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Abstract 
In this present work, a computational code is developed to solve a laminar two-dimensional lid 
driven cavity flow with inclined side wall. SIMPLE (Semi-Implicit Method for Pressure-Linked Eq-
uation) algorithm based on finite volume method on staggered grid has been used. Differed QUICK 
(Quadratic Upstream Interpolation for Convective Kinematics) schemes have been implemented 
for all calculations. The results are presented for inclination angle β = 30˚, 45˚ and Re = 100, 1000 
and are compared with Demirdzic et al. benchmark solution. By comparison, it is found that the 
results are in very good agreement with the benchmark solution for Re = 100. But the results are 
close to the benchmark solution for Re = 1000. 
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1. Introduction 
For most fluid mechanics problems, the geometry of the problem cannot be represented by a Cartesian mesh. In-
stead, it is common for the boundaries to be curved in space. Some typical examples are turbine-blade passages, 
heat-exchangers, combustion chamber, aircrafts, vehicles, mixing vessels, flow around large structures like 
building, cooling towers, and air-conditioning systems. The need for the full Navier-Stokes simulation of com-
plex fluid flows arises in numerous engineering problems. The method proposed by Patankar and Spalding [1] 
became very popular and is better known as the SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked 
Equations). It is based on the finite volume descretization of Navies-stokes equations. Ghia et al. [2] solved lid 
driven cavity flow using finite difference vortices-stream function method using central difference approxima-

http://dx.doi.org/10.4236/oalib.1102430
http://www.oalib.com/journal
http://creativecommons.org/licenses/by/4.0/


R. C. Mohapatra 
 

OALibJ | DOI:10.4236/oalib.1102430 2 March 2016 | Volume 3 | e2430 
 

tion. Many improvements to increase the convergence rate have been presented, and the version proposed by 
Van Doormaal and Raithby [3] is nowadays popular like SIMPLE. Van Doormal and Raithby’s version is better 
known as the SIMPLEC algorithm where C refers to the word consistent. Maliska and Raithby [4] described an 
economical method of solving the equations of motion for two and three dimensional problems using non-   
orthogonal boundary-fitted mesh. The works of Ostrach [5] have shown the importance of the inclined cavity. 
The coordinate transformation technique advanced by Thompson et al. [6] is used for the solution of problems 
over complex geometries. The transformation is obtained from the solution of some partial differential equations 
on the regular computational domain. Demirdzic et al. [7] solved lid driven cavity flow by inclining the side 
walls using SIMPLE algorithm. It is similar to driven cavity flow, but the geometry is a parallelogram rather 
than a square. In this case the skewness of the geometry can be easily changed by changing the skew angle. It is 
a perfect test case for body fitted non-orthogonal grids and yet it is as simple as the cavity flow in terms of pro-
gramming point of view. The deferred correction scheme of Hayase et al. [8] uses a first order upwind scheme 
with a third order correction. 

2. Lid-Driven Cavity Flow with Inside Side Wall 
We consider the steady flow inside an inclined cavity whose upper lid is moving at constant velocity U. This 
classical problem has become a standard benchmark for assessing the performance of algorithms to solve the 
incompressible Navier-Stokes equations. The benchmark solution of Demirdzic et al. [7] provide a tool to check 
the accuracy of present solution in handling complex flows in a non-orthogonal grid. The domains of calcula-
tions are a parallelogram with angle = 45˚ and =30˚. In both cases, lid velocity U = 1, cavity length L = 1 and Pr 
= 0.71. The geometry and the corresponding boundary conditions are shown in Figure 1. 

3. Results and Discussions 
To test the implementation of the non-orthogonal differencing schemes the code is used to solve the problem of 
two dimensional lid-driven cavity flow with inclined side wall provided as a benchmark test case by Demirdzic 
et al. [7]. The results are shown for Reynolds number 100 and 1000 for wall angle β = 45˚ and β = 30˚, using the 
deferred QUICK scheme of Hayase et al. [8]. The solution field is calculated using a mesh of 81 × 81 for Re = 
100 and 101 × 101 for Re = 1000 and uniform grids are employed. The value of pressure under-relaxation factor 
αp is taken as 0.05 for Re = 100 and 0.01 for Re = 1000. The pseudo time step τ∆  is used as 0.01 for Re = 100 
and 1000. The u velocity profile along the vertical centerline of the cavity and v velocity profile along the hori-
zontal centerline is shown in Figure 2 with the benchmark solutions of Demirdzic et al. [7] being included for 
comparison. The results are in good agreement with the benchmark solution for Re = 100. But the results are 
close to the benchmark solutions for Re = 1000. If the mesh size is increased, then solutions may match with the 
results of Demirdzic et al. for Re = 1000. Figure 3 to Figure 6 show the stream line and other contours for Re 
=100 and Re = 1000 and also for β = 30˚ and β = 45˚ respectively. It is seen from these contour figures that the 
solution obtained are very smooth without any wiggles in the contours. As Re increases from 100 to 1000, the  
 

 
Figure 1. Geometry and corresponding boundary condition of the problem. 
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Figure 2. Comparison with u and v velocity with Demirdzic et al. [7]. u: velocity along vertical centre-line; v: velocity along 
horizontal centre-line.  
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Figure 3. Re = 100 and β = 45˚. (a) Stream line; (b) Vector; (c) u- 
contour; (d) v-contour; (e) p-contour.  

http://dx.doi.org/10.4236/oalib.1102430


R. C. Mohapatra 
 

OALibJ | DOI:10.4236/oalib.1102430 5 March 2016 | Volume 3 | e2430 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. Re = 1000 and β = 45˚. (a) Stream line; (b) Vector; (c) u- 
contour; (d) v-contour; (e) p-contour. 
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Figure 5. Re = 100 and β = 30˚. (a) Stream line; (b) Vector; (c) u-contour; (d) v-con- 
tour; (e) p-contour. 
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Figure 6. Re = 1000 and β = 30˚. (a) Stream line; (b) Vector; (c) u-contour; (d) 
v-contour; (e) p-contour. 
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secondary vertices starts developing at left corner of the cavity and go larger in magnitude. All secondary ver-
tices appear initially very near to the left corner of the cavity and go larger in magnitude. It is also interesting to 
point out from Figure 3 to Figure 6 that for both Re = 100 and Re = 1000 the strength of the vortices at the cen-
tre of the primary vortex decreased as the inclination angle increases from β = 30˚ to β = 45˚. On the other hand 
the value of the stream function start to increase as the inclination angle increases. 

4. Conclusion 
SIMPLE algorithm for complex geometry using non-orthogonal grid was described. To test the code it was used 
to solve the problem applied to lid driven cavity with inclined side wall and results were compared with the 
benchmark solution of Demirdzic et al. [7]. The results for Re = 100 and β = 45˚ & 30˚ were in good agreement 
with the benchmark solution. But u velocity along vertical centerline for Re = 1000 & β = 45˚ and v velocity 
along horizontal centerline for Re = 1000 & β = 30˚ did not match with the benchmark solution for 101 × 101 
mesh size. 
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Nomenclatures 
Re: Reynolds number 
Pr: Prandtl number 
Nu: Nusselt number 
β: Volumetric expansion coefficients 
αp: Pressure under-relaxation factor 
SIMPLE: Semi-implicit method for pressure-linked equation 
SIMPLEC: Semi-implicit method for pressure-linked equation consistent 
QUICK: Quadratic upstream interpolation for convective kinematics 
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