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Abstract 
 
Angular distribution of photoelectrons is investigated during the inner photoemissive effect for two variants: 
quantum of light basically reveals wave and basically corpuscular properties interacting with orbital electron. 
Distinction in angular distribution of photoelectrons for these variants is demonstrated. Angular distribution 
in the second variant is investigated for the nonrelativistic and relativistic cases. 
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1. Introduction 
 
Interaction of quantums of electromagnetic radiation 
with substance can be investigated both from a wave po- 
sition, and from a quantum position. From a wave posi-
tion under action of an electromagnetic wave there are 
compelled fluctuations of an electronic orbit and nucleus 
of atoms. The energy of electromagnetic radiation going 
on oscillation of nucleus passes in heat. Energy of fluc-
tuations of an electronic orbit causes repeated electro-
magnetic radiation with energy, smaller, than initial ra-
diation. 

From a quantum position character of interaction is 
more various. Interaction without absorption of quantums 
is possible: resonant absorption, coherent dispersion. The 
part of quantums is completely absorbed. Quantums can 
be absorbed without occurrence secondary electrons. Thus 
all energy of quantums is transferred fonons—to mecha- 
nical waves in a crystal lattice, and the impulse is trans-
ferred all crystal lattice of substance. At absorption of 
quantums can arise secondary electrons, for example, at 
an internal photoeffect [1]. Absorption of quantums with 
radiation of secondary quantums of smaller energy and 
frequency is possible, for example, at effect of Com- pton 
or at combinational dispersion. Secondary electrons at a 
photoeffect are used in photocells. 

There is the problem of achieving of the maximum 
photoelectric flow during irradiation of the metal by flow 
of electromagnetic waves while designing of photocells. 
The depth of radiation penetration into metal during 
irradiation of its surface is defined by the Bouguer low 

[2]: 
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where I0—is the intensity of the incident wave, I—is the 
intensity on z-coordinate, directioned depthward the metal, 
—is the wavelength of radiation, n —is the product of 
refractive index by extinction coefficient. 

Let’s estimate the thickness of the metal at which in-
tensity of light decreases in е = 2.718 times: 
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Average wavelength of a visible light for gold λ = 550 
nm, 2,83n  , therefore z = 15,5 nm. Considering [3] 
that lattice constant for gold а = 0,408 nm, it is possible 
to deduce that electromagnetic radiation penetrates into 
the metal on 40 atomic layers.  

Therefore radiation interaction occurs basically of the 
top layers of atoms and angular distribution of electron 
escape from separate atoms, i.e. during the inner pho-
toemissive effect, it will appreciably have an impact on 
distribution of electron escape from the metal surface. 

As a result it is interesting to consider angular distri-
bution of photoelectrons during the inner photoemissive 
effect. 
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2. Nonrelativistic Case 
 
Although Einstein has explained the photoeffect nature in 
the early 20th century, various aspects of this phenome-
non draw attention, till nowadays for example, the role of 
tunnel effect is investigated during the photoeffect [4]. 

In the description of angular distribution of the photo-
electrons which are beaten out by photons from atoms, 
there are also considerable disagreements. For example it 
is possible to deduce that the departure of photoelectrons 
forward of movement of the photon and back in app- 
roach of the main order during the unitary photoeffect is 
absent, using the computational method of Feynman dia-
grams [5]. I is marked that photoelectrons don’t take off 
in the direction of distribution of quantum [6]. This con-
clusion is made on the basis of positions which in the 
simplified variant are represented by the following. The 
impulse of the taken off electron is defined basically by 
action produced by the electric vector of quantum of 
light on electron. If electron takes off in the direction of 
an electric vector of quantum it gets the impulse. On a 
plane set at an angle to a plane of polarization of quan-
tum of light, (Figure 1) electron impulse value will be 

1 cosm ep p  . Besides, if the electron impulse is set at 
an angle θ to the direction of quantum of light its value 
will be:

  

1 cos sinep p                 (1.1) 

Therefore, photoelectron energy is equal to: 
2 2 22

1
1

1 1

cos sin

2 2
epp

E
m m

 
  ,          (1.2) 

where m1—is the electronic mass. 
If 0   then photoelectron energy 1 0E  . Photo-

electrons take off readies its maximum in the direction of 
a light vector or a polarization vector, i.e. an electric field 
vector of quantum of light. The same dependence is of-
fered in the work [7]. The formula (1.2) has the simplified 
nature in comparison with [6,7], but convey correctly the 
basic dependent of distribution energy of a photoelectrons 

