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Abstract

In this paper, the system of Burgers’ equations is solved by the optimal homotopy asymptotic me-
thod with Daftardar-Jafari polynomials OHAM-DJ. Two numerical examples are illustrated the ef-
ficient of this methods for solving the system of Burgers’ equations.
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1. Introduction

The Burgers equation was first presented by Bateman [1] and treated later by J. M. Burgers (1895-1981) then it
is widely named as Burgers’ equation [2]. Burgers’ equation is nonlinear partial differential equation of second
order which is used in various fields of physical phenomena such as boundary layer behaviour, shock weave
formation, turbulence, the weather problem, mass transport, traffic flow and acoustic transmission [3] [4]. In
addition, the two dimentional Burgers’ equations have played an important role in many physical applications
such as investigating the shallow water waves and modeling of gas dynamics [5] [6]. In order to a great
applications for burgers’ equations many researchers have been interested in solving it by various techniques.
Analytic solution of one dimensional Burgers’ equation are get by many standard methods such as Backland
transformation method, differential transformation method and tanh-coth method [6], while an analytical
solution of two dimensional Burgers’ equations was first presented by Fletcher using the Hopf-Cole transfor-
mation [7]. The finite difference, finite element, spectral methods, Adomian decomposition method, the varia-
tional iteration method, homotopy perturbation method HPM and Eulerian-Lagrangian method gave an nu-
merical solution of Burgers’ equations [3] [8]-[15].

Recently, the OHAM was proposed by Marinca and Herisaun [16]-[19]. OHAM is independent of the
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existence of a embedding parameter in the problem then overcome the limitations of perturbation technique.
However, OHAM is the most generalized form of HPM as it uses a general auxiliary function H(p). This method
has been studied by a number of researchers for solving linear and nonlinear partial differential equations
[20]-[23]. In [24]-[27] proved OHAM is more efficient to solve Burgers’ equations. In 2006, a new method by
Daftardar-Gejji and Jafari for solving nonlinear functional appeared [28]. Convergence of it has been proved in
[29]. This method is named later as Daftardar-Jafari method DJM in [30]. J. Ali et al. used DJM in the OHAM
for solving non-linear differential equations and they named this method as OHAM with DJ polynomials
OHAM-DJ [30] [31]. In 2016, OHAM-DJ has been used to solve linear and nonlinear Klein-Gordon equations
[32]. The motive of this paper is to show the efficiency of OHAM-DJ for solving the system of Burger’s
equations. We consider the system of Burger’s equations as the following [11]:
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with the initial conditions:
u(x,y,0)=f(xy), (x,y)eQ
Oy 12)
v(xy,0)=g(xy), (xy)eQ
and the boundary conditions:
u(x,y,t)=f(xyt), xyelt>0 13)
V(X y,t)=f, (% y,t), X yel,t>0 '

where Q= {(x y)lasx<ba<y< b} and T is its boundary, u(xy,t) and v(x,y,t) are the velocity
components to be determined, f,g,f, and f, are known functions and R is the Reynolds number.

This paper is organized into three sections. In Section 2 methodology of OHAM-DJ is presented. In Section 3
application of this method is solved and absolute error of approximate solutions of proposed method is com-
pared with exact solutions. In all cases the proposed method yields better results.

2. Methodology of OHAM-D]
Consider (1.1) and let
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where g, B, are boundary operators.
According to the basic idea of OHAM [16], we can construct the optimal homotopy:
u(xytp):Qx(01ll—>R
(xy.tp):2x01] .
V(x,y,tp):Qx[01] >R
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ﬁl[U (x, V.t p),w]
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(2.4)

ot

where pe[0,1] is an embedding parameter while u, and v, is initial approximation of Equation (1.1)
which satisfies the boundary condition, H,(p) and H,(p) are nonzero auxiliary functions for p=0,
H,(0)=0 and H,(0)=0.Clearly, When p=0 and p=1,itholdsthat U(x,y,t;0)=u,(x y,t),

V(X y.t0)=vy(x,y,t) and U(xy,t;1)=u(xyt), V(xVy,t;1)=v(xy,t) respectively. Therefore, as p
change from 0 to 1, the solution U (x,y,t;p) and V(x,vy,t;p) varies from u,(x,y) to u(xy,t) and
Vo(X,¥) to v(x,y,t) respectively, where the initial approximations u,(x,y) and v,(x,y) are obtained
from (2.3) and (2.4). Now, choosing The auxiliary functions H,(p) and H,(p) as the form

