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Abstract 
This article provides an alternative approach to estimate the functional coefficient ARCH-M model 
given by Zhang, Wong and Li (2016) [1]. The new method has improvement in both computational 
and theoretical parts. It is found that the computation cost is saved and certain convergence rate 
for parameter estimation has been obtained. 
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1. Introduction 
ARCH-M model (Engle et al. [2]) has been widely studied in last decades due to its various applications. Specially, 
ARCH-M model gives a way to study the relationship between return and the volatility in finance (for instances, 
see [3] [4]). Let ty  denote the excess return of a market and th  denote the corresponding conditional vola- 
tility at time t. A frequently applied conditional mean in ARCH-M models is t t ty hδ ε= +  with tε  being an 
error term. The above equality gives a straightforward linear relationship between volatility and return: high 
volatility (risk) causes high return. The volatility coefficient δ  can be addressed as relative risk aversion para- 
meter in Das and Sarkar [5] and price of volatility in Chou et al. [6]. Many empirical studies have been done 
based on the above conditional mean. However, some researchers found δ  nonconstant and counter-cyclical 
[7]-[9]. To capture the variation of the volatility coefficient δ , Chou et al. [6] studied a time-varying parameter 
GARCH-M. In their GARCH-M model, the volatility coefficient was assumed to follow a random walk, namely 

1t t tvδ δ −= +  with tv  being an error term. 
Based on Chou et al. [6], it makes sense to study the ARCH-M model with a time-varying volatility coefficient. 

Motivated by the functional coefficient model, Zhang et al. [1] consider a class of functional coefficient (G) 
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ARCH-M models. For simplicity, we focus on the functional coefficient ARCH-M model of the form  
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Here { } 1
, n

t t t
y U

=
 are observable series and ( )1,s sy U−  is independent of { }te  for t s≥ .  

( )0 1, , , pa a a
τ

θ =   is the unknown parameter vector and ( )m ⋅  is an unknown smooth function. All throughout  
this article, the superscript τ  denotes the transpose of a vector or a matrix. In (1), the volatility coefficient is 
treated as some unknown smooth function ( )m ⋅ . The conditional variance th  is assumed to be driven by a 
new-typed ARCH (p) process: the original t iε −  is replaced by the observable t iy − . Similar to Chou et al. [6], 
the modification for th  is helpful to estimate the model. In fact, such a setting for the conditional variance in (1) is 
not new, Ling [10], Ling [11], Zhang et al. [12] and Xiong et al. [13] have taken advantage of such specifications 
for the conditional variance. Considering ( )m ⋅  in (1) as a measure of risk aversion as in Chou et al. [6], the 
improvement of (1) lies in that it gives a way to understand how certain variable impacts the risk aversion. 

For model (1), we need to estimate ( )m u  and ( )0 1, , , pa a a
τ

θ =   based on the observable { } 1
, n

t t t
y U

=
. In  

Zhang et al. [1], the estimation procedures is as follows. 
Firstly, given θ , calculating ( )th θ  based on the second equation of model (1); 
Next, getting the estimator ( )ˆ tm U  by functional coefficient regression technique based on the first equation 

of model (1), by treating ( )th θ  as observable variable; 
Thirdly, calculating residuals ( ) ( ) ( )ˆt t t ty m U hε θ θ= −  and acquiring θ̂  by minimizing 

( ) ( ) ( )
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with respect to θ , where ( )π ⋅  is a known weight function. 
It is shown in Zhang et al. [1] that the above estimation is consistent. However, there is no concrete conver- 

gence rate. Moreover, it can be seen that in the above estimation, ( )ˆ tm U  depends on ( )th θ  and hence depends 
on θ . However, there is no simple or explicite expression between them, which will make the calculation a bit 
time-consuming. In this article, a new simple estimator is given for model (1), which is shown to be consistent and 
convergence rate is also obtained. 

The article is arranged as follows. In Section 2, we explain the idea about estimation approach. Section 3 lists 
the necessary assumptions to show the convergence results followed in Section 4. We conclude the paper in 
Section 5. Proofs of lemmas are put in the Appendix. 

