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Abstract 
The appropriateness measure of label expression is a basal concept in uncertainty modelling 
based on label semantics theory for dealing with vague concepts. In the paper, the concept of dis-
junctive normal forms is presented. It is proved that each label expression is semantic equivalent 
to a disjunctive normal form. Further, a new method of calculating the appropriateness measures 
of label expressions is provided. 
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1. Introduction 
It is well known that any concept in classical mathematics is established on a crisp set (i.e., Cantor set). Suppose 
a concept Q is defined by a non-empty set D, then we say the statement that a is Q, is true (or its truth value is 1) 
if a Q∈ ; or else, it is false (or its truth value is 0). In other words, classical mathematics is established on 
classical logic or two-valued logic. However, for some propositions we cannot judge that they are true or false, 
such as the following propositions are not all classical propositions: 

1) A coin tossed will be heads; 
2) John will be in New York tomorrow; 
3) John with 30 hairs is a bandicoot; 
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4) John is a bandicoot.  
There are various nonclassical propositions in real life. Lukasiewicz is first extended classical logic to three- 

valued logic as early as 1920. In 1933, A.N. Kolmogoroff presented the probability theory for dealing with a 
type of uncertainty called randomness [1] (such as the above nonclassical propositions (1) and (2)). Following 
that, probabilistic logic for dealing with random proposition was proposed by Nilsson [2] based on probability 
theory in 1986. The theory of fuzzy set was initialized by Zadeh via membership function in 1965 [3]-[5] for 
fuzzy concepts (such as concept of bandicoot in the above propositions (3) and (4)). Following that, many types 
of many-valued logic and fuzzy logic were presented, respectively, such as Lukasiewicz fuzzy logic [6] product 
fuzzy logic, L logic [7] [8], possibilistic logic [9], BL logic [10], and MTL logic [11]. 

Although multi-valued logics, fuzzy logic [12]-[19] and probabilistic logic are well developed in theory 
aspect, an actual interpretation of truth value of proposition is controversial. For example, Elkan and Watkins 
oppose fuzzy logics [20]-[22], and claim that fuzzy logics have some disadvantages, e.g., it does not hold the 
law of excluded middle (i.e., ( ) 1v θ θ¬ ∨ ≡ ) in classical logic, where θ  denotes a proposition; θ¬  denotes 
its negation of proposition θ ; ∨  denotes disjunction; and ( )v θ θ¬ ∨  denotes the truth value of proposition 
θ θ¬ ∨ . Recently, the author of paper also discussed this problem [23]. 
In fact, Zadeh’s approach is the extension of a concept by a fuzzy set which has a graded characteristic or 

membership function with values between 0 and 1. This allows for intermediate membership (values in (0, 1)) in 
vague concepts resulting in intermediate truth values for propositions involving vague concepts (fuzzy logic). 
The calculus for fuzzy set theory is truth-functional which means that the full complement of Boolean laws 
cannot all be satisfied [24]. Furthermore, fuzzy set theory and fuzzy logic adopt an epistemic view of vagueness. 
Considering the shortcoming of fuzzy logic, it was proposed to the probabilistic logic holding the law of ex-
cluded middle dealing with fuzzy (or vague) concepts from a point of view in these papers [25]-[29]. In 2004, 
Lawry also provided a framework for linguistic modelling for dealing with vague (i.e. fuzzy) concepts based on 
label semantics using probability theory and random set [30]. At present it has been well developed [31]-[35] 
which was called uncertainty modelling for vague concepts in the paper [34]. In the theory, the appropriateness 
measure of label expressions is a basal concept. Given the label expression, a pivotal step of calculating the ap-
propriateness measures is to seek a set of subsets of label corresponding to the label expression. Note that it is 
complicated to the approach of calculating the appropriateness measures of label expression provided in these 
papers [31]-[35]. Therefore the paper will discuss this problem. 

The rest of this paper is organized as follows. Some basic concepts on uncertainty modelling for vague con-
cepts are recalled in Section 2. In Section 3, the concept of disjunctive normal forms is first presented; then it is 
proved that each label expression is semantic equivalent to a disjunctive normal form; finally, a new method of 
calculating the appropriateness measure of label expression is provided. At the end of this paper, a brief sum-
mary is given.  

