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Abstract 
 
In this paper, we present a stochastic model for data in a Wireless Sensor Network (WSN) using random 
field theory. The model captures the space-time behavior of the underlying phenomenon being observed by 
the network. We present results regarding the size and spatial distribution of the regions of the network that 
sense statistically extreme values of the underlying phenomenon using the theory of extreme excursion re-
gions. These results compliment many existing works in the literature that describe algorithms to reduce the 
data load, but lack an analytical approach to evaluate the size and spatial distribution of this load. We show 
that if only the statistically extreme data is transmitted in the network, then the data load can be significantly 
reduced. Finally, a simple performance model of a WSN is developed based on a collection of asynchronous 
M/M/1 servers that work in parallel. We derive several performance measures from this performance model. 
The presented results will be useful in the design of large scale sensor networks. 
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1. Introduction 
 
In many applications, it is anticipated that wireless sen-
sor networks (WSNs) will be composed of a large num-
ber of stationary sensor nodes randomly deployed on a 
large terrain to monitor an environmental phenomenon. 
The sensors are expected to be very basic devices having 
limited computational power, transmission range, data 
storage, and energy resources. Thus, it is expected that 
the nodes will need to work cooperatively in order to 
deliver the collected data to an information sink where it 
can be accessed by the end user. 

In the literature, there are many examples of algo-
rithms designed to collect the node data in such a way 
that the energy consumption in the network is reduced. 
Fundamentally, all of these algorithms seek to find a 
suitable way to limit the size of the data load (i.e. the total 
number of nodes which attempt to forward their data to 
the sink). We now discuss several of these algorithms. 

In [1], the authors use the idea of representing a spatial 
phenomenon with contour lines to reduce number of 
nodes which transmit sensor data. They describe a fully 
distributed method for forming the contour lines where 
the contour lines are constructed from the node data at 
the sink. In [2], the Tiny Aggregation (TAG) service is 
presented. This scheme uses SQL-based aggregation 

queries to reduce the size of the data set. The aggregation 
process is performed in-network with aggregates com-
puted on the data as it flows between the sensor nodes 
towards the sink. Irrelevant data is discarded and relevant 
data is combined into more compact records whenever 
possible. In [3], the Clustered Aggregation Technique 
(CAG) is presented for collecting data in a WSN. This 
algorithm reduces the size of the data set by using que-
ries which exploit the inherent spatial correlation of the 
data set. This protocol forms clusters of nodes with val-
ues within some threshold of one another and selects a 
cluster head. In each cluster, only the cluster head reports 
its value to the sink and therefore the algorithm is lossy. 
The authors use simulation to show that a modest trade-
off in accuracy of the data using the CAG algorithm pro-
vides huge savings in terms of energy over the TAG al-
gorithm discussed earlier. In [4], the Power-Efficient 
Gathering in Sensor Information Systems (PEGASIS) 
data aggregation algorithm is developed. The authors not 
only address the issue of energy savings, but also 
achieving low latency in data delivery to the sink. One of 
their goals is to find a convergecast structure which can 
achieve low energy consumption and low latency. Unlike 
TAG and CAG which use a tree structure to collect data 
from nodes at the sink, PEGASIS uses a chain-based 
structure. One node in each chain is selected as a leader. 
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Data collection occurs along the chain with the aggregate 
value returned to the leader node. The leader node then 
transmits the aggregated data to the sink. 

To our knowledge, the existing literature is devoid of 
research that attempts to determine an analytical model 
for the size and spatial distribution of the data load in a 
sensor network. Thus, while the existing literature ad-
dresses questions relating to how to reduce the size of the 
data collected in a WSN, there are no models that esti-
mate the potential size of the reduced data load. The ex-
isting literature relies solely on simulation results to es-
timate this size. Since simulation faces severe complex-
ity problems in large scale WSNs, there is clearly a need 
for analytical models which capture the size of the data 
set. Since some data in a WSN may be more critical than 
other data, we will be primarily interested in the size of 
the data set when only the most critical data is transmit-
ted to the sink. In this respect, the present work will 
compliment much of the existing literature devoted to 
developing various algorithms for data gathering in sen-
sor networks. 

In this work, we model the node data in a sensor net-
work as samples taken from an underlying Gaussian 
random field. This random field is used to describe the 
space-time behavior of the phenomenon being observed. 
Random field models are popular in modeling large-scale 
environmental phenomena that exhibit correlated random 
variation in time and space [5,6]. We then use the con-
cept of high level excursion sets from random field the-
ory to study the size and spatial distribution of the set of 
nodes that experience statistically “extreme” data in the 
network. Statistically extreme data contains information 
on where the state of the phenomenon is most critical 
and in many applications we can imagine that it is this 
data which is most important to the end user. It is shown 
that the nominal data load experienced by a sensor net-
work can be significantly reduced if only statistically 
extreme data values are transmitted to the sink. Then, the 
notion of a high level excursion set is extended to define 
contour lines of the random field on the network de-
ployment. It is shown that if we only transmit data from 
nodes that are close to these contour lines, then, the data 
load in the network can be further reduced. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce random fields and present our 
model for the node data in a WSN. In Section 3, we pre-
sent results related to the average data load in a sensor 
network and show how the theory of high level excursion 
regions of Gaussian random fields may be used to model 
the extreme data load in the network. In Section 4, we 
develop a performance model for a large scale WSN. In 
Section 5, we present numerical and simulation results 
regarding the analysis of the total data load and the net-
work performance. Finally, Section 6 contains the main 

conclusions of the paper. 
 