2. Estimation 

For model (1), we need to estimate ( )m u  and ( )0 1, , , pa a a
τ

θ =   based on the observable { } 1
, n

t t t
y U

=
. Denote  

( )f u  to be the probability density function of tu . Let A be a compact subset of R with nonempty interior and 
satisfies ( )inf 0u A f u∈ > . For each u A∈ , based on (1) we have  

( ) ( ) ( )( )
( ) ( )

( ) ( )

( ) ( )

2
0

1

0
1

: |

| 0

|

,

t t t t t t

t t
p

k t k t
k

p

k k
k

g u E y U u E m U h e h

m u E h U u

m u a a E y U u

m u a a uσ

−
=

=

= = = +

= = +

 
= + = 

 
 

= + 
 

∑

∑

                       (2) 

where, ( ) ( )2: |k t k tu E y U uσ −= = . Given θ ∈Θ , define  
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Denote ( )0 00 10 0, , , pa a aθ =   to be the true value for θ . Then, ( ) ( )0 ,m u m uθ=  according to (2) and (3). 
Let ( )ĝ u  and ( )ˆk uσ  be corresponding local linear estimators for ( )g u  and ( )k uσ  respectively (Fan and 
Yao [14]). Then we can define a estimator for ( ),m uθ  as 

( ) ( ) ( )0
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ˆ ˆ ˆ, .
p

k k
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=
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For convenience of notation, we put 

( ) ( ) ( ) ( )2 2
0 1 1 , , ,t t p t p t t t th a a y a y y m U hθ ε θ θ θ− −= + + + = −                    (5) 

( ) ( ) ( ) ( ) ( )0 0 ˆ ˆ, , , .t t t t t t t th h y m U hθ ε ε θ ε θ θ θ= = = −                       (6) 
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where ( )π ⋅  is a nonnegative weight function whose compact support is contained in A. Then, in terms of (3) 
and (9), estimators for θ  and ( )m u  are given as 

( ) ( ) ( )ˆ ˆˆ ˆ ˆ: arg min , : , .n n nL m u m u
θ

θ θ θ
∈Θ

= =                           (10) 

In the above estimation procedure, we follow the ideas from Christensen et al. [15] and Yang [16]. When 
( ) 1π ⋅ ≡ , ( )nL θ  in (8) becomes the commonly used log-likelihood function in the literature. However the 

direct minimizer of ( )nL θ  with respect to θ  is not practical because the quantity  
( ) ( ) ( ),t t t ty m U hε θ θ θ= −  in ( )nL θ  depends on the unknown function ( ), tm Uθ . Note that ( )ˆ

nL θ  in (9) 
can be considered as an approximation to ( )nL θ . Consequently, to obtain a feasible estimator for θ , we 
switch to minimize ( )ˆ

nL θ . For practical minimization in (10), one can refer the algorithm given by Christensen 
et al. [15]. 

Remark 1. From (4), it can be seen that there is a simple specification between ( )ˆ ,m uθ  and θ . Such a 
simple explicite expression will greatly improve computational efficiency compared to the method in Zhang et 
al. [1]. 

3. Assumptions 
The following assumptions will be adopted to show some asymptotic results. Throughout this paper, we let 

,M m  denote certain positive constants, which may take different values at different places. 
Assumption 1. The kernel function ( ).k  is a bounded density with a bounded support [ ]1,1 .−  
Assumption 2. The process { }tU  has a continuous pdf ( )f u  satisfying ( )inf 0u A f u∈ > , where A is a 

compact subset of R with nonempty interior. Further, there are constants m and M such that  
( )0 m f u M′< ≤ ≤ < ∞  for u A∈ . 

Assumption 3. The considered parameter space Θ  is a bounded metric space. The process ( ){ },t ty U  from 
(1) is strictly stationary and ergodic. 