2. Preliminaries 
Definition 1 (Label expressions). Given a finite set of labels LA the corresponding set of label expressions 

LE is defined recursively as follows: 
• If L LA∈ , then L LE∈ ; 
• If , , LEθ ϕ ∈  then , , .LEθ θ ϕ θ ϕ¬ ∧ ∨ ∈  

The mass function xm  on sets of labels then quantifies the agent’s belief that any particular subset of labels 
contains all and only the labels with which it is appropriate to describe x i.e. ( )xm F  is the agent's subjective 
probability that xD F= .  

Definition 2 (Mass function on labels). x∀ ∈Ω  a mass function on labels is a function [ ]: 2 0,1LA
xm →  

such that ( ) 1xF LAm F
⊆

=∑ .  

Definition 3 (λ-mapping). 2: 2
LA

LEλ →  is defined recursively as follows: , LEθ ϕ∀ ∈  

• ( ) { }, .i i iL LA L F LA L Fλ∀ ∈ = ⊆ ∈  

• ( ) ( ) ( ).λ θ ϕ λ θ λ ϕ∧ = ∩  

• ( ) ( ) ( ).λ θ ϕ λ θ λ ϕ∨ = ∪  
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• ( ) ( )( ) .
c

λ θ λ θ¬ =  

Based on the λ mapping we then define ( )xθµ  as the sum of xm  over those set of labels in ( )λ θ . The 
sum of xm  over those set of labels in ( )λ θ .  

Definition 4 (Appropriateness measure). The appropriateness measure defined by mass function xm  is a 
function [ ]: 0,1LAµ ×Ω→  satisfying 

( )
( )

( ), , .x
F

LE x x m Fθ
λ θ

θ µ
∈

∀ ∈ ∀ ∈Ω = ∑  

Let Val be the set of valuation functions { }: 0,1v LA →  where for ( ), 1i iL LA v L∈ =  means that iL  is 
appropriate in the current context. In particular, the epistemic stance dictates that for each x∈Ω  there would 
be a corresponding valuation xv  (partially unknown to the agent) determining which labels are appropriate to 
describe x. A valuation v Val∈  naturally determines an extension : 0,1v LA →  defined recursively as follows: 
For ( ) ( ) ( )( ) ( ) ( )( ), ; min , , max ,LE v v v v vθ ϕ θ ϕ θ ϕ θ ϕ θ∈ ∧ = ∨ =  and ( ) ( )1 .v vθ θ¬ = −  We can now 
define   and ≡  as follows:  

Definition 5. , LEθ ϕ∀ ∈  
• θ ϕ  if ( ), 1v Val v θ∀ ∈ =  then ( ) 1v ϕ = . 

• θ ϕ≡  if ( ) ( ), .v Val v vθ ϕ∀ ∈ =  

• θ is a tautology, if ( ), 1v Val v θ∀ ∈ = . 

• θ is a contradiction, if ( ), 0v Val v θ∀ ∈ = .  
Theorem 6 (General properties of appropriateness measures). , LEθ ϕ∀ ∈  the following properties hold: 

• If θ ϕ  then ( ) ( ), .x x xθ ϕµ µ∀ ∈Ω ≤  

• θ ϕ≡  then ( ) ( ).x xθ ϕµ µ=  

• If θ is a tautology, then ( ) 1.xθµ =  

• If θ is a contradiction, then ( ) 0.xθµ =  

• If θ ϕ∧  is a contradiction, then ( ) ( ) ( ).x x xθ φ θ ϕµ µ µ∨ = +  

• ( )( ) ( ), 1 .LA x x xθ θθ µ µ¬∀ ∈ = −  

• For F LA⊆ , let ( ) ( ) ,i iF i iL F L FL Lθ ∈ ∈= ¬∧ ∧∧  then ( ) ( )xx m Fθµ = . 