2. Random Fields and Modeling 
 
2.1. Random Fields and the Underlying     

Phenomenon 
 
In this work, we use random field theory to describe the 
behavior of the underlying phenomenon being monitored 
by the network. A random field is simply a multidimen-
sional generalization of a one-dimensional random proc-
ess. In the physical sciences, random fields have been 
used to model phenomena in such diverse areas as for-
estry, geomorphology, geology, turbulence, and seis-
mology [6]. Consider the following phenomena that are 
amenable to modelling with random fields: Depth of 
snowfall across a surface during a snowstorm; pollutant 
concentration in a lake; shear stress along a fault line in 
the earth; height of the ocean surface; amount of recov-
erable solar energy; areal density of the population of a 
species; agricultural crop yield; distribution of rainfall on 
a crop; inflow of water into a reservoir; density, porosity, 
and permeability of soil; intensity of an earthquake [5]. 
Many physically occurring phenomenon exhibit Gaus-
sian or nearly Gaussian behavior [5,6] and, we will 
therefore assume that space-time behavior of the under-
lying phenomenon is described by a Gaussian random 
field. We assume that the network has been deployed to 
monitor an environment on a subset of two-dimensional 
space, , with area denoted by 2S    A S . We denote 
by  ,X ts

S
 the value of the Gaussian random field at a 

location s and time  0,t  . For a Gaussian ran-
dom field on  0,S   , the joint finite-dimensional 
distribution is Gaussian at all points  0,t S  ( , )is , 

1,i ,n  , where n is some arbitrary integer. The co-
variance function between the data at two points 
     , , ,j jt t 0,Si i   s s  is defined as: 

    
       

, , ,

, , , ,

i i j j

i i j j i i j j

C t t

E X t X t m t m t   

s s

s s s s
   (1) 

where  ,m ts  denotes the mean value of the random 
field at location Ss at time .  0,t 

Many phenomena are modeled as being separable in time 
and space [5,7], which allows the covariance function to be 
expressed as the product of two independent functions, 

       , , , , ,i i j j S i j T i jC t t C C t ts s s s      (2) 

where  ,S i jC s s  and  are spatial and tem-
poral covariance functions respectively. We note that a 
function is only admissible as a covariance function if it 
is positive definite. We will consider both separable and 
non-separable models in this work. 

 ,T i jC t t 
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We will assume that the covariance function is iso-
tropic in space. This means that the spatial covariance 
function may be represented as a function of the Euclid-
ean distance between points is js which we denote 
by ,i j

, S  
 .  then have that: We

   ,,S i j S i jC C s s               (3) 

Finally, it will also be assumed that the random field is 
mean-square differentiable in space. A necessary condi-
tion for a Gaussian random field to be mean-square dif- 

ferentiable is that  2
, ,d dS i j i jC 2   exists and is finite 

at , 0i j   [5]. In practice, very few space-time phe- 
nomena exhibit this property. However, in [5] it is shown 
that if even a small amount of local averaging is per-
formed on the signal from the underlying random field, 
then the resulting locally averaged field will be mean- 
square differentiable. We note that local averaging may 
be already “built-in” to the nodes in a WSN. It is ex-
pected that the nodes will have some sensing radius, r, 
and we posit that the value that the node stores in mem-
ory will often be obtained by averaging over the region 
of radius r centered about the node’s position [8]. 

Among the common spatial covariance functions [9] 
that are mean-square differentiable, is the rational quad-
ratic function given below, 

 
22

,
, ,

1

1 i j
S R i jC








  
   
   

          (4) 

where 1 20, 0   . The parameter 1  controls how 
fast the spatial covariance dies with distance and the pa-
rameter 2  controls the smoothness of the sample paths 
of the random field. Higher values of 1  correspond to 
stronger spatial correlation of the random field. This spa-
tial covariance function has the desired property of 
mean-square differentiability discussed above. 

In [9], a common stationary temporal covariance func-
tion is given. Let i jt t t    be the time difference 
between two samples. Then this covariance function is 
given by, 

    3, t
T i j TC t t C t e             (5) 

In [10], the author argues that one setback of separable 
covariance models is that they suffer from a lack of 
smoothness away from the origin, ( 0, 0t

 
  

 
2

, ,

, 1

π
,

2 1

t

i j t i j

i j t

K
C t

t

 

 

 

  


 

 

 

  

 
   

   
   (6) 

where  tK     is the modified Bessel function of the 
second kind of order t    and , ,    are positive 
constants [10]. 
 
2.2. Model for Sensor Network Data 
 
We first assume that N static sensor nodes have been 
deployed uniformly on . The density of the node de-
ployment is therefore, 

S
 N A S  . We represent the 

position of each node with a two dimensional vector 

i Ss , 1, ,i N 

,

. We then assume that the sensor 
network takes samples of a continuous Gaussian random 
field at the locations of the sensor nodes at discrete times, 

1 2, , Kt t  t . We let  kt

k

X
t k

 denote the vector of sam-
pled node values at time . That is, , 1, , K 

      1 2, , , , , ,k k k N Nt X t X t X t k   X s s s , 

1, ,k K  . We form the joint vector of node data at all 
sampling instants as: 

     1 2, , , Kt t t   X X X X  

X  also has a joint Gaussian distribution which will 
now be determined. We construct the vector of the 
means at each node at the sample instants as: 

1 2

T
,  , ,  

K

r

t t t   XM m m m            (7) 

where       T
1 2[ , ,  , , ,  , ] r

t k k Nm t m t m t m s s s
, 1kt k

k
 is the 

vector of node means at sampling instant 
k

, , K  . 
The covariance between the data at two nodes at two 
sampling instants 

1 2
 is determined from the par-

ticular covariance model of the underlying random field. 
,k kt t

We form the N N  matrix of covariances between 
the data at all nodes at times  as: 

