 (0,..., 0)=  and all points (0,...,1,..., 0)ke = , that we identify 
with the simple roots kα . It also contains the points 2δ  and 2 keδ −  for 1,...,k n= . 

For any root α , let  
2 , .

,
mα

α δ
α α
< >

=
< >

                                       (8) 

Proposition 2.1. mα  is an integer, which is positive if and only if the root α  is positive, and it is equal to 
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1 if and only if the positive root α  is simple.  
Proof. Case by case verification.                                                            □ 
We shall call the number mα  the grade of the root α . 
Proposition 2.2. For any root 1 2( , ,..., ) n

na a aα = ∈ , the element 1 2( , ,..., )nm m a m a m aα α α αα =  belongs to 
the primary ellipsoid ( )E G  defined by Equations (3) or (7).  

Proof. It is sufficient to show that the element mαα  satisfies Equation (3).  
2, 2 , 2 ,

2 ,, ( ) , ( ) 0.
,

m m m m

m m m m m

α α α α

α α α α α

α α δ α α α δ
α δα α α α
α α

< − >= < > − < >

< >
= < > − = < > − =

< >

 

□ 
We now define one more ellipsoid related to the semisimple Lie algebra G , and denoted ( )SE G , that we 

shall call the secondary ellipsoid for G . For any ( )x PE∈ G , with 1( ,..., )nx x x= , and for any {1,..., }i n∈ , 
we define \ {0}x

ih ∈ , if it exists, otherwise we set 0x
ih = , so that  

1 1 1( ) = ( ,..., , , ,..., ) ( ).x
i i i i i nT x x x x h x x PE− ++ ∈ G                           (9) 

Such x
ih  is a unique real number. Consider the vector 1 2( , ,..., )x x x x n

nh h h h= ∈ .  
Proposition 2.3.   

1 ( ).xh Ax A xδ= − = −                                   (10) 

Proof. By direct substitution of ( )iT x  with x
ih  evaluated by formula 10 into Equation (7) of the primary 

ellipsoid ( )PE G .                                                                         □ 
Observe that if x is an integral vector, that is a vector with all integer components, then xh  is an integral 

vector as well. The set ( )SE G  is the set of all such vectors x nh ∈  as x runs through the primary ellipsoid 
( )PE G . 

Theorem 2.2. The subset ( )SE G  of n  is an ellipsoid, which is described by the equation  
1 1(1 ), (1 ) 0,A h A h− −< − + >=                                 (11) 

or, equivalently,  
1 1( ), ( ) , .A h A h δ δ− −< >=< >                                (12) 

Proof. By direct calculation.                                                               □ 
In coordinate form, for the case 1A , the equation of secondary ellipsoid has the form:  

2 1.h =                                         (13) 
So, in this case, the secondary ellipsoid is the two-point subset {1, 1}−  of the real line. 
For G  belonging to the class 1 1A A⊕ , the equation of secondary ellipsoid becomes  

2 2
1 2 2,h h+ =                                       (14) 

which is the equation of the circle centered at the origin and passing through the points (1,1), and (−1, −1). 
In cases of 2A , 2B , and 2G , the equation of secondary ellipsoid in coordinate form turns to be  

2 2
1 2 1 2 2 1,h kh kh h k+ + = +                                 (15) 

with k = 1 for 2A , k = 2 for 2B , and k = 3 for 2G , respectively, which in all the three cases is the equation of 
an ellipse passing through the points (1,1), and (−1, −1), and with the center at the origin. 

The primary ellipsoid is determined by the secondary ellipsoid in accordance with the formula  
1(1 ).hx A h−= −                                     (16) 

Theorem 2.3. The equations of secondary ellipsoids in coordinate form for the simple Lie algebras of the 
four infinite series nA , nB , nC , and nD  are as follows: 

Case nA : 

2

1 1
( 1 )( 1) 2 ( 1 )( 1) 0.

n

j j k
j j k n

j n j h j n k h h
= ≤ < ≤

+ − − + + − − =∑ ∑                       (17) 
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Case nB : 
1 2 1

2 2

1 1 1
4 ( 2) ( 1) 8 ( 1) 0.

