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Abstract 
This paper investigates the log-concavity of the centered m-gonal figurate number sequences. The 
author proves that for 3m ≥ , the sequence ( ){ } 1n n

m
≥

  of centered m-gonal figurate numbers is a 
log-concave.  
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1. Introduction 
For 1n ≥  and 3m ≥ , let ( )n m  denote the thn  term of the centered m-gonal figurate number sequence. E. 
Deza and M. Deza [1] stated that ( )n m  could be defined by the following recurrence relation:  

( ) ( )1n nm m mn+ = +                                    (1) 

where ( )1 1m = . E. Deza and M. Deza [1] also gave different properties of ( )n m  and obtained  

( ) ( ) 21 21
2 2n

m n n mn mnm
− − +

= + =                            (2) 

where 1n ≥  and 3m ≥ . For 3m ≥ , some terms of the sequence ( ){ } 1n n
m

≥
  are as follows:  

1,1 ,1 3 ,1 6 ,1 10 ,1 15 ,1 21 ,1 28 , .m m m m m m m+ + + + + + + �  

Some scholars have been studying the log-concavity (or log-convexity) of different numbers sequences such 
as Fibonacci & Hyperfibonacci numbers, Lucas & Hyperlucas numbers, Bell numbers, Hyperpell numbers, 
Motzkin numbers, Fine numbers, Franel numbers of order 3 & 4, Apéry numbers, Large Schröder numbers, 
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Central Delannoy numbers, Catalan-Larcombe-French numbers sequences, and so on (see for instance [2]-[9]). 
To the best of the author’s knowledge, among all the aforementioned works on the log-concavity and log- 

convexity of number sequences, no one has studied the log-concavity (or log-convexity) of centered m-gonal 
figurate number sequences. In [1] [10] [11], some properties of centered figurate numbers are given. The main 
aim of this paper is to discuss properties related to the sequence ( ){ } 1n n

m
≥

 . Now we recall some definitions 
involved in this paper.  

Definition 1. Let { } 0n n
s

≥
 be a sequence of positive numbers. If for all 1i ≥ , 2

1 1i i is s s− +≥ , the sequence 
{ } 0n n
s

≥
 is called log-concave.  

Definition 2. Let { } 0n n
s

≥
 be a sequence of positive numbers. If for all 1i ≥ , 2

1 1i i is s s− +≤ , the sequence 

{ } 0n n
s

≥
 is called log-convex. In case of equality, 2

1 1, 1i i is s s i− += ≥ , we call the sequence { } 0n n
s

≥
 geometric or 

log-straight.  
Definition 3. Let { } 0n n

s
≥

 be a sequence of positive numbers. The sequence { } 0n n
s

≥
 is log-concave (log- 

convex) if and only if its quotient sequence 1

0

n

n n

s
s
+

≥

 
 
 

 is non-increasing (non-decreasing).  

Log-concavity and log-convexity are important properties of combinatorial sequences and they play a crucial 
role in many fields, for instance economics, probability, mathematical biology, quantum physics and white noise 
theory [2] [12]-[18]. 

2. Log-Concavity of Centered m-gonal Figurate Number Sequences  
In this section, we state and prove the main results of this paper.  

Theorem 4. For 3m ≥  and 3n ≥ , the following recurrence formulas for centered m-gonal number 
sequences hold:  

( ) ( ) ( ) ( ) ( )1 2n n nm R n m S n m− −= +                             (3) 

with the initial conditions ( ) ( )1 21, 1m m m= = +   and the recurrence of its quotient sequence is given by  

( ) ( )
1

2
n

n

S n
x R n

x−
−

= +                                   (4) 

with the initial condition 1 1x m= + .  
Proof. By (1), we have  

( ) ( )1n nm m mn+ = +                                  (5) 

It follows that  

( ) ( ) ( )2 1 1n nm m m n+ += + +                              (6) 

Rewriting (5) and (6) for 3n ≥ , we have  

( ) ( ) ( )1 2 2n nm m m n− −= + −                              (7) 

( ) ( ) ( )1 1n nm m m n−= + −                               (8) 

Multiplying (7) by ( )1m n −  and (8) by ( )2m n − , and subtracting as to cancel the non homogeneous part, 
one can obtain the homogeneous second-order linear recurrence for ( )n m :  

( ) ( ) ( )1 2
2 3 1 , , 3.

2 2n n n
n nm m m n m

n n− −
− −   = − ∀ ≥   − −   

                    (9) 

By denoting  

( )2 3
2

n R n
n
−

=
−

 

and  
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( )1 ,
2

n S n
n
−

− =
−

 

one can obtain  

( ) ( ) ( ) ( ) ( )1 2 , , 3n n nm R n m S n m n m− −= + ∀ ≥                        (10) 

with given initial conditions ( )1 1m =  and ( )2 1m m= + . 
By dividing (10) through by ( )1n m− , one can also get the recurrence of its quotient sequence 1nx −  as  

( ) ( )
1

2

, 3n
n

S n
x R n n

x−
−

= + ≥                              (11) 

with initial condition 1 1 .x m= +                                                              □ 

Lemma 5. For the centered m-gonal figurate number sequence ( ){ } 1n n
m

≥
 , let ( )

( )
1n

n
n

m
x

m
+=



 for 1n ≥  

and 3m ≥ . Then we have 1 1nx m< ≤ +  for 1n ≥ .  
Proof. Assume 1nx ≠  for 1n ≥  and 3m ≥ . Otherwise,  

( )
( )

( )
( )

1 2 1
1 .