1 2
,k kt t

        1 2 1 21 2, ,
, 1

, , ,
k k

N

k k i k j kt t
i j

W W C X t X t


    X X s s (8) 

We then form the  super covariance matrix 
W as: 

2N N 2

1,1 1,2 1,

2,1 2,2 2,

3,1 3,2 3,3

,1 ,1 ,

K
Tr

K
Tr Tr

Tr Tr
K K K K

W W W

W W W

W W WW

W W W

 
 
 
 
 
 
  

 
 

 
    

 

X  
)    . The 

author proposes several non-separable covariance models 
among which is an isotropic, stationary, space-time co-
variance model which makes the underlying phenome-
non Markovian in time. Let two points in the field be 
separated by distance ,i j  and be sampled at times 

seconds apart. For a random field on t  0,2   
this model is then given by: 

We can then write the joint distribution of X  as: 

 
     

 

11

2

1 22
2π

Tr W

N

e
f

W

  


X X Xx M x M

X

X

x           (9) 
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where . Unless it is other-
wise stated, we will assume throughout this work that the 
mean value of the field is constant at a given time across 

 so that , 

      1 2,  , ,  Kt t t x x x x

   ,im t m ts 1, ,S i N  , .  0,t 
Clearly, in the simulation of sensor network data gen-

eration according to the full joint distribution has dimen-
sionality drawbacks. In cases where the covariance 
structure gives rise to node data that is Markovian in 
time as in (6), the dimensionality will be reduced. At a 
given time instant  we have that: kt

      

   


 

1 1

1

1 2 1, ,

1

, , ,
k k

k k

k k kt t t

k kt t

f

f





 



 
X X X

X X

x x x x

x x
 

Therefore, the data at an arbitrary sampling instant can 
be generated based solely on the node data at the previ-
ous sampling instant and does not require knowledge of 
the node data at all previous sampling instants. Now 
consider the vectors of node data at two consecutive 
sampling times,  and . In [5], it is shown 
that the conditional distribution 

 ktX  1kt X 
   1k kt t X X  is also 

Gaussian with p.d.f given by: 

     
     

 

1

1 , 1 1

1

1

2

1 1 22

, 12π

Tr

k k k k k k k

k k

W

k kt t N

k k k

e
f

W


 



  






x m x m

X X
x X



(10) 

This distribution is determined by the conditional 
mean vector and conditional covariance matrix given by: 

 1
, 1 1, 1 1 11 k k k k k k kk k W W 
       m m X m    (11) 

1
, | 1 , , 1 1, 1 , 1

Tr
k k k k k k k k k k kW W W W W

     



        (12) 

where 
kk t , k  and  is given by 

(8). It is said that when the vector  is actually 
observed as  

m m

t

 k tX X

 1 1k k

1 2,k kW
 1kt X

X x



, then the observed vector 
can be substituted into (11), and (12) in place of 

k  therefore permitting an updating of the prior 
p.d.f.  by the posterior p.d.f. 

1kx

tX



1

  1 kk ttf
X x
1

      x
1 1 1kk k t k kt t

f t
  X X

x X . 

This completes our representation of the data in a WSN. 
 
3. Applications of Excursion Regions of 

Random Fields 
 
In the following analysis, we seek to determine the spa-
tial distribution of the data load and the global average 
data load in a sensor network when nodes forward their 
packets to the sink only if their sensed value is greater 
than some threshold, b. The analysis in this section, 
without loss of any generality, assumes that the underly-
ing isotropic Gaussian random field has been standard-
ized to have zero mean and unit variance. 

3.1. Spatial Distribution of Data Load 
 
As discussed earlier, it will be necessary to limit the 
number of nodes which attempt to transmit their data 
packets to the sink in a large-scale WSN. As well, we 
noted that the sink will often be most interested in where 
the state of the phenomenon is most severe or extreme. 
The random variation of a phenomenon in space and 
time can lead to occurrences of values with significant 
deviation from the expected value of the phenomenon. 
These values are called “extreme values”. A central topic 
in random field theory is the analysis of the size (i.e. area) 
of the regions in the plane where a random field exceeds 
an extreme level. We will use the theory of the sizes of 
these extreme regions in order to develop a spatial un-
derstanding of the data load in a sensor network. Since it 
often the extreme data values which are most important 
to the end user, we will assume that a sensor node only 
attempts to transmit its data packet to the sink if the 
value it observes from the underlying field is above some 
high level, b. 

Let us denote by ,i bA  the area of the i’th isolated re-
gion on the network deployment area, where the value of 
the field exceeds the level . We will call these 
regions “excursion regions”. In [5], the average size (ie. 
area) of an isolated excursion region for an isotropic 
mean-square differentiable Gaussian random field is 
given by: 

b

 
 

1 2

2

,

1 2π
,

X X

i b

b
E A b

b  
 

        
   

   (13) 

where  b  and  b  are the cumulative distribution 
function (CDF) and probability density function (pdf) of 
a standard normal random variable respectively. The 
parameters 

Xk



, 1, 2k  , correspond to the directional 

derivatives of the field in the direction of each of the 
axes in 2-dimensional space and depend on the degree of 
spatial correlation. For a spatially isotropic random field, 

1X



, 

2X



 are equal to one another and are given by, 

 
,

2
,2

2
,

0

d
,  1,  2

dk

i j

S i j

X
i j

C
k









         (14) 

For the rational quadratic covariance function, these 

derivates can be computed for (4) as 2
2 12

kX
   , 

1, 2k  . 
We note that as the degree of spatial correlation in-

creases, the average area of the isolated excursion re-
gions given by (13) also increases. 