Assumption 4. ( ) ( ) ( )( ),0 , : i
i j t t tm u E h h U u Mσ θ θ θ θ< ≤ = ∂ ∂ = ≤ < ∞  holds uniformly for θ ∈Θ ,  

u A∈ , where 0,1, 2, 0,1.i j= =  
Assumption 5. The function ( )L θ  defined in (7) has an unique minimum point at 0θ ∈Θ . 
Assumption 6. ( ) ( ), kg u uσ  defined in (2) satisfy ( ) ( )0 , km g u u Mσ< ≤ ≤ < ∞  uniformly for  

, 1, 2, ,u A k p∈ =  . The corresponding estimators suffice ( ) ( ) { }( )1 22ˆsup logu A p n ng u g u O b nb n −
∈ − = + ,  
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( ) ( ) { }( )1 22ˆsup logu A k k p n nu u O b nb nσ σ −
∈ − = + , where nb  is the bandwidth such that 0nb →  and for some  

2, 0, 2.5,s δ β> > >   

1 2 2s
nn bδ− − → ∞  and ( )( )11.5 2 5 4 2 5 4 0.

s
nn b

β δ β β
−+ + − − − − →  

Remark 2. Assumptions 1 - 3 are frequently adopted in the literature. Assumptions 4 - 5 have been 
analogously adopted by Yang [16]. In Assumption 6, the boundness is regular. When the bandwidth nb  
suffices the described conditions and the processes { } 1

, n
t t t

y U
=

 satisfies certain mixing conditions, the uniform 
convergence holds for local linear regression method (Fan and Yao [14], Theorem 6.5). 

4. Asymptotic Results 
Theorem 1. Suppose that Assumptions 1 - 6 hold. Then for any ,u A∈  

( ) ( ) ( ) ( )0
ˆ ˆˆ1 , , 1 .n p n po m u m u oθ θ θ− = − =  

Theorem 1 shows our estimators are consistent. The following Theorem 2 further gives certain convergence 
rate. 

Theorem 2. Suppose that Assumptions 1 - 6 hold. Then for any ,u A∈  
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In order to prove Theorem 1 and 2, we need the following lemmas whose proofs can be found in the Appendix. 
Lemma 1. For ( ),m uθ  and ( )ˆ ,m uθ  given in (3) and (4), suppose that Assumptions 1 - 6 hold. Then for  
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Lemma 2. For ( )nL θ  and ( )ˆ
nL θ  given in (8) and (9), suppose Assumptions 1 - 6 hold. Then for 0,1, 2,k =  
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Proof of Theorem 1. From (7)-(8), it is not difficult to get 
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Here, for each *
,1, , , 1, 2,3, 4, i tt n i θ= =  takes value between 1θ  and 2θ . Similar to (A.18), when tU A∈ , 

it can be shown 

( ) ( ) ( )2 2 2U U
t t t tM h e hε θ θ θ ≤ +                              (14) 

holds for certain finite M. Put 
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According to (A.18) and (A.19), (13)-(15), for certain M, it follows 
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( ) ( )1 2 3 1 2 .n n nL L Bθ θ θ θ− ≤ −                              (16) 

Note te  is independent of ( )( ),U
t th Uθ  and 2 1.tE e  =   Then similar to (A.22), it can be shown that  

[ ]3nE B < ∞ , implying ( )3 1n pB O= . Applying Lemma 1 and Theorem 1 in Andrews [17] to ( )nL θ , then it 
follows that 
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(12) and (17) give 

( ) ( ) ( )ˆsup 1 ,n pL L o
θ

θ θ
∈Θ

− =                                (18) 

which implies the consistency of n̂θ  in (10) by Lemma 14.3 (page 258) and Theorem 2.12 (page 28) in Kosorok 
[18]. In addition, 
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where *
n̂θ  is between n̂θ  and 0θ . 