2 1
n

n
n

m mn n
x

m mn n
+ + +

= = =
+ −




                           (12) 

It follows that 1 1− =  which not true. Now it is clear that 1nx ≠  and  

1 2 3
2 11 , 3 , 2 1, for 3.

1 1 3
x m x x m

m m
= + = − = − > ≥

+ +
                  (13) 

Assume that 1nx >  for all 3n ≥ . It follows from (11) that  

( ) 1

2 1 , 2
1 1n

n

n nx n
n n x −

−
= − ≥

− −
                            (14) 

For 3n ≥ , by (14), we have  

1
1 11n

n

n nx
n nx+
+ +

− = −                                 (15) 

( ) ( )1 1n

n

n x n
nx

+ − +
=                                  (16) 

( ) ( )1 1n

n

n x
nx

+ −
=                                    (17) 

0 for 3.m> ≥  

Hence 1nx >  for 1n ≥  and 3.m ≥  
Similarly, it is known that  

1 2 3
2 11 , 3 , 2 1 , for 3.

1 1 3
x m x x m m

m m
= + = − = − < + ≥

+ +
                    (18) 

Assume that 1nx m≤ +  for all 3n ≥ . It follows from (11) that  

( ) 1

2 1 , 2
1 1n

n

n nx n
n n x −

−
= − ≥

− −
                             (19) 

For 3n ≥ , by (19), we have  

( )1
1 11n

n

n mn nx m
n nx+

+ − +
− + = −                             (20) 
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( ) ( )1 1n

n

n mn x n
nx

+ − − +
=                                (21) 

0 for 3.
n

m m
x

< − < ≥  

Hence 1nx m≤ +  for 1n ≥  and 3.m ≥                                                     □ 
Thus, in general, from the above two cases it follows that 1 1nx m< ≤ +  for 1n ≥  and 3m ≥ .  
Lemma 6. For the centered m-gonal figurate number sequence ( ){ } 1n n

m
≥

 , the quotient sequence { } 1n n
x

≥
, 

given in (4), is a decreasing sequence for 3m ≥ .  
Proof. Let { } 1n n

x
≥

 be a quotient sequence given in (4). We prove by induction that the sequence { } 1n n
x

≥
 is 

decreasing. Indeed, since 1 2 3
2 11 , 3 , 2

1 1 3
x m x x

m m
= + = − = −

+ +
, we have 1 2 3x x x> > . Next we assume that 

1n nx x −< . 
By using (11), one can obtain  

( ) 1

2 1 , 2
1 1n

n

n nx n
n n x −

−
= − ≥

− −
                            (22) 

with initial condition 1 1x m= + . 
For 3n ≥ , by (22), we get  

( )1
1

2 1 1 2 1
1 1n n

n n

n n n nx x
n nx n n x+

−

+ + −
− = − − +

− −
                     (23) 

( ) 1

2 1 2 1 1
1 1n n

n n n n
n n nx n x −

+ − +
= − − +

− −
                        (24) 

1

2 1 2 1 1 1 1 1
1 1 1n n n

n n n n n
n n x n n n x x−

 + − + = − + − + −  − − −   
                  (25) 

( ) ( ) 1

1 1 1 1
1 1 1n n n

n
n n n n x n x x−

 
= − + + − − − −  

                     (26) 

( ) 1

1 1 1[ ] 0.
1 1

n

n n n

x n
n n x n x x−

 −
= − + − < − −  

                        (27) 

By Lemma 5 and induction assumption, one can get 1 0n nx x+ − <  for 3.n ≥   
Thus, the sequence { } 1n n

x
≥

 is decreasing for 3.m ≥                                            □ 
Theorem 7 For 3m ≥ , the sequence ( ){ } 1n n

m
≥

  of centered m-gonal figurate numbers is a log-concave.  

Proof. Let ( ){ } 1n n
m

≥
  be a sequence of centered m-gonal figurate numbers and { } 1n n

x
≥

 its quotient 
sequence, given by (4). To prove the log-concavity of ( ){ } 1n n

m
≥

  for all 3m ≥ , it suffices to show that the 
quotient sequence { } 1n n

x
≥

 is decreasing. 
By Lemma 6, the quotient sequence { } 1n n

x
≥

 is decreasing. Thus, by definition 3, the sequence ( ){ } 1n n
m

≥
  

of centered m-gonal figurate numbers is a log-concave for 3.m ≥  This completes the proof of the theorem. □ 

3. Conclusion 
In this paper, we have discussed the log-behavior of centered m-gonal figurate number sequences. We have also 
proved that for 3m ≥ , the sequence ( ){ } 1n n

m
≥

  of centered m-gonal figurate numbers is a log-concave.  
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