Our assumption that the nodes have been uniformly 
deployed implies that the number of nodes on an isolated 
excursion region is governed by the spatial Poisson pro- 
cess with parameter given by the density of the node 
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deployment,  N A S  . We call a node whose posi-
tion lies within an isolated excursion region for a given 
level b at a sampling time, an “excursion node”. We note 
that by virtue of their location, excursion nodes necessar-
ily have a data value exceeding the level b. Let ,i bK  
denote the number of nodes on the  excursion re-
gion for extreme value level b. We have that: 

'i th

    ,
,

,Pr ,
!

i b
k E A

i b

i b

E A e
K k b

k

            (15) 

where we have approximated the area of an excursion 
region with its expected value (13). The average number 
of nodes on the  excursion region is given by: 'i th

, , ,i b i bK E A b              (16) 

In [5], it is further shown that as the level b increases, 
the number of isolated excursion regions approaches a 
spatial Poisson process with the parameter given by: 

 
,

1
,b

i b

b
b

E A





  
           (17) 

From (17), the rate of isolated excursion regions in the 
plane, b , is inversely proportional to the average area 
of an isolated excursion region. Therefore, as the degree 
of spatial correlation increases, the frequency of the ex-
cursion regions in the plane decreases proportionately. 
Expressions (13) and (17) imply that when the spatial 
correlation of the underlying phenomenon is high, the 
nodes that observe extreme values will tend to be located 
on a relatively small number of large excursion regions. 
On the other hand, for low value of spatial correlation, 
the nodes that observe extreme values will tend to be 
located on a large number of small excursion regions. 
The preceding comments offer great insight into the spa-
tial distribution of excursion nodes (equivalently, the 
data load) on the network deployment area. 

A natural question arises, how high must the level b be 
taken so that (13) and (17) hold. In [5], it is recom-
mended that b be at least twice the standard deviation of 
the random field. An excellent study on the accuracy of 
these expressions for non-asymptotic levels is found in 
[11] where the authors look at a random field model de-
scribing the salt-induced delamination of a concrete slab. 
 
3.2. Average Global Data Load 
 
In this section, we derive an expression for the total av-
erage number of nodes which observe data above an ar-
bitrary level, b, and therefore attempt to forward their 
data to the sink. 

We define the global excursion area as the total area of 
the network deployment where  ,X t bs  and denote 

this area by b . In [5] it is shown that for a region with 
area 0 , the average area within 0  that exceeds b is 
given by 

a a
  0 1a b  when the random field is spa-

tially homogeneous. Since we have assumed that the 
underlying phenomenon is spatially isotropic (which 
implies homogeneity, see [5,7]), we have that: 

  1A S  b  b           (18) 

where  b  is the cumulative distribution function 
(CDF) of a standard normal random variable. We note 
that this expression only depends on the level of the 
threshold b and is independent of the spatial correlation 
of the random field. 

Expression (18) will allow us to determine the total 
average data load experienced by a WSN in response to 
the sampling of the phenomenon for an arbitrary value b. 
Suppose that a sensor node only attempts to send its own 
data packet to the sink if the data value in this packet 
exceeds the level b. Denote the total number of excursion 
nodes in the network by bK . Since we have assumed 
that the sensor nodes have been uniformly deployed on S 
with density  , the average number of excursion nodes 
in the network (equivalently, the average number of data 
packets or data load) at a sampling time is given by: 

 1N b b bK             (19) 

This last expression shows that the total average num-
ber of excursion nodes is the same as if the data at the 
nodes were i.i.d. This obviously follows from the invari-
ance of b  to the degree of spatial correlation. Thus, 
the spatial distribution of the data values according to the 
covariance model of the random field has no bearing on 
the total average data load. In this respect, this expres-
sion describes the data load only on a global scale over 
the whole network and does not capture information on 
the location of the excursion nodes themselves. If the 
level b is extreme, then the results from Section 3.1 can 
be used to gain insight into the spatial description of this 
total data load at various regions throughout S will often 
be needed in large-scale WSNs. 

An ability to describe the spatial distribution of the 
data load (as in Section 3.1) will provide insight into 
local contention for the channel, the spatial distribution 
of newly generated data packets, and the spatial distribu-
tion of energy consumption. The utility of our expression 
for the average global data load in (19) is useful from the 
perspective that all node data must pass through the in-
formation bottleneck that occurs around the sink in a 
WSN [8]. Many characteristic performance measures 
will be strongly influenced by the behavior of the net-
work in the region closest to the sink and so, (19) de-
scribes the average data load that the nodes in this region 
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must bear. Thus, (19) will occupy a fundamentally im-
portant role in assessing the performance of the network. 

3.3. Contour Nodes 

In many WSN applications, it may be sufficient to rep-
resent the phenomenon with the data that belongs to a set 
of discrete contour levels 1 2, , , Jb b b  in the plane. We 
note here that it may be assumed that the nodes imple-
ment some form of quantization of the values they sense 
from the underlying random field. Since the sensor nodes 
have limited storage capacity, we assume that a quanti-
zation of the continuous values of the node data is per-
formed when digitizing the analogue signal. For j   
1, , J
δ

, let us define a quantization region of half- width 
 around each level jb , where 0 jb 



. We will 
then assume that if the value of the underlying random 
field at a node location is in the range j j , 
then the value stored at the node is 

δ δ,b b

jb . Thus, we can 
think of all nodes whose values get quantized to a level 

jb , as belonging to a contour line associated with this 
level. We will call such nodes “contour nodes”. 