Proof of Theorem 2. According to (10) and (12), it follows  
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From Theorem 1 and Lemmas 1 - 2, 
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In the above second equality, the first ( )1po  is from the consistency of n̂θ . Put 
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From (A.9), 
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By the martingale central limit theorem (see, for example, Theorem 35.12 in Billingsley [19]), it is not 
difficulty to show 
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Moreover, 
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Conjecture. According to (19)-(25), if one can show ( )2 1n pr o n= , then we can state the following asymp- 
totic normality: 

( ) ( )1 1
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n I S In Nθ θ − −− → Ω Ω Ω  
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where ( )0 , .M m uθ θ∆ = ∂ ∂  

5. Conclusions 
In this paper, a new approach is proposed to estimate the functional coefficient ARCH-M model. The proposed 
estimators are more efficient and, under regularity conditions, they are shown to be consistent. Certain convergence 
rate is also given. 

Besides that the proof of conjecture in Section 4 needs further development, it is meaningful to further 
consider a GARCH type conditional variance in model (1). However, such an improvement is not trivial because 
the estimation method adopted in this paper can not be applied to the GARCH case. An alternative approach 
needs further development. 
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Appendix  
Proof of Lemma 1 

Proof. We only show the case of 2l m= = . Other situations can be proved by similar argument. Let  
( )0 1uσ ≡  and ( )0ˆ 1uσ ≡ . Then ( ),m uθ  can be written as ( ) ( ) ( )0, p

k kkm u g u a uθ σ
=

= ∑ , ( )ˆ ,m uθ  can be  

written as ( ) ( ) ( )0
ˆ ˆ ˆ, .p

k kkm u g u a uθ σ
=

= ∑  Noting, for 0,1, ,i p=  , k ia θ∂ ∂  equals 1 when i k= , and 0 for  
other cases. Then it is easy to have  
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Hence, 
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According to Assumption.6, it is easy to obtain the following equalities:  
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Note that ( ) ( ) ( ) ( )ˆ ˆ ˆ 1i j pg u u u Oσ σ =  and ( ) ( ){ } 0 00 0
ˆmin , 0p p U

k k k kk ka u a u a aσ σ
= =

≥ ≥ >∑ ∑  implying  
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01 1p
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=
  = ∑ . Then Equation (11) follows from (A.2)-(A.3). 

Proof of Lemma 2  
Proof. We only consider the case of 2k = , other cases can be obtained with similar and easier arguments. 

From (5)-(6), 

( ) ( ) ( ) ( ) ( )ˆ ˆ , , .t t t t th m U m Uε θ ε θ θ θ θ = − −                          (A.4) 

Further, 
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We can further have 
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From (A.9), ( )2
t̂l

τθ θ θ∂ ∂ ∂  can be easily obtained by replacing ( )tε θ  with ( )t̂ε θ . Then 
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Note ( ) ( ) ( )5 2 6, 0n n nI I Iτθ θ θ= =  because of ( )2 0.th τθ θ θ∂ ∂ ∂ =  Hence to show (12), it suffices to prove  
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In terms of (A.4)-(A.5), ( )4nI θ  can be written as 
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Without loss of generality, there exists a Uθ ∈Θ  such that ( ) ( ) , .U
t th hθ θ θ≥ ∈Θ  According to (5), 

Assumptions 2 and 5, when tU A∈ , 
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The last inequality comes from the fact ( ),m uθ  is uniformly bounded for ,u Aθ ∈Θ ∈ . Similarly, when 
tU A∈  we can show 
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From Lemma 1, it follows that 
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(A.17)-(A.20) gives 

 
656 



X. F. Zhang, Q. Xiong 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
4 2 1

1

0 2 1
1

0
1

1sup 2

12

1 .

n
U

n t t t
t

n
U

t t
t

n
U

t t
t

I M T n T n U h e
n

MT n T n T n U h
n

MT n U h
n

θ
θ π θ

π θ

π θ

∈Θ =

=

=

 ≤ + +    

+ +  

+

∑

∑

∑

                 (A.21) 

Note that te  is independent of tU  and ( ) ( ) ( ) ( )( )|U U
t t t t tE U h E U E h Uπ θ π θ   =    . Based on Assumption 

3, we have 
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(A.20)-(A.22) implies ( ) { }( )1 22
4sup logn p n nI O b nb nθ θ −

∈Θ = + . 
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