n n n

j j n n j k
j j k j

j h h h n h j h h
− − −

= = = +

+ − + − + − =∑ ∑ ∑                      (18) 

Case nC : 

2

1 1
( 1) 2 ( 1) 0.

n

j j k
j j k n

j h j h h
= ≤ < ≤

− + − =∑ ∑                              (19) 

Case nD : 
2

2 2 2
1 1

1

1
1

4 ( 3) ( 2)

8 ( 1) 2( 2)( 1) 0.

n

j j n j n n n
j

j k n n
j k n

j h h h h h n h h

j h h n h h

−

− −
=

−
< < −

+ + − + + −

+ − + − − =

∑

∑
                          (20) 

The equations of secondary ellipsoids for the remaining 5 exceptional cases of simple Lie algebras are given 
next as follows: 

Case 6E :  
2 2 2 2 2 2

1 2 3 4 5 6

1 2 1 3 1 4 1 5 1 6

2 3 2 4 2 5 2 6 3 4

3 5 3 6 4 5 4 6 5

2( 1) 3( 1) 5( 1) 9( 1) 5( 1) 2( 1)
3( 1) 5( 1) 6( 1) 4( 1) 2( 1)
6( 1) 9( 1) 6( 1) 3( 1) 12( 1)
8( 1) 4( 1) 12( 1) 6( 1) 5(

h h h h h h
h h h h h h h h h h
h h h h h h h h h h
h h h h h h h h h

− + − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + 6 1) 0.h − =

                (21) 

Case 7E :  
2 2 2 2 2 2

1 2 3 4 5 6
2
7 1 2 1 3 1 4 1 5

1 6 1 7 2 3 2 4 2 5

2 6 2 7 3 4 3

4( 1) 7( 1) 12( 1) 24( 1) 15( 1) 8( 1)

3( 1) 8( 1) 12( 1) 16( 1) 12( 1)
8( 1) 4( 1) 16( 1) 24( 1) 18( 1)
12( 1) 6( 1) 32( 1) 24(

h h h h h h

h h h h h h h h h
h h h h h h h h h h

h h h h h h h h

− + − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + 5 3 6

3 7 4 5 4 6 4 7 5 6

5 7 6 7

1) 16( 1)
8( 1) 36( 1) 24( 1) 12( 1) 20( 1)
10( 1) 8( 1) 0.

h h
h h h h h h h h h h

h h h h

− + −

+ − + − + − + − + −

+ − + − =

                (22) 

Case 8E :  
2 2 2 2 2 2

1 2 3 4 5 6
2 2
7 8 1 2 1 3 1 4

1 5 1 6 1 7 1 8 2 3

2 4 2 5 2 6 2

4( 1) 8( 1) 14( 1) 30( 1) 20( 1) 12( 1)

6( 1) 2( 1) 10( 1) 14( 1) 20( 1)
16( 1) 12( 1) 8( 1) 4( 1) 20( 1)
30( 1) 24( 1) 18( 1) 12(

h h h h h h

h h h h h h h h
h h h h h h h h h h
h h h h h h h

− + − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + 7 2 8

3 4 3 5 3 6 3 7 3 8

4 5 4 6 4 7 4 8 5 6

5 7 5 8 6 7 6 8 7 8

1) 6( 1)
40( 1) 32( 1) 24( 1) 16( 1) 8( 1)
48( 1) 36( 1) 24( 1) 12( 1) 30( 1)
20( 1) 10( 1) 16( 1) 8( 1) 6( 1) 0.

h h h
h h h h h h h h h h
h h h h h h h h h h
h h h h h h h h h h

− + −

+ − + − + − + − + −

+ − + − + − + − + −

+ − + − + − + − + − =

               (23) 

Case 4F :  
2 2 2 2

1 2 3 4 1 2

1 3 1 4 2 3 2 4 3 4

( 1) 3( 1) 6( 1) 2( 1) 3( 1)
4( 1) 2( 1) 8( 1) 4( 1) 6( 1) 0.
h h h h h h

h h h h h h h h h h
− + − + − + − + −

+ − + − + − + − + − =
                (24) 