In [7] it is conjectured that for Gaussian random fields, 
if the mean and covariance functions are both continuous, 
then the sample paths of the random field are almost cer-
tainly continuous. Consider a single contour quantization 
level b. Suppose we consider the areas , δi bA   and 

, δi b  associated with the  excursion regions for 
the levels  and  respectively. The continuity 
of the sample paths assures us that each isolated excur-
sion region for level  is contained within a corre-
sponding excursion region for level . Due to the 
quantization of the sensed data, the number of nodes 
“on” the  contour line therefore corresponds to the 
number of nodes between the boundaries of the two ex-
cursion regions. Let ,i b  denote the number of contour 
nodes that belong to the i’th contour line. The above 
comments imply that: 

A  'i th
δb 

'i th

δb 

δb 

G

δb 

, , δ , δi b i b i bE A E A        G 

δ

       (20) 

Let 
b

denote the average number of nodes that form 
the contour line for level b over the entire network. From 
the discussion above, we have: 

G

δb b b G K K                   (21) 

where δbK , δbK  are given by (19). 
 
3.4. Extension to Non-Stationary Phenomenon 
 
In this section, we give an extension of the preceding 
results to scenarios where the Gaussian phenomenon 
exhibits a form of spatial non-stationarity. Many natu-
rally occurring phenomena can be characterized as oc-

curring at an epicenter and affecting points in the sur-
rounding environment in inverse proportion to their dis-
tance to the epicenter. We will call such phenomenon 
“point-source” type. We model phenomena of the point- 
source type by introducing a location dependent mean at 
each point in the environment surrounding the epicenter. 

Recall our earlier observation that when the mean of a 
spatially correlated phenomenon is constant across , 
the average number of excursion nodes in a WSN can be 
computed as if the data were i.i.d. An analogous result 
holds when the mean is allowed to vary across  for 
fixed time. In this case, the average number of excursion 
nodes can be computed as if the data were independent 
but not identically distributed. Denote the data value at 
the node 

S

S

1, ,i N   by  ,i X ts . We assume that each 
 ,iX ts , 1, ,i N   has a mean value given by 
 ,im ts , 1, ,i N   and variance . Using the 

previous comments, we have the following for the num-
ber of excursion nodes at any time: 

2 ,i t s 

    
 

 

1

1

Pr ,

,
Pr

,

N

b i
i
N

i
i

i i

t X s t b

b m t
Z

t





 

 
   

 





K

s

s

      (22) 

where ,  1, ,iZ i N  , are independent standardized 
normal random variables. The accuracy of (22) will be 
demonstrated later through simulation results. 
 
4. WSN Performance Model 
 
In this section, we construct a performance model of a 
WSN using a contention based MAC protocol in order to 
study the performance of the network when only excur-
sion nodes transmit their data to the sink. We seek to 
construct a first-cut model that’s usefulness lies in its 
simplicity and lack of dependency on the specifics of the 
MAC and routing protocols. Next, we state our basic 
assumptions: 
 The time is diveded into slots of duration  seconds.  
 The nodes collect data at discrete time instants every 

t  seconds which will be assumed to be an integer 
multiple of slot duration,  . After each sampling 
time, only excursion nodes attempt to transmit their 
data to the sink. 

 Each excursion node will encapsulate its sensor read-
ing into a single packet of fixed length. Non-excursion 
nodes only participate in relaying the data packets 
from the excursion nodes to the sink. Downstream 
excursion nodes may also assist in routing packets 
from upstream excursion nodes. 

 Sensor nodes access the channel through a modified 
CSMA type of MAC protocol. Since we have a dis-
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tributed system, there may be many transmissions 
going on in the system simultaneously which are not 
synchronized with each other. Thus, the traffic load 
will be transported to the sink by a number of asyn-
chronous servers working in parallel. 

 
4.1. Routing 
 
In our performance model, we require a rough descrip-
tion of how data flows in a WSN. We assume without 
loss of generality that the WSN has been deployed on a 
semi-circle with radius  with the sink located at the 
origin. It will be assumed that the transmission range of a 
node is Tx , which will also be referred as the one-hop 
distance. We will assume that a packet advances on a 
straight line path towards the sink by the amount of node 
transmission range, , following each successful 
transmission. 

R

Tx

r

r

We now determine the minimum distance between two 
nodes that experience simultaneous successful packet 
transmissions. Each node with a packet to transmit con-
tends for the channel with its neighbors within its trans-
mission range. The successful transmission of a data 
packet in a contention neighbourhood implies that there 
were no hidden nodes that transmitted during this time 
slot. We assume that a node’s listening range is the same 
as its transmission radius. Then, each contention neigh- 
bourhood can be visualized as two concentric circular 
regions of radii Tx  and  respectively, which is 
depicted in Figure 1. In Figure 1, node A is the node 
currently attempting transmission to the next hop node B. 
The nodes outside of the inner circle of radius Tx  cen-
tred at node A and within a distance Tx  of node B are 
hidden from node A. We note that not all nodes in the 
outer circle will corrupt the packet node A sends to node 
B (ie. nodes in the outer circle that are further than Tx  
from node B). However, we assume that all nodes in the 
outer circle are hidden. If node A’s transmission is to be 
successful, then no hidden nodes transmit during node 
A’s transmission to node B and there are no other colli-
sions with A’s data packet. From this explanation, we 
conclude that two nodes having successful packet trans-
missions should be separated by at least 3 Tx  from each 
other. We may therefore assume that each contention 
neighbourhood will have a radius of 

r 2 Txr

r
r

r

r

 3 2 Txr . As a re-
sult, the maximum number of simultaneous transmis-
sions in the network will be given by, 

2

2 22 Tx

R
H

c r
  

where 3 2c  . Due to channel contention, the number 
of simultaneous transmissions in the network will vary in 
time. 