We not find the proof of last property in Theorem 6 in these papers [30]-[35]. Therefore, now we provide it.  
Proof. Without loss of generality, suppose { }1 2 1 2 1, , ,j F j j nF L L L L L L L Lθ += = ∧ ∧ ∧ ∧¬ ∧¬   . Since 

it follows from Definition 3 that  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 .F j j j nL L L L L Lλ θ λ λ λ λ λ λ+ += ∩ ∩ ∩ ∩ ¬ ∩ ¬ ∩ ∩ ¬   

Thus we only need to prove that  

( ) ( ) ( ) ( ) ( ) ( ) { }1 2 1 2 .j j j nL L L L L L Fλ λ λ λ λ λ+ +∩ ∩ ∩ ∩ ¬ ∩ ¬ ∩ ∩ ¬ =               (2) 

We first prove that  

{ } ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 .j j j nF L L L L L Lλ λ λ λ λ λ+ +⊆ ∩ ∩ ∩ ∩ ∩ ∩ ∩                 (3) 

Since for each { }1,2, ,i n∈  , ( ) { } ( ) ( )( ),
c

i i i iL E LA L E L Lλ λ λ= ⊆ ∈ ¬ = , also, { }1,2, ,i j∀ ∈  , 
iL F∈  and { }1, 2, , ,i j j n∀ ∈ + +   iL F∈  not holds, it follows that ( )iF Lλ∈ , 1, 2, ,i j=   and 

( )iF Lλ∈ ¬ , 1, 2, ,i j j n= + +  . Therefore  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 .j j j nF L L L L L Lλ λ λ λ λ λ+ +∈ ∩ ∩ ∩ ∩ ∩ ∩ ∩   

Thus the formula (3) is true. 
Now we prove that for any E LA∈ , if E F≠ , then  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2j j j nE L L L L L Lλ λ λ λ λ λ+ +∈ ∩ ∩ ∩ ∩ ∩ ∩ ∩   not holds. In fact, if E not contain iL , 
1, 2, ,i j=   then ( ) , 1, 2, ,iE L i jλ∈ =   not hold; if E contain , 1, 2, , ,iL i j j n= + +   then ( )iE Lλ∈ ¬ , 
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1, 2, ,i j j n= + +   not hold. In a word, ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2j j j nE L L L L L Lλ λ λ λ λ λ+ +∈ ∩ ∩ ∩ ∩ ∩ ∩ ∩   
not holds. 

Therefore ( ) { }F Fλ θ =  is true. It follows that ( ) ( ).xx m Fθµ =  
The theorem is proved.  

3. Calculating of the Appropriateness Measures 
In the Section we first discuss the properties of valuation functions. 

For convenience, we call each element in Label { }1 2, , , nLA L L L=   as atomic label expression. Let θ be a 
label expression containing atomic label expressions 1 2, , , kL L L , then we can be denoted by ( )1 2, , , kL L Lθ  . 
Although it not contains atomic label expressions 1 2, , ,k nL L L+  , we also can write it as ( )1 2, , , nL L Lθ  . The 
mapping { }: 0,1v LA →  is denoted by LAv , and write ( ) ( ) ( )( )1 2, , , .LA LA LA LA nv v L v L v L=   For example, if 

{ }1 2 3, ,LA L L L= , and ( ) ( ) ( )1 2 31, 0, 1,LA LA LAv L v L v L= = =  then ( )1,0,1LAv =  is regard as a vector in { }0,1 n . 
Note that ( )1 1LAv−  is a subset of LA, and a relation of one to one from the set Val of all this mapping to 

{ }0,1 n  is gained, and the valuation function ( ) ,v v Valθ ∈ , of θ is a Boolean function { } { }: 0,1 0,1nf → . 
Such function f is denoted by ( ) ( ) { }1 2 1 2, , , , , , , 0,1 n

n nfθ ξ ξ ξ ξ ξ ξ ∈  . Where iξ  can be considered a random 
variable, ( )1 2, , , nξ ξ ξ  a n-dimensional random variable, and ( )1 2, , , nf ξ ξ ξ  a function of n random vari- 
ables.  

Definition 7. A label expression θ is said to be a disjunctive normal form, if its form is  

( ) ( ) ( )11 12 1 21 22 2 1 2 ,n n m m mnQ Q Q Q Q Q Q Q Q∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∨ ∧ ∧ ∧     

where ijQ  is jL  or jL¬ , for , 1, 2, , ,i j n=   and  
( ) ( ) ( )11 12 1 21 22 2 1 2, , ,n n m m mnQ Q Q Q Q Q Q Q Q∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧     are all different. 