Case 2G :  
2 2

1 2 1 2( 1) 3( 1) 3( 1) 0.h h h h− + − + − =                               (25) 

Proof. By direct calculation.                                                               □ 
Corollary 2.1. A case-by-case examination of the equations of secondary ellipsoids in coordinate form (17)- 
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(25) has shown that these equations can be written in a unified form as follows: 

2

1 1
( 1) 2 ( 1) 0,

n

i ii i i ij i j
i i j n

k b h k b h h
= ≤ < ≤

− + − =∑ ∑                            (26) 

where ik  is the weight of the i-th vertice in the Dynkin diagram, and ,ii ijb b  are elements of the matrix 1A−  
(the inverse matrix for the Cartan matrix A).  

It is clear that this equation is valid for any complex semisimple Lie algebra, and not just for the simple Lie 
algebras. By multiplying Equation (26) with detA , we get an equation with all coefficients being nonnegative 
integers. 

3. Diophantine Equations Derived from the Equations of Ellipsoids 
Consider Equation (7) of primary ellipsoid and Equation (26) of secondary ellipsoid as Diophantine equations. 
This means that we are now concerned with only those solutions to these equations, which have all their com- 
ponents integers. We shall now explore the sets of all solutions of these Diophantine equations. These sets are 
nonempty and finite. We shall denote them by ( )PD G  and ( )SD G  respectively. The set ( )PD G  contains 
the elements 0 = (0, ∙∙∙ ,0) and 2δ , and all the standard basis elements (0, ,1,., 0)ie = , and also 2 ieδ − , and 
even more, as follows from Proposition 2.2, for any positive root α , the element mαα , with mα  being the 
grade of the positive root α , also belongs to the set ( )PD G . Formula 10 implies that for any ( )x PD∈ G  the 
vector 1xh Ax= −  belongs to ( )SD G , and this assignment is injective. 

Although the extreme points of the primary ellipsoid ( )PE G  (0 and 2δ ) both belong to n
+ , the primary 

ellipsoid is not competely in n
+ ; there exists an open neighbourhood U  of the origin (in the primary ellipsoid) 

all of whose elements, except the origin itself, have at least one strictly negative component. This conclusion 
follows from the form of Equation (7). Formula 9 implies that for any ( )x PD∈ G  and for any positive integer i 
with 1 i n≤ ≤ , the element 1 1 1( ) ( ,..., , , ,..., ) ( )x

i i i i i nT x x x x h x x PE− += + ∈ G  also belongs to ( )PD G . This fact 
allows us to find all solutions of these Diophantine equations and also to establish some of their properties. 

The mappings iT  are involutions of the primary ellipsoid. In the group of all permutations of the primary 
ellipsoid, consider the subgroup ( )WPE G  generated by the mappings iT . 

Theorem 3.1. The group ( )WPE G  is isomorphic to the Weyl group of the Lie algebra G .  
Proof. Follows from Coxeter relations.                                                       □ 
Corollary 3.1. The subset ( )PD G  of the primary ellipsoid is invariant under the action of the group 

( )WPE G  and it splits into orbits. The set of the orbits is one-to-one with the subset of the set of all integral 
solutions with all nonnegative components of the equation of the secondary ellipsoid. For any such a sollution h, 
the vector 1(1 )hx A h−= − , is the unique minimal vector of the respective orbit under the partial ordering ≤ .  

We parametrize the set of the orbits by their minimal elements. For any such vector ha x= , denote by 
( )aPD G  the respective orbit. For example, the number of orbits for the case of simple Lie algebra of class 8E  

is equal to 157. For the simple Lie algebras of small rank 2 3 4 2 2( , , , , )A A A B G  there is only one orbit. There is 
only one integral solution h in the secondary ellipsoid with all nonnegative components that has all its 
components positive, and it is equal to 1 . All other such solutions have at least one component equal to 0. For 
any such h consider all those values of index 1 2 ... ki i i< < <  for which the corresponding component is equal to 
0. In the Weyl group W, let hW  be the subgroup generated by the elementary reflections 

1 2
, ,...,

ki i ie e e . 
Corollary 3.2. The number of elements in the respective orbit is equal to the number ( ) / ( )hcard W card W .  
There is only one orbit with the number of elements equal to the order of the Weyl group. This orbit contains 

the origin 0 and all the vectors mαα  for any positive root α , as well as the element 2δ  together with all the 
elements 2 mαδ α− , where mα  is the grade of the positive root α . We shall call this orbit the main orbit and 
denote it by 0 ( )PD G . The corresponding subset of the secondary ellipsoid will be denoted by 0 ( ).SD G  The 
vectors from 0 ( )PD G  do not have negative components, and the vectors of 0 ( )SD G  do not have zero com- 
ponents. 