 

Figure 1. Illustration of a contention neighbourhood. Nodes 
outside the inner-circle do not transmit during a time slot. The 
x’s represent sensor nodes in the contention neighbourhood. 

 

4.2. Contention Model and Packet Service Time 

Next, we describe the access of the sensor nodes to the 
channel. Recall that nodes with packets to forward access 
the channel using a slotted CSMA type of protocol. We 
note that each successful transmission will be preceded 
by a contention interval. In a contention neighbourhood, 
let us assume that each node with a packet contends in-
dependently for the channel during a time slot with 
probability , which will be called the “attempt” prob-
ability. Further, it will be assumed that 

p
1p  n , where 

 is the number of nodes contending for the channel 
within a node’s transmission range. This value of p 
maximizes the probability of successful transmission in a 
slot, 

n

sP , which quickly approaches to a constant value 
of 1 e

n
 as n increases (stabilization is reached after 

about 4  ontending nodes) [20]. That is, 1sP e  
when 1p n . Assuming that sP  has reached this as-
ymptotic value, the contention interval will be geometri-
cally distributed in number of slots with parameter, 

1sP e . The mean packet service time in seconds is 
composed of the sum of this contention interval and the 
packet transmission time. We have, 

pe T T                  (23) 

where pT  is defined as the average time to transmit a 
packet which is determined by the data rate of the chan-
nel and the average packet length. As is customary, we 
assume that packet lengths are exponentially distributed. 
Further, we will assume that packet service times, , T
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b 

are exponentially distributed with the mean service time 
given by (23). 
 
4.3. Packet Arrival Process 
 
According to (19), the average of number of excursion 
nodes in a WSN observing a correlated stationary Gaus-
sian phenomenon is given by . In this 
performance model, we will make the simplifying as-
sumption that the packet generation is uniformly distrib-
uted over the network area and that the level b is not 
necessarily extreme. This assumption will allow us to 
compare the performance of the network when non-ex- 
treme and extreme data is transmitted. Thus, even though 
the spatial distribution of data in a WSN when the level b 
is extreme occurs in clusters of isolated Poisson distrib-
uted excursion regions, we will assume that the location 
of each excursion node is random on the deployment 
area. We then define the packet generation rate per unit 
area as, 

 1b N K

 
b

A S
 

K
                (24) 

Since the data traffic flows to the sink, the traffic load 
per unit area will increase as the distance to the sink de-
creases. It will be assumed that the traffic density will be 
same at the equidistance points from the sink. Let us de-
fine  as the traffic density (i.e. total packet rate per 
unit area) at a distance r from the sink. The traffic that 
will pass through the boundary of the semicircle with 
radius r will be the total data load generated by all the 
excursion nodes located outside of this perimeter. Thus, 
we have, 

 r

 
   2 2

2 2
1
π

2
π 2

R r R r
r

r r
  

 
      (25) 

It will be assumed that the traffic density throughout a 
contention neighbourhood will have the same value as its 
center. Then the total packet arrival rate at a contention 
neigborhood whose center is at a distance r from the sink 
will be given by, 

    2 2π Txr r c  r

mean service time given by (23) and mean arrival rate of 

            (26) 

 
4.4. Packet Delay 
 
We will model each contention neighbourhood as a dis-
tributed server. Each server on the routing path from an 
excursion node to the sink can be modelled as a “virtual” 
M/M/1 queue. Let us consider a contention neighbour-
hood located at . ,  1j Txr jr j J  

We will model each server as a M/M/1 queue with 

(26) with jr r . Thus, the mean packet delay of a 
packet in a tion neighbourhood at j hops from the 
sink will be given by the M/M/1 formula, 

conten

1j
j



T

d                (27) 

where   j jr  T . 
contention neThe ighbourhoods that a packet passes 

through on its routing path correspond to a series of 
M/M/1 queues in tandem. The queue for the last hop 
which interfaces with the sink will have the highest traf-
fic load. Clearly, if this queue is stable, then the queues 
of the preceding hops will also be stable. Thus for the 
stability of the system, we require that  1 1 1r  T . 

The average total delay of a packet i- which has orig
na

  (28) 

Next, we will determine the average total delay of 
pa

ted j hops away from the sink will be given by, 

,  for  1, ,
j

j J  D d        
1j ii

a 
cket in the network. Let us define probability that a 

node will be located j hops away from the sink, 

2 2
1

2

Pr(a node is  hops from sink)jp j
j jr r

R



 

Since all the excursion nodes generate packets at the 
same rate, then, the average total packet delay in the 
network is given by, 

J

1 j jj
p


 D D                     (29) 

 
. Numerical and Simulation Results 

 this section, we plot curves of analytical expressions 

.1. Average Data Load Results for a Random 

 
 Figure 2, we plot the average number of excursion 

5
 
In
derived in the paper and verify their accuracy through 
simulation results. In the following, it is assumed that the 
underlying phenomenon is described by a spatially iso-
tropic Gaussian random field. All simulation results have 
been obtained by averaging over 200 simulation runs. In 
each run, the nodes have been randomly placed over the 
network area according to uniform distribution. 
 
5

Field with a Constant Mean 

In
nodes in the network normalized to the total node popu-
lation using (19) and the normalized average number of 
contour nodes for different half-widths  0.025, 0.05, 0.1   
using (21). Here we have assumed a  
covariance structure (4) with 1 250, 1

 rational quadratic
   . Since the 

nodes are homogeneous, these ond to the  results corresp
normalized data load experienced by the network due to 
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excursion/contour nodes attempting to forward their 
packets to the sink. It may be seen that for an extreme 
value level at least twice the standard deviation of data, b 
> 2, the excursion node population is well below 5 per-
cent of the total node po- pulation. These results also 
illustrate that greater amount of data reduction is possible 
when only the contour node population is allowed to 
transmit data to the sink. 