 

escape from the corners  and . 
The lack of dependence (1.2) is that at its conclusion 

the law of conservation of impulse, wasn’t used and 
therefore there is no electron movement to the direction 

0 . Usage of the impulse conservation equation in 
[6,7] can’t be considered satisfactory since in the analy-
sis made by the authors it has an auxiliary character. At 
the heart of the analysis [6,7] is the passage of electron 
from a discrete energy spectrum to a condition of a con-
tinuous spectrum under the influence of harmonious in-
dignation, i.e., the matrix element of the perturbation 
operator is harmonious function of time. In other words, 
the emphasis is on the wave nature of the quantum coop-
erating with electron. Angular distribution of electron 
energy in the relative units, made according the formula 
(1.2) is shown on Figure 2, a curve 1. 

Let’s illustrate the correction to the formula (1.2) con-
nected with presence of photon impulse, following [8]. 
Figure 3 demonstrates change of photoelectron impulse 
in the presence of a photon impulse. The conclusion made 
on the basis of the is θ θ δ  . Let’s find 

sin sin cos sin cosθ θ δ δ θ   . 
Considering that δ is too small we find 
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The law of sines for a triangle on Figure 3 is used. 
Further consideration  
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where 
V

β
c

 –is the relation of photoelectron speed to a 

speed of light in vacuum, W—is the work function of 
electrons from atom, we have  sin sin 1 cosθ θ β θ    . 

Taking for granted that β   is small, we will transform 

(1.2) into  
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Figure 1. Direction of vectors of particle impulse at the inner photoemissive effect. 
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Figure 2. Angular distribution of photoelectrons during in-
teraction of orbital electron with the electromagnetic wave. 

 

Figure 3. The account of the impulse of quantum 

p  using 

wave approach of electron interaction with the electromag-
netic wave. 

 
Angular distribution of electron energy for 0,15β  , 

made according to the (1.2), taking into account the cor-
rection is shown on Figure 2, a curve 2. 

Thus scattering indicatrix of photoelectrons has re-
ceived some slope forward, but to the direction of quan-
tum impulse, i.e., at 0  electrons don’t take off as 
before. 

The formula (1.2) is accounted as a basis of the wave 
nature of light. For the proof of this position we will con-
sider interaction of an electromagnetic wave with orbital 
electron. The description of orbital movement electron is 
done on the basis of Bohr semiclassical theory since in-
teracting process of electron with an electromagnetic wave 
is investigated from the positions of classical physics, 
Figure 4. By the sine law from a triangle of speeds we 
find: 

1sin cos
t

V

V
  ,            (1.3) 

where Vt—is the speed of electron movement round the 
nucleus, V1—is the total speed of electron considering 
the influence on it of an electromagnetic wave. 

By the law of cosines we have: 
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       (1.4) 

 
Figure 4. Attitude of components velocity of orbital electron 
during its interaction with the electromagnetic wave. 
 
where Vn—is the component of the general speed of 
electron movement after its detachment from a nucleus 
which arises under the influence of electric field pE


 in 

the electromagnetic wave. 
Solving (1.4) rather V1, we find: 
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The condition of detachment electron from atom at any 
position of electron n tV V . 

In case of equality of speeds n tV V  we have: 

1 2 sinnV V  .               (1.6) 

Distribution of speeds (1.6) corresponds to (1.2) and 
Figure 2, a curve 1. Thus, the parity (1.6) arises if to con-
sider only the wave nature of the electromagnetic wave 
cooperating with orbital electron. 

In [9] distribution of an angle of the electron escape is 
investigated only for a relativistic case. It is thus received 
that electrons are emanated mainly to a direction of pho-
ton distribution. However the done conclusion is also 
actually based on the formula (1.1). Therefore the draw-
back of the conclusion [9] is in absence in definitive for- 
mulas of angular distribution of electrons of nuclear mass 
m2. And after all the nuclear mass defines a share of the 
photon impulse which can incur a nuclear.  