H,(p)= pc, + p’c, + p’c, +

(25)
H, (p) = pd; + p’d; + 'y +---

where, c;,d;,i=12,3,--- are constants to be determined later. Assume that the solutions of (1.1) has the form:

0

U =u, (% y)+ 2 p'u (% y,t:c;)

- (2.6)

0
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The nonlinear terms
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are decomposed as
A=A(Uy)+p[ A(ug+uy )= AU ) |+ p? [ A(ug +Uy +u, )= A(ug +uy ) |+
B=B(uy)+ p[B(Uy+Uy)—B(Uy) |+ p?[ B (g +Uy +u, )= B(ug+uy ) |+ 8
C =C(uy)+Pp[C(Uy+Uy)—=C(ug) ]+ p*[C(y+Uy +U,)—C(ug+uy) |+ '
D =D(uy)+ p[ D (U +Uy)—D(uy) ]+ p*[ DUy +Uy +uy )= D(uy+uy ) |+
where F (U ).[ F (U +;)—F (Uy) ][ F (up +Uy +U, )= F (U +Uy) ]+, 1 =1+, 4 are (DJ) polynomials,
A=F,B=F, C=F,D=F,. Forsimplicity these polynomials are expressed as:
Ao:A(uo)
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A=A+3PA  B=B,+>pB,C=C,+>pC,,D=D,+3pD, 2.9)
k=1 k=1 k=1 k=1
Substiting, (2.5),(2.6), (2.7) and (2.9) into (2.3), and comparing the coefficients of like powers of p, we get
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(2.10)

The convergence of (2.6) depend upon the auxiliary constants ¢, and d,, which known convergence control
parameters or optimal convergence control parameters [16], if it is convergentat p=1 we have

T(X Y, 56) =Ue (X ¥)+u (X, Y, 1)+, (X y,t5¢,,C, )+ 1)
V(X y.6d) =vo (X y)+Vvy (X, y,tid,) +v, (X, y, tdy,dy )+ '

Substituting (2.11) into (1.1) we get the residuals R, (x,y.t;c,d;) and R,(xy,t;c.d;), i=12-,n
these parameters can be optimal identified by various methods [16] [20] [33]. Optimization method is one of
theses methods to find out the optimal convergence control parameters by means of the minimum of the squared
residuals.

3. Numerical Examples
In this section, two numerical examples are used to prove the efficiency and the accuracy of the method which
we proposed for the system of Burgers’ equations.
3.1. Example 1
Consider the system of two dimensional of Burgers’ equations with the initial conditions as following [34]
ou  du  éu (ﬁzu 62u]
—4tV—=
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with the initial conditions:

1
u(x,y,0)==- =
4 1+e?
L 3.2)
v(X,y,0)==+ =
4(1+e ¢ j
The exact solutions are
. 3 1
u (X’ y’t):Z_ 4y—4x-t
4[1+e se J
3.3
. 3 1 (3.3)
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Accordance to the methodology of OHAM-DJ, ¢=1
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Their solutions are

1
U (X, y)==— =
4(1+e ¢ ]
1
Vo (X, y)==+ =
4(1+e “ J
11
1 ced ot
ul(X,y,'t,C1)=@—1yix 3
1+e8 8
11 (3'5)
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Then,
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- (3.6)
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L,LY 1280 11, 2"
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By substituting (3.6) into (3.1) we get the residuals and using the optimization method we have computed that
¢, =—-0.999927000502526 and d, =1.00007801756198 . Finally, putting the values of ¢, and d, into (3.6),

to get the approximate solutions (Tables 1-3, Figure 1 and Figure 2).

Figure 1. Approximation solutions by OHAM-DJ of example 1,t=0.01, ¢=1.

G
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Figure 2. Exact solutions of example 1, t = 0.01, £=1.