In Figure 3, we demonstrate the effect of the correla-
tion range parameter, 1 , when the phenomenon has 
rational quadratic spatial covariance (4) on the average 
area of an isolated excu ion region for a standardized 
Gaussian random field for levels b = {2, 2.5, 3}, and 
fixed 2 1

rs

  , using (13). It may be seen that the average 
size of an excursion region increases with the level of 
correla n the other hand, for a given level of corre-
lation, the average size decreases with increasing level b. 

In Figure 4 we plot the average number of isolated 
excursion regions that occur on the network deployment 

tion. O

area (17) as a function of 1  for standardized Gaussian 
data with rational quadratic spatial covariance (4) for 
levels b = {2, 2.5, 3} assum ng that the nodes have been 
deployed on a circular region with radius 400 meters. It 
is seen that the average number of excursion regions de-
creases as the level of correlation increases. 

Next, we present simulation results that verify the ac-
curacy of expressions for the average numb

i

er of excur-
si

 

on and contour nodes in the network, using (19) and 
(21) respectively. We consider a WSN with N = 2000 
sensor nodes deployed on a circular area of radius R = 
400 meters. In Tables 1 and 2, we assume that time is 
fixed and all network data has been standardized so that 
 , 0im s t  ,  , 1is t   In both tables, the node data is 

 

 

 

Figure 3. The average area of an isolated excursion region 
(m2) as a function of the correlation range parameter, α1

for levels b = {2.0, 2.5, 3.0}, and fixed roughness parameter
, 
 

α2 = 1. 

 

 

Figure 4. Average number of excursion regions on a circu-
lar deployment area with radius 400 metres as a function of 
the correlation range parameter, for levels b = {2, 2.5, 3}

on with rational quadra riance where 

 
and fixed roughness parameter α2 = 1. 

 
generated according to an N N  joint Gaussian distribu-
ti tic cova 1 50,   

2 1   (note that the entrie e covariance matrix are 
computed through (4)). Table 1 presents both the ana-
lytical and simulation results for the average number of 
excursion nodes in the network for different levels b. As 
may be seen, the analytical and simulation results are in 
close agreement with each other over a wide range of 
levels b. The last column in the table shows the percent-
age data load based on simulation results which illus-
trates the reduction in the nominal data load that can be 

s of th

Figure 2. The average data load normalized to the total 
network data load using the excursion and contour node
populations. 

 

Copyright © 2011 SciRes.                                                                                 WSN 



 
292 G. PATTERSON  ET  AL. 

5.2. Average Data Load Results for a Random 
d with atially an ime Vary
n 

Nex (22) 
for m -stationary random fields is accurate under 

enarios where the phenomenon occurs as an impulse at 

hich has been deployed 
w

achieved by only transmitting data generated by the ex-
cursion nodes for different levels b. It may be seen that 
the load drops below one percent for values of b > 2.5. 
The Table 2 presents the results for the average number 
of contour nodes in the network for different contour 
levels b with the contour line half-width fixed as 

0.05  . Again, we can see that the analytical and 
simulation values closely match each other over a wide 
range of levels b. The percentage data load in Table II 

ates that only transmitting data generated by 
contour nodes can further reduce the nominal data load 
in a WSN. It may be seen that the load drops below one 
percent for values of b > 1.7 when 0.05

demonstr

  . 

 
Table 1. Analytical and simulation results for the average 
number of excursion nodes in the network. 

N = 2000 nodes, R = 400 m, α1 = 50, α2 = 1 

Level b 
Kb Kb 

(Analysis) (Simulation) 
%Data Load 

0.00 1000. 49.78 0 995.54 
0.20 
0.50 

8  841.48 08.21 40.41 
30.74 617.08 614.72 

0.70 483.93 489.36 24.47 
1.00 317.31 320.24 16.01 
1.20 230.14 217.69 10.88 
1.50 133.61 131.49 6.57 
1.70 89.13 84.71 4.24 
1.90 57.43 57.68 2.88 
2.00 45.50 42.60 2.13 
2.20 27.81 27.33 1.37 
2.50 12.42 13.03 0.65 
2.70 6.93 7.23 0.36 
2.90 3.73 4.19 0.21 
3.00 2.70 2.54 0.13 

 
Table 2. Analytical and simula r average nu- 
mbe ontour n in network.

tion results fo
r of c odes  

N = 2000 nodes, R = 400 m, α1 = 50, α2 = 1, δ = 0.05 

Level b 
Gb G

(Analysis) 
b 

(Simulation) 
%Data Load 

0.00   79.76 78.96 3.95

0.20 

0.50 

Fiel a Sp d T ing 
Mea

 
t, we present simulation results which show that 

ean non
sc
an epicentre and induces an isotropic Gaussian random 
field in the surrounding region. 