Let ( ) { } { } { }{ }11 12 1 11 1 1 12 2 2 1| , , , , , ,n n n nG Q Q Q Q L L Q L L Q L L= ∧ ∧ ∧ ∈ ¬ ∈ ¬ ∈ ¬  , each w G∈  is called 
a conjoint atomic label expression.  

Lemma 8. For each ( )1 2, , , nv Valξ ξ ξ= ∈ , then ( )0 1,v w =  where ( )0 11 12 1nw Q Q Q G= ∧ ∧ ∧ ∈  satis- 
fy that if 1;iξ =  11 iQ L= ¬  if 0,iξ =  and for { }w G w∀ ∈ −  we have ( ) 0.v w =   

Proof. Let ( )1 2, , , .nv Valξ ξ ξ= ∈  
On the one hand, ( ) 1iv L =  if 1;iξ =  it follows from ( ) 0iv L =  that ( ) 1,iv L¬ =  if 0.iξ =  Thus  

( ) ( ) ( ) ( ){ }0 11 12 1min , , , 1.nv w v Q v Q v Q= =  

On the other hand, let { }0 ,w G w∈ −  then there exists jL LA∈  or jL¬  is contained in 0w  and it is not 
contained in w. Suppose jL LA∈  is contained in 0w  and it is not contained in w. Thus jL¬  is contained in 
w and 1.jξ =  Thus ( ) 0.v w =   

Lemma 9. Let label expression θ be a non-contradiction, and it contains atomic label expressions 
1 2, , , nL L L . Then it is semantically equivalent to a disjunctive normal form as follows:  

( ) ( ) { }1 21, , , , 0,1 n
n

v
f v vθ ξ ξ ξ

ω
= = ∈

∨ , 

i.e.,  

( ) ( ) { }1 21, , , , 0,1 n
n

v
f v vθ ξ ξ ξ

θ ω
= = ∈

≡


∨ , 

where for each ( ) { } ( )1 2, , , 0,1 , 1,n
nv f vθξ ξ ξ= ∈ =   

1 2v v v nvQ Q Qω = ∩ ∩ ∩  

satisfies that ivQ  is iL  if 1iξ = ; ivQ  is iL¬  if 0iξ = , for 1, 2, , .i n= 
 

If  

( ) ( ) { }1 21, , , , 0,1 n
n

v
f v vθ ξ ξ ξ

θ ω
= = ∈

≡


∨ , 

we call  

( ) ( ) { }1 21, , , , 0,1 n
n

v
f v vθ ξ ξ ξ

ω
= = ∈

∨ , 
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as disjunctive normal form of θ, and it is denoted by ( )D θ .  
Proof. From Definition 5 we need to prove 

( ) ( )( ) , .Df v f v v Valθ θ= ∈  

It is evident that we only need to prove ( ) 1f vθ =  iff ( )( ) 1, .Df v v Valθ = ∈  
For ( )1 2, , , ,nv Valξ ξ ξ∀ = ∈  suppose ( ) ( )1 2, , , 1,nf v fθ θ ξ ξ ξ= =  then by Lemma 8 we have  
( )1 2 1.v v nvv Q Q Q∩ ∩ ∩ =  It follows from conjoint atomic label expression ( )1 2v v v nvQ Q Qω = ∩ ∩ ∩  is 

contained in  

( ) 1,
,v

f vθ

ω
=
∨  

that ( )1 2 1,v v v nvv Q Q Qω = ∩ ∩ ∩ =  thus  

( ) ( ) { }1 21, , , , 0,1

1.
n

nf v v

v
θ

ξ
ξ ξ ξ

ω
= = ∈

 
  =
 
 

∨  

Contrarily, for ( )0 1 2, , , ,nv Valξ ξ ξ∀ = ∈  suppose  

( ) ( ) { }1 2

0
1, , , , 0,1

1.
n

n

v
f v v

v
θ ξ ξ ξ

ω
= = ∈

 
  =
 
 

∨  

By Lemma 8 we known that ( )0 00 1 2 1,
ov v nvv Q Q Q∩ ∩ ∩ =  ( )1 2 0v v nvv Q Q Q∩ ∩ ∩ =  if { }0v Val v∈ − . 