4. Primary and Secondary Geometric Realizations of the Weyl Group 
Denote by ( )W G  the Weyl group of the complex semisimple Lie algebra G . In this section we are concerned 
with geometric realizations of the Weyl group related to the primary and secondary ellipsoids. We first realize it 
in a matrix form. For any simple root ie , the matrix corresponding to the reflexion is  generated by ie  is 
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determined as follows: take the i-th line of the matrix I A−  and replace by it the i-th line in the matrix I. 
Denote the matrix thus obtained by iM . This matrix is the matrix of the simple reflection is . The matrix group 
generated by the matrices 1 2, ,..., nM M M  is a matrix realization of the Weyl group ( )W G . This can be shown 
by checking the Coxeter relations. We denote this matrix group by ( )MW G . 

Assign to any element w of the matrix Weyl group ( )MW G  the vector  
.wP wδ δ= −                                       (27) 

Proposition 4.1. For any ( )w MW∈ G , the vector wP wδ δ= −  belongs to the primary ellipsoid ( )PE G .  
Proof. The proof follows from a straightforward calculation.                                      □ 
Proposition 4.2. The mapping ww P→  from ( )MW G  to ( )PE G  is injective.  
Proof. The proof follows from the fact that the Weyl group acts simply transitively on the set of all Weyl 

chambers.                                                                                □ 
Proposition 4.3. The image of a reflection sα  by the mapping P is the vector mαα , where mα  is the 

grade of the positive root α .  
Proof.  

0 0 0 0

0

1 1 2( , )( ) ( ( ))
2 2 ( , )

1 2( , ) 2( , ) .
2 ( , ) ( , )

sP s s

m

α α α
β β β β

α
β

β αδ δ β β β β α
α α

β α δ αα α α
α α α α

> > > >

>

= − = − = − −

= = =

∑ ∑ ∑ ∑

∑
                (28) 

□ 
Corollary 4.1. The image of a simple reflection is  by the mapping P is the basis vector ie .  
Now, consider the image of the product 1 2w w w=  of two elements of the Weyl group ( )MW G  under the 

mapping ww P→ .  

1 2 1 21 2 1 1 2 1( ) ( )w w w wP w w w w w P w Pδ δ δ δ δ δ= − = − + − = +                    (29) 

From this equality we also get the formula for the image of the inverse element:  
1

1
.ww

P w P−
−= −                                     (30) 

Corollary 4.2. The image of the Weyl group ( )MW G  by the mapping P is the main orbit 0 ( )PD G .  
Motivated by formulas 29 and 30, define the group operation denoted by ∗ on the set 0 ( )PD G  as follows. 

By Proposition 4.2, for any 0 ( )a PD∈ G  there exists a unique ( )aw MD∈ G  such that 
awP a= . For any 

0, ( )a b PD∈ G  set 

aa b a w b∗ = +                                     (31) 

and  
1 1

aa w a− −= −                                       (32) 

So, we shall define ( )PW G  to be the set 0 ( )PD G  with the transfered operation ∗, and call it the primary 
realization of the Weyl group. In this realization of the Weyl group the identity element is the origin 
0 (0,..., 0)= . Formulas 29 and 30 imply that ( )PW G  is a group isomorphic to the Weyl group ( )W G . This 
realization has some interesting features. 