Table 1. Comparison of OHAM-DJ solutions with exact solutions at mesh point x = 2, y = 1 (example 1).

t um (X, y,t) u(x, y.t) |u” -yl V' (X, y,t) v(x,y,t) vV -y
0.01 06171782017  0.6171782030 1.3x10° 0.8828217983  0.8828217970 1.3x10°
0.02 06171587471  0.6171587492 21x10° 0.8828412529  0.8828412508 2.1x10°
0.03 06171392929 0.6171392955 26x10° 0.8828607071  0.8828607045 26x10°
0.04 06171198391  0.6171198418 2.7x10° 0.8828801609  0.8828801582 2.7x10°
0.05 06171003857  0.6171003880 2.3x10° 0.8828996143  0.8828996120 2.3x10°
0.06 0.6170809326  0.6170809343 1.7x10° 0.8829190674  0.8829190657 1.7x10°
0.07 06170614799  0.6170614806 7x107 0.8829385201  0.8829385194 7x10™
0.08 06170420276  0.6170420268 8x10™ 0.8829579724  0.8829579732 8x10™
0.09 06170225757  0.6170225731 26x10° 0.8829774243  0.8829774269 26x10°
0.10 06170031242 0.6170031194 4.8x10° 0.8829968758  0.8829968806 4.8x10°
3.2. Example 2
We consider the following two-dimensional Burgers’ equations [34]
u +u(u, +uy)=ce(u, +uy) (3.7)
On square domain D :[0, 2]x[0,2], with the initial condition:
u(x, y,O):1+e+y/2£,(x, y)e D (3.8)

for which the exact solution is u”(x, y,t) =

1e*+y“/25'(x’ y)e D,t>0. Where the u(x,y,t) and v(x,y,t)
+

in (1.1) are symmetry in this example, u(x,y,t)=v(x,y,t) and the initial condition are symmetry also.
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Table 2. Comparison of OHAM-DJ solutions with exact solutions at mesh point x = 1, y = 2 (example 1).

t u(x,y,t) u(x,y,t) ‘u'—u‘ V' (X, Y,t) V(X y,t) ‘V'—v‘
0.01 0.6327828880 0.6327828896 1.6x10° 0.8672171120 0.8672171104 1.6x10°
0.02 0.6327634323 0.6327634358 3.5x10”° 0.8672365677 0.8672365642 3.5x10°
0.03 0.6327439762 0.6327439821 59x10° 0.8672560238 0.8672560179 59x10°
0.04 0.6327245197 0.6327245284 8.7x10° 0.8672754803 0.8672754716 8.7x10°
0.05 0.6327050628 0.6327050746 1.18x10°® 0.8672949372 0.8672949254 1.18x10°®
0.06 0.6326856056 0.6326856209 1.53x10°® 0.8673143944 0.8673143791 1.53x10°°
0.07 0.6326661480 0.6326661672 1.92x10° 0.8673338520 0.8673338328 1.92x10°
0.08 0.6326466900 0.6326467134 2.34x10° 0.8673533100 0.8673532866 2.34x10°
0.09 0.6326272317 0.6326272597 2.80x10° 0.8673727683 0.8673727403 2.80x10°
0.10 0.6326077730 0.6326078060 3.30x10° 0.8673922270 0.8673921940 3.30x10°

Table 3. Comparison of OHAM-DJ solutions with exact solutions at mesh point x = 1.5, y = 2 (example 1).

t u(x,y,t) u(x,y.t) Ju” —ul V(X y.t) V(X y,t) v -]
0.01 0.6288854666 0.6288854681 1.5x10°° 0.8711145334 0.8711145319 1.5x10°°
0.02 0.6288659542 0.6288659574 3.2x10° 0.8711340458 0.8711340426 3.2x10°
0.03 0.6288464415 0.6288464466 5.1x10° 0.8711535585 0.8711535534 5.1x10°
0.04 0.6288269287 0.6288269358 7.1x10° 0.8711730713 0.8711730642 7.1x10°
0.05 0.6288074156 0.6288074251 9.5x10”° 0.8711925844 0.8711925749 9.5x10”°
0.06 0.6287879024 0.6287879143 1.19x10° 0.8712120976 0.8712120857 1.19x10°
0.07 0.6287683890 0.6287684035 1.45x10°° 0.8712316110 0.8712315965 1.45x10°°
0.08 0.6287488754 0.6287488928 1.74x10° 0.8712511246 0.8712511072 1.74x10°
0.09 0.6287293616 0.6287293820 2.04x10° 0.8712706384 0.8712706180 2.04x10°
0.10 0.6287098477 0.6287098713 2.36x10° 0.8712901523 0.8712901287 2.36x10°