Thus 
0 01 2 ov v nvQ Q Q∩ ∩ ∩  is contain in 

( ) ( ) { }1 21, , , , 0,1

.
n

nf v vθ

ξ
ξ ξ ξ

ω
= = ∈

∨  

Thus ( )0 1.f vθ =  
The theorem is proved. 
By Lemma 9 and Definition 3 we easily gained the following Lemma.  
Lemma 10. Let x∀ ∈Ω  a mass function on labels LA is a function [ ]: 2 0,1LA

xm →  such that  
( ) 1.xF LAm F

⊆
=∑  Then  

( )
( ) ( ) { }

( )
1 21, , , , 0,1

,
v

n
nf v v

x x
θ

θ ω
ξ ξ ξ

µ µ
= = ∈

= ∑


 

if  

( )
( ) ( ) { }1 21, , , , 0,1

,
n

n

v
f v

D
θ ξ ξ ξ ξ

θ ω
= = ∈

=




 

where for each ( ) { } ( )1 2, , , 0,1 , 1,n
nv f vθξ ξ ξ= ∈ =   

1 2v nQ Q Qξ ξ ξω = ∩ ∩ ∩  

satisfies that iQ ξ  is iL  if 1iξ = ; iQ ξ  is iL¬  if 0iξ = , for 1, 2, , .i n= 
  

Theorem 11. Let x∀ ∈Ω  a mass function on labels LA is a function [ ]: 2 0,1LA
xm →  such that 

( ) 1.xF LAm F
⊆

=∑  For any ,LEθ ∈  

( ) ( )( )( ) ( ) { }1 2

1
1, , , , 0,1 1 .n

n x LAfx m v
θθ ξ ξ ξ ξ ξµ −

= = ∈
= ∑



 

Proof. By Lemma 10 we have  

( )
( ) ( ) { }

( )
1 21, , , , 0,1

.
v

n
nf v v

x x
θ

θ ω
ξ ξ ξ

µ µ
= = ∈

= ∑


 

It follows from Theorem 6 and the meaning of mapping LAv , foe each ( ) { }1 2, , , 0,1 n
nv ξ ξ ξ= ∈ , 

( ) 1f vθ = , ( ) ( )( )1 1 ,x LAv
x m vωµ

−=  thus the theorem is true.  

Exempla 12. Suppose { }1 2 3, ,LA L L L= , x∈Ω , and [ ]: 2 0,1LA
xm →  is a mass function on labels LA 

satisfying:  
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{ }( ) { }( )

{ }( )

{ }( ) { }( )
{ }( ) { }( )

1 3

2

1 2 2 3

1 3 2 2 3

1
10

2
5

1, ,
5

, , , 0.

x x

x

x x

x x

m L m L

m L

m L L m L L

m L L m L L L

= =

=

= =

= = =

 

For ( )1 2 3 ,L L Lθ = ¬ ∨¬ ∨  note that  

( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }1 2 3 1 2 3, , , , 1 0,1,1 , 0,1,0 , 0,0,1 , 1,1,1 , 1,0,1 .v fξ ξ ξ ξ ξ ξ= = =  

It we write ( ) ( ) ( ) ( ) ( )1 2 3 4 50,1,1 , 0,1,0 , 0,0,1 , 1,1,1 , 1,0,1 ,v v v v v= = = = =  then  

( ) { }
( ) { }
( ) { }
( ) { }
( ) { }

1
1 2 3

1
2 2

1
3 3

1
4 1 2 3

1
5 1 3

1 ,

1

1

1 , ,

1 , .

v L L

v L

v L

v L L L

v L L

−

−

−

−

−

=

=

=

=

=

 

Thus we have  
( ) ( )

{ }( ) { }( ) { }( ) { }( ) { }( )
1 2 3

2 3 2 3 1 3 1 2 3, , , ,

1 2 1 7 .
5 5 10 10

L L L

x x x x x

x

m L L m L m L m L L m L L L

µ¬ ∨¬ ∨

= + + + +

= + + =

 

4. Conclusion 
The paper manly provided a new method for calculating the appropriateness measures of label expressions. 
Based on the fact, each label expression is semantic equivalent to a disjunctive normal form.  
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