Let (0,...,1,..., 0)ia e= =  and 1( ,..., ,..., )i nb b b b=  an arbitrary element of ( )PW G . Then  

1( ,..., ,..., ) ( ),b
i i i n ie b b b h b T b∗ = + =                             (33) 

where b
ih  is the i th−  component of the vector 1 .bh Ab= −  This property can be generalized to the case of 
( )a PWα ∈ G  being equal to a multiple of a positive root α , a mα αα= , where mα  is the grade of the 

positive root α  defined by Formula 8. In this case we have that  

1( ) ( ) .
bw

a b m b m bα α α
α α−∗ = ∗ = +                              (34) 

One more property is about multiplication on the left by the element 2δ . For any element ( ),a PW∈ G   
(2 ) (2 ) .a aδ δ∗ = −                                    (35) 
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In particular,  
(2 ) (2 ) 0.δ δ∗ =                                     (36) 

If ie  and je  are orthogonal simple roots, which means that 0ija = , then  
.i j i je e e e∗ = +                                     (37) 

And even more, if positive roots α  and β  are orthogonal, then  
( ) ( ) .m m m mα β α βα β α β∗ = +                               (38) 

If positive roots α  and β  are not orthogonal, then  
( ) ( ) ( ) .wm m m m

βα β α βα β α β∗ = +                             (39) 

Now we assign to any element w of the Weyl group ( )MW G  the vector  

.wS Awδ=                                       (40) 
Proposition 4.4. For any ( )w MW∈ G , the vector wS Awδ=  belongs to the secondary ellipsoid ( )SE G .  
Proof. The proof follows from a straightforward calculation.                                      □ 
Proposition 4.5. The mapping ww S→  from ( )MW G  to ( )SE G  is injective and maps ( )MW G  into 

0 ( )SD G .  
Proof. The mapping wSw→  from ( )MW G  to ( )SE G  can be represented as a composition of the map- 

pings w wδ δ→ −  from ( )MW G  to ( )PD G  and the mapping 1x Ax→ −  (which maps 0 ( )PD G  into 
0 ( )SD G ), because  

1 ( ).Aw A wδ δ δ= − −                                  (41) 

□ 
Theorem 4.1. The mapping ww S Awδ→ =  from ( )MW G  to 0 ( )SD G  is a bijection.  
Proof. This is obvious for those cases 2 4 8( , , )G F E  where det 1.A =  In all the other cases, the proof follows 

from a case-by-case consideration.                                                            □ 
The mapping ww S Awδ→ = , being a bijection, transfers the group structure from the Weyl group ( )MW G  

to the set 0 ( )SD G  thus producing the secondary geometric realization of the Weyl group ( )W G , which we 
shall denote by ( )SW G . In this realization of the Weyl group, the identity element is 1 , and the element of 
maximal length is 1−  . 

5. Orderings of the Weyl Group 
The realization ( )PW G  of the Weyl group on the primary ellipsoid provides a partial ordering of this group 
that is inherited from the natural partial ordering of the linear space n . A vector 1( ,..., )nx x x=  is less or 
equal in this ordering than 1( ,..., )ny y y=  if and only if for all i we have i ix y≤ . We denote this ordering by 
x y≤  and call it the primary ordering of the group ( )PW G . In this ordering of the group ( )PW G , there is a 
unique minimal element 0 (0,..., 0)= , and a unique maximal element 2δ . Formula 33 implies that for any 

( )b PW∈ G  and for any i the elements b and ie b∗  are comparable under the primary ordering; if 0 b
ih≤ , 

then ib e b≤ ∗ , and the inequality reverses otherwise. This statement can be generalized, by using Formula 39, 
to the case when we take any positive root α  and its grade mα , and consider the element a mα αα=  of the 
group ( )PW G  and an arbitrary element ( )b PW∈ G . The product a bα ∗  and the element b are also 
comparable. 