%: 0, ,81(”0'%} =0
0.] ot ot
M _y, ﬂz[vo,%}o
ot ot
oy 0 1 0 1
El E[l+ gry/ze j+ G {E[H gry/2e ﬂ
N )
1+eY2e ox\ 1+ e/% ) 142 gy 14e¥Y/%
DL )
. X\ 1+e /2 oy \ 14 exv/2 (3.9)

A

__2(;} 2(;)
a atltre O F\ 1r e

N 1 i 1 N 1 i 1
Cl 1+ex+y/25 X 1+ex+y/25 1+ex+y/25 ay 1+ex+y/25

02 1 0? 1
T4 e \tre® ) oy Tre
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Their solutions are

V(X y.t¢)=

1
1

u(xy.tic)=cl-

v(xyte)=c|-

1

G(X,y7t?0i)=w+%

1

1+ ex+y/Zg + Cl

= |t

S S —

X+y/2e

X+y/2e

1 e(><+y)/25

2 (et

1 e(x+y)/2c

2 (1ret )

1 e(x+y)/28

[T

1 e(x+y)/28

2 ¢ (1+ gley)/2e )2

(3.10)

(3.11)

t+---

Substituting (3.11) into (3.7) we get the residuals and using the optimization method we have computed that
¢, =-1.01431980619957 . Finally, putting the values of ¢, into (3.11) to get the approximate solutions (Table 4
and Table 5, Figure 3 and Figure 4).

4. Conclusion

In this work, the OHAM-DJ is applied to obtain numerical solutions of the system of Burgers’ equations. The
method is efficient and easy to implement where the first or second order solutions rapidly converges to the
exact solutions. Furthermore, OHAM-DJ does not need any discretization in time or in space. Thus the solutions
of system of Burgers’ equations are not influenced by computer round off errors. The method can be easily

Table 4. Comparison of OHAM-DJ solutions with exact solutions at mesh pointx=1,y=1, £=0.1 (example 2).

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

u (%, y,t)=v (X, y,t)

0.00004772535612

0.00005017216468

0.00005274441090

0.00005544852472

0.00005829126566

0.00006127973961

0.00006442141667

0.00006772414960

0.00007119619382

0.00007484622751

u(x y,t)=v(xy,t)
0.00004770016206
0.00005000245540
0.00005230474874
0.00005460704209
0.00005690933545
0.00005921162878
0.00006151392213
0.00006381621547
0.00006611850883

0.00006842080217

u”—u[=|v" -v|
2.519406x10°°
1.6970928 %10~
4.3966216x10”
8.4148263x107
1.38193021x10°
2.06811083x10°°
2.90749454 x10°°
3.90793413x10°°
5.07768499x10°

6.42542534x10°°
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Table 5. Comparison of OHAM-DJ solutions with exact solutions at mesh pointx =1,y =15, £=0.1 (example 2).

t u (X, y,t) =v (X y,t) u(x,y,t)=v(xyt) |u*—u|:|v*—v|
0.01 0.000003917707418 0.000003915638782 2.068636x10°°
0.02 0.000004118571745 0.000004104638279 1.3933466x10°
0.03 0.000004329734519 0.000004293637776 3.6096743x10°°
0.04 0.000004551723744 0.000004482637274 6.9086470x10°®
0.05 0.000004785094494 0.000004671636770 1.13457724x107
0.06 0.000005030430303 0.000004860636268 1.69794035x10™
0.07 0.000005288344616 0.000005049635766 2.38708850x 107
0.08 0.000005559482332 0.000005238635264 3.20847068x10”
0.09 0.000005844521423 0.000005427634761 4.16886662 %107
0.10 0.000006144174603 0.000005616634259 5.27540344x107

Figure 3. Approximation solutions by OHAM-DJ of example 2,t=0.01, £=0.1.

Figure 4. Exact solutions of example 2, t=0.01, £=0.1.

()
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extended to other nonlinear equations. Nutshell, OHAM-DJ is a better numerical method for solving nonlinear
equations.
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