In the general scenario, we assume that at time t = 0 an 
impulse of magnitude c occurs at the epicenter and con-
sider a WSN with N nodes w

ithin some proximity of the epicentre. For t > 0, we 
assume that a Gaussian random process occurs at each 
node and that these processes are Markovian in time and 
correlated according to the non-separable, Markovian 
model given in (6). To model the effect of the impulse on 
the node data, we assume that at t = 0 each node senses a 
random value with a Gaussian distribution where the 
data values are correlated according to (6), but with an 
initial mean value inversely proportional to the node’s 
distance to the epicentre, ,i E . Thus, we have 

  ,0i i Em c   for node i. We assume that the mean 
value at node i decays according to     0.10 t

i im t m e . 
To generate simulation res , we suppose that ults

1000N   nodes have been deployed at random on a 
circular area of radius 250R   m is eters. Further, it 
ass
chosen on

umed that the location of the epicentre is randomly 
 the deployment area and the initial impulse is 

of magnitude 250c   an es at time 0td strik  . For 
any time 0t  , the covariance between the node data is 
given according to (6) with parameters with 50,   

1,   2    . l associate excursion nodes with 
the level .0

We wil
2b  . The node data at each sampling time 

is generated based on the observed node data at the
g instant according to the conditional 

Gaussian tion given by (10). In our simulation, 
we generate samples of the node data every 5 seconds 
until the phenomenon reaches steady-state (i.e. when the 
mean value is 0 at all points across the deployment). 
Analytical and simulation results are presented in Table 
3. Table 3 shows that the average number of excursion 
nodes in the network is accurately predicted by (22) 
when the phenomenon exhibits spatial non-stationarity in 
the mean sense and also a Markovian temporal evolution. 
We note that when computing (22), the variance of each 
node’s data at a sample time, 2 ( , )i t s , is computed via 
the covariance expression (6) with , 0, 0i i t

 pre-
vious sam

d
plin
istribu

    . The 
mean value of each node’s data at a sample time is given 
according to the model we  in the previous 
paragraph. 

7 78.18 6.72 3.84 

3.51 70.39 70.11 

0.70 62.44 61.54 3.08 

1.00 48.38 48.71 2.44 

1.20 38.84 39.09 1.95 

1.50 25.92 26.66 1.33 

1.70 18.82 20.23 1.01 

1.90 13.14 14.05 0.70 

2.00 10.81 11.57 0.58 

2.20 7.11 7.06 0.35 

2.50 3.51 3.55 0.18 

assumed
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Table 3. Analytical and simulation results for the average 
number of excursion nodes after an Impulse phenomenon. 

Time (s) Simulation Analysis 

0 211.0833 213.3950 

5 97.3333 96.1510 

10 61.3333 56.9225 

15 37.7500 40.0463 

20 30.2500 31.7547 

25 29.1667 28.1931 

30 25.9167 25.3503 

35 23.7500 24.3748 

40 23.1667 24.0566 

45 23.000 22.9921 

 
5.3. Mean Delay Results 
 

 this section, we present plots of the average packet 
tance to the sink using (27) 

nd (28) in a hypothetical large-scale WSN of 5000 

In
delay as a function of hop-dis
a
nodes deployed on a semi-circle of radius 500 meters. 
The transmission range (equivalently, the hop-distance) 
is set to 25Txr   meters. We have assumed the under-
lying phenomenon is a standarized isotropic Gaussian 
random field with rational quadratic covariance with 
parameter 1 250,  1 values    . As usual, we assume 
that only excurison nodes attempt to transmit their pack-
ets to the sink. We assume all excursion node packets 
have mean length nd that the data rate of 
the channel is 30 kbps. This gives a mean packet trans- 

mission time of 2.67 msecp pE T     T . Finally, we 
assume a slot time of 10 sec

of 10 bytes, a

  . 
In Figure 5, we show the mean delay experience by a 

packet at each hop for excursion  distance in the network 
 2.0, 2.5} u g (27). For a given 

le

ng (28). This figure illustrates the reduction 
in

not just take b arbitrarily high or there will be no trans- 

node levels b = {1.5, sin
vel b, this figure shows the increase in mean delay as 

the packet approaches the sink.  It also shows how re-
ducing the data load by using extreme levels (b = 2.0, 
and b = 2.5 can be considered extreme) reduces the mean 
delay of packets, especially as the packets move closer to 
the sink. 

In Figure 6, we show the mean total delay of packets 
originating at each hop distance from the sink in the 
network usi

 the mean delay achieved by increasing the level asso-
ciated with the excursion nodes. Note how there is only a 
small reduction in the delay when the level is increased 
from b = 2.0 to b = 2.5 whereas there is a significant 
delay readuction when the level is increased from b = 1.0 
to b = 2.0. There is clearly, a practical limit to the mini-
mal achievable total average delay. Obviously, we can-

 

Figure 5. The mean delay experienced by a packet at each 
hop distance from the sink. 

 

 

Figure 6. The total average delay in the WSN for packets 
originating at different hop distances from the sink. 

 
missions in the system. The level b, of course, should be

verage 
ata load in the network for a given level b. In our sce-

 
chosen according to the needs of the end-user and as we 
have seen, one can use (19) to evaluate the total a
d
nario, we have 1.0K = 93.2763 nodes, 2.0K  = 13.7507 
nodes, and 2.5K  = 31.0483 nodes. 
 
6. Conclusions 
 
In this pape  have presented an r we analytical model for 

e data values observed by the nodes in a WSN. We 
nsor network data as samples from a 

aussian random field. We have presented results for the 

th
have modeled the se
G
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average total area of the network that experiences data 
above an arbitrary level b, and the average area of an 
isolated excursion region containing extreme data when 
the level b is chosen sufficiently high. It has been shown 
that the number of excursion regions on the network de-
ployment approaches a Poisson distribution for extreme 
levels, b. The average size of the isolated excursion re-
gions increases while their frequency decreases when the 
level of spatial correlation is increased. It has also been 
observed that the sum of the average size of excursion 
regions and the average excursion node population for a 
level b are a function of b alone and not on the degree of 
spatial correlation. We have quantified the data reduction 
that may be achieved by only transmitting data from ex-
cursion and contour nodes for various levels b. Finally, a 
performance model has been presented for large-scale 
sensor networks that can be used to derive the mean de-
lay experienced by packets at each hop on their journey 
to the sink. The results of the paper will be useful in the 
design of large sensor networks in ensuring that the net-
work meets the requirements of the end user. 
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