There is another very important for different applications ordering for any Weyl group, which is called 
Chevalley-Bruhat ordering, see [4]-[9], and which we denote by  . To define the Chevalley-Bruhat ordering, 
we first need to define the length of an element w of a Weyl group. The element w can be written as a product of 
elementary reflections is . This can be done in several different ways. The minimal number of factors in such a 
representation of w is called the length of w (notation ( )l w ). An expression of w as a product of elementary 
reflections with the number of factors equal to the length of w is called a reduced expression. The ellipsoid 
geometric realizations of the Weyl group provide a way to find the length of any element w of any Weyl group 
and also the family of all its reduced expressions. Denote by Z the family of all reflections in ( )W G  with 
respect to positive roots. For , ( )a b W∈ G  and t Z∈ , write 

t
a b→  if b ta=  and ( ) ( )l a l b< . In turn, write 
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a b→  if 
t

a b→  for some t Z∈ . Extend this relation to a partial ordering on ( )W G  by defining a b  to 
mean 

0 1 ... na a a a b= → → → =  for some 1 2 1, ,..., na a a − . 
In the realization of the Weyl group on the pimary ellipsoid, we have that a b t a= ∗  with t being a 

reflection with respect to a positive root α , so that t mαα= , we have that,  

,ab a kαα= +                                       (42) 

with  
2 , .

,a
akα α δ

α α
< − >

=
< >

                                   (43) 

By definition, a wδ δ= −  for some ( )w MW∈ G , therefore,  

1
2 , .

,a w

wk mα
α

α δ
α α −

< >
= =

< >
                                (44) 

This implies that 
t

a b→  if and only if 1w α−  is a positive root. Thus 
t

a b→  implies that a b≤ , and so 
a b  implies that a b≤ . 

In this ordering, 0 is the unique minimal element too, and 2δ  is the unique maximal. 
As a matter of fact, the primary ordering is in some cases strictly stronger than the Chevalley-Bruhat ordering 

on the Weyl group, as one can see, for example, from the case of 3A . In this case, the Weyl group is isomorphic 
to the symmetric group 4S , and the graph of the Chevalley-Bruhat ordering for this group is available in Fig. 
2.4 of [4]. When compared to the primary ordering, it can be seen that there are two cases of discrepancy 
bitween the two orderings for this Weyl group. In the case of the Chevalley-Bruhat ordering, the elements (1 4 3 
2) and (4 1 2 3) of 4S  are not comparable, as can be seen from Fig. 2.4 of [4], but their respective counterparts 
in the primary ellipsoid geometric realization are the vectors (0,2,2) and (1,2,3), which are comparable in the 
primary ordering. The same holds true for the elements (3 2 1 4) and (2 3 4 1) of 4S , which have the vectors 
(2,2,0) and (3,2,1) as their respective counterparts. In all the other cases, the two orderings agree for 3A . 

Observe that in these two cases of a b≤  but not a b  we have that (1,0,1)b a− = , which is not a 
multiple of a positive root. 

To Chevalley-Bruhat order a Weyl group W by using the primary realization take the following steps: 1) 
Realize W primarily by assigning ( )P w wδ δ= −  to any w; 2) Order the primary realization primarily by 
inserting a link between any two directly adjacent elements a b≤ ; 3) Delete all those links with a b≤  for 
which b a−  is not a multiple of a positive root. The remaining links provide the Chevalley-Bruhat ordering of 
the Weyl group W. 

The secondary realization of a Weyl group provides an efficient way to obtain all reduced expressions for any 
ellement w of the Weyl group. A reduced expression of w is a shortest possible expression of it as a product of 
simple reflections is . Finding all reduced expressions of any element of a Weyl group boils down to finding the 
first element in any such expression, because if s is known to be the first element of a reduced expresion for w, 
to find the second element of this reduced expression is equivalent to finding the first element of the product sw, 
and so on. 

Theorem 5.1. Given an element w of the Weyl group ( )MW G , consider its image ( )S w Awδ=  in ( )SW G . 
The vector ( )S w  being an n-tuple of positive and negative integers 1 2( , ,..., ),nb b b  let 1 2 .. mi i i< < <  be the 
values of index i for which ib  is negative. Then 

1 2
, ,...,

mi i is s s  are the only simple reflections that can be the 
first elements of a reduced expression of w.  

Proof. This follows directly from the definition of the secondary realization of the Weyl group.          □ 
This theorem provides an alternative way to build the Chevalley-Bruhat ordering of a Weyl group, because, as 

is well known for any Coxeter group (see for example [8]), knowing reduced expressions leads to Chevalley- 
Bruhat ordering through subexpressions. 
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