Let’s consider the phenomenon of the inner photoemi- 
ssive effect from positions of corpuscular representation 
of quantum of light, Figure 1. The quantum of light by 
impulse p


 and energy Е beats out electron from atom, 

making A a getting out. Thus both laws of conservation of 
energy should be observed:  

1 2E A E E   ,             (1.7) 

where Е1—is the kinetic energy of taken off electron, 
Е2—is the kinetic energy of nucleus as well as the law of 
conservation of impulse: 
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1 2p p p 
  

,               (1.8) 

where 1p


—is the impulse of taken off electron, 2p


—is 
the impulse transferred to a nucleus. 

The formula (1.7) differs from Einstein’s standard 
formula 1E A E  . The point is that Einstein’s formula 
means the absence of angular distribution of photoelec-
trons speed. Really, if energy of photon Е is set and work 
function A for the given chemical element is determined 
certain speed of the electron escape from atom is thereby 
set. It means that speeds of electrons, taking off to every 
possible directions are identical, and the problem of find-
ing out their angular distribution is becoming incorrect. 

The value of the impulse transferred to a nucleus can be 
found using the formula, following (1.8): 

2 2 2
2 1 12 cosp p p pp    .         (1.9) 

The system of Equations (1.7) and (1.9) to obtain a 
combined solution and the Equation (1.9) is convenient to 
express through energy. Taking into account E pc , 
where c—is the speed of light in vacuum, 2

1 1 12p m E  
and 2

2 2 22p m E , we find: 
2
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,   (1.10) 

where m1—is the electronic mass, m2—is the nuclear 
mass.  

Substituting in (1.10) kinetic energy of nuclear Е2 by 
(1.7), we have: 
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Let us introduce the following notation  
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Then the Equation (1.11) will be transformed into: 

2 cos 0G G      .          (1.12) 

Solving quadratic Equation (1.12) provided 1   (elec- 
tronic mass is much less that nuclear mass), we find: 
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Substituting in (1.13) accepted notation we have: 
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 (1.14) 

Considering that 

1
1 1 2
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where V1—speed of photoelectrons provided  
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we find: 
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.   (1.15) 

Provided that nuclear mass is aiming to infinity 

2m   the formula (1.15) is transformed into Einstein's 
standard law for the photoeffect. Besides, this, as if it has 
been specified earlier, angular distribution of speed of 
photoelectrons disappears. 

The condition 2m   is fair in outer photoemissive 
effect when the photon impulse is transferred to the whole 
metal through single atoms. Therefore for an outer pho-
toemissive effect, i.e. for interaction of the solid and the 
photon, Einstein’s formula 1E A E   is applicable 
absolutely. 

For the inner photoemissive effect in the formula (1.15) 
it is necessary to use effective nuclear mass 2 2effm m , 
considering attractive powers between atoms in sub-
stance.  

Transforming the formula (1.15), we get: 
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.(1.16) 

Let us nominate E A   . Distribution of photo-
electrons will arise at 

2

2
22

E

m c
  . 

In the right part of the received inequality there is a very 
small value, therefore distribution of photoelectrons will 
arise practically at E A . 

Let us nominate 
2

2
22

E

m c
  , 

where 1   characterizes the value of exceedance of 
photon energy over work function in relative units. Thus 
the formula (1.16) takes the form: 
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The analysis of the formula (1.17) shows that the root 
must to taking a plus since otherwise electron scattering 
basically goes aside, contrary to the direction of a falling 
photon. Angular distribution of the electron escape during 
the inner photoemissive effect in the relative units  

1

2

V
E

m c

 

is shown in Figure 5, made according to the formula (1.17) 
with several values  for copper. 

The Figure 5 makes it evident that speeds of photo-
electrons become almost identical in all directions already 
at 1.01  . Then Einstein’s formula 1E A E   be-
comes fair and for the inner photoemissive effect. Con-
sidering that, for example, for copper the relation  

2
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equivalent as far as the order of value is concerned  
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in the field of red photoelectric threshold (r = 250 nm), it 
is possible to draw the conclusion that the evident dif-
ference of distribution of photoelectrons speeds from 
spherical, i.e. actually formula is violated 1E A E  , 

can be observed only in very short wave part of spectrum 
-radiations.  

The observed data of angular distribution of the pho-
toelectrons which have been beaten out from a monolayer 
of atoms of copper by covering the nickel surface are 
 

 

Figure 5. Angular distribution of photoelectrons during the 
inner photoemissive effect depending on parameter η dur-
ing interaction of orbital electrons with light quantum. The 
results of experiments [10] are shown by black small squares. 
Below angular distribution of intensity I (in relative units) of 
photoelectrons is shown. 

shown in Figure 5 by black small squares [10]. The wave- 
length of quanta allowed observing the photoeffect with 
2р-atom shell of copper, but the photoeffect on nickel thus 
was absent. Experimental distribution of photoelectrons 
contradicts calculated distribution in Figure 2. More- over, 
in distinction in Figure 2, small maxima of indicatrix of 
the distributions directed to an opposite direction of flight 
of light quanta at an angle of approximately 45˚ to the 
direction of light flux are observed. In [10] these maxi- 
ma are explained by focusing properties of all population 
of atoms of the surface. The amplitude of maxima ascends 
with the increase of quantity of the monolayers of copper 
atoms on nickel. 

Thus, angular distribution of photoelectrons will be 
absolutely various depending on whether what properties, 
wave or corpuscular are reveal by the light quantum in 
interaction with orbital electron. Only experiment can give 
the answer to the question what distribution it is true, 
Figure 2 or Figure 5. However existence of electron flux 
from an illuminated surface at normal light incidence [10], 
in the direction opposite to intensity of light, shows at the 
prevalence of corpuscular properties of light in its inter-
action with atoms. 
 
3. Relativistic Case 
 
Dealing with relativistic case of the inner photoemissive 
effect, the law of conservation of energy needs to be 
written down as: 

2kE A E E   ,             (2.1) 

where kE —is the kinetic energy of photoelectron.  
The law of conservation of impulse remains in the 

form (1.9). Using relativistic relation between the energy 
and the impulse for electron: 

2 2 2 2 4
1 1 1E p c m c  ,            (2.2) 

where Е1—is the total energy of electron, m1—is the 
electron rest mass, we will express the impulse of elec-
tron from (2.2) and we will substitute in (1.9). For con-
venience of the further transformations we will write 
down (2.2) into: 
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1 12 1 1

1 2 2

kE m c EE m c
p

c c


  .    (2.3) 

Formulating (2.3) the relation has been used: 
2
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The Equation (1.9) will be transformed into: 

 
 

2 2 2
2 2 1 1

2
1 1

2

2 cos

k

k

m c E E E m с E

E E m с E 

   

 
.     (2.5) 

Because of that the nucleus that has a big mass and a 
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relatively low speed after interaction with the photon, 
expression for relation of the impulse of the nucleus with 
its kinetic energy Е2 is used in the nonrelativistic form. 

Substituting value Е2 in (2.5) from the Equation (2.1), 
we get: 

   
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Let us nominate: 

2
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
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As a result (2.6) will be transformed into: 
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corresponds to item 1 section. 
The value 
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It is thus accounted for that 2
k 22E m c . 

Solving the Equation (2.8), we get: 
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Substituting notations, we find: 
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In contrast to the nonrelativistic case, the formula 
(1.17), formula (2.10) possesses in its right part value 
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which depends on the total energy of electron Е1 the 
structure of which includes also kinetic energy kE . But 
dependence of value  on kE  not strong as the total 
energy structure includes rather big rest energy of elec-
tron 2

1m c . 
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relative speed of the photoelectron, we find: 
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Substituting the Equation (2.11) in the Equation (2.10) 
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, we get: 
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we find: 
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.     (2.13) 

The formula (2.13) allows to consider relativistic ef-
fects at the photoeffect, in case of rather big speeds of 
photoelectrons. Thus, in contrast to (1.17), relativistic co- 
efficient μ is introduced under the root. 

The calculation of dependence () shows on Figure 
6, relativistic effects while calculating distribution of 
photoelectrons escape, can be neglected and (1.17) can  
 

 

Figure 6. Dependence of relativistic coefficient  on relative 
speed of photoelectrons 

V

c
 . 
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be used while the photoelectron speeds read approxi-
mately half the value of the light speed in the vacuum. 
 
4. Conclusions 
 
The analysis has shown that the start of electrons from 
atom at a photoeffect is almost spherical symmetric. It 
corresponds Einstein’s to formula. In Einstein’s formula 
there is no corner of a start of photoelectrons.The as-
sumption, that in a direction of movement of a photon at 
a photoeffect of an electron does not take off unfairly. At 
designing photocells it is necessary to take into account 
presence of a stream electrons in a direction of electro-
magnetic radiation and in an opposite direction. 
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