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Abstract

The aim of this paper is to study the notion of the gradient observability on a subregion o of the
evolution domain QQ and also we consider the case where the subregion of interest is a boundary
part of the system evolution domain for the class of semilinear hyperbolic systems. We show, un-
der some hypotheses, that the flux reconstruction is guaranteed by means of the sectorial ap-
proach combined with fixed point techniques. This leads to several interesting results which are
performed through numerical examples and simulations.
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1. Introduction

The regional observability is one of the most important notions of systems theory. It consists to reconstruct the
trajectory only in a subregion in the whole domain. This concept has been widely developed see [1] [2]. After-
wards, the concept of regional gradient observability for parabolic systems has been developed see [3]-[7] and
for hyperbolic systems see [8] [9], it concerns the reconstruction of the gradient conditions initials only in a crit-
ical subregion interior to the system domain without the knowledge of the conditions initials.

The aim of this papers is to study the regional gradient observability of an important class of semilinear
hyperbolic systems. For the sake of brevity and simplicity, we shall focus our attention on the case where the
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dynamic of the system is a sectorial operator linear and generating an analytical semigroup (S_(t))t>0 on the
Hilbert space. -

The plan of the paper is as follows: Section 2 is devoted to the presentation of problem of regional gradient of
semilinear hyperbolic systems, and then we give definitions and propositions of this new concept. Section 3
concerns the sectorial approach. Section 4 concerns the numerical approach which gives algorithm can
simulated by a numerical example.

2. Position of the Problem

Let ©Q be an open bounded subset of R" (n =1,2,3). For T >0, we denote Q=0Qx]0,T[, £=0Qx]0,T[
and we consider the following hyperbolic semi-linear system

%(x,t)=Ay(x,t)+/\/’y(x,t) in Q
y(x,O):y°(x),g—¥(x,0):yl(x) inQ €))
y(&1)=0 onx
and the linear part of the system (1) is

2’y B .

e (x,t)=Ay(xt) in Q
y(x,O):y°(x),%(x,0):yl(x) inQ )
y(¢&t)=0 onx

where A is an elliptic and second order operator and A is a nonlinear operator assumed to be locally
Lipschitzian, system (1) is augmented with the output function given by

z(t)=Cy(t) 3)

where C:Hg(Q)—>R® (resp. C:H?*(Q)NH;(Q)—>R" if the subregion of interest is a boundary part T
of the system evolution domain € ) is a linear operator, and depends on the number ¢ and the nature of the
considered sensors. The observation space is O = L2 (O,T; Rq) and assumes that

(yo,yl)e X =H;(Q)xHg(Q) (resp. (yo,yl)e X :(HZ(Q)m Hé(Q))x(HZ(Q)m Hé(Q)))

y(t) 0
T o Y 1 0 1| -y, _ 0
S ayG(tt) N _L’J,A_{A O}J\/{yj_[./\/yj
For (Y., Y,)eF =Hg(Q)xL*(Q) the system (2) is equivalent to

g(t)zfly(t) O<t<T

ot (4)

and the system (1) is equivalent to
©)

augmented with the output function
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Z(t)=Cy(t) (6)
with € =(C,0) the system (4) has a unique solution see [10]-[12] that can be expressed as ¥ (t)=S(t)y’,
(S_(t))t>o is the semigroup generated by the operator A .

Let’s consider a basis of eigenfunctions of the operator A, with the condition of Dirichlet which noted ® .
and eigenvalues associated are 4, with multiplicity r,.
We can write forany (y,,y,)eF

o Iy

ZZ{(yl, )cosrt+r<yz, o )siny=2,t @

ol
;;[-ﬁ@l,@mjﬁm At +<yz,¢>mj>cos\/%t}b
The system (5) has a unique solution that can be expressed as follows see [13]
y(t)=5(t)y° +[S(t-s) Ny (s)ds, )
then the output Equation (6) can be expressed by
7(t)=CS(t)y° =K (t)y°, te]0,T[.
Let K be the observation operator defined by
K:X >0
7 CS()z,
which is linear and bounded with the adjoint K™ given by
K:0-X
7 j S (1)CZ'(
Consider the operator V given by the formula
Vix - (L(Q) x(12(Q))
(Y0 ¥2) 2 V(1. Y2) = (VY1 VY,),
where
ViX > (L(Q)
v .o j
ox = ox

y—Vy= (

X =Hg(Q) (resp. X =H?(Q)NH;(Q) if the subregion of interest is a boundary part I' of the system
evolution domain Q)

V" is the adjoint of V.
The initial condition y° (initial state y° and initial speed y*) and Vy° its gradient are assumed un-
known. For @ c Q an open subregion of €, consider the restriction operators

7, :((Q)) %(L2(Q)) > (L (0) x(L (o)
(£8P 7 (68)=(5¢),,
7 (L) (L (@)
Sy E=¢,,
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with 7~ is the adjoint of 7, (resp. ;(w is the adjoint of 7 ).

(resp. For T < aQ, consider
(aQ)J X[HZ(aQ)] —{HZ(F)] X[H

fr:[H

(&8 Z.(58) =&,

Zr:{H;(aQ)Jn»(H;(r)Jn and 2

'H
Evsy =¢, sH

N
N

")

()

N |-

%(GQ)—>H
7.£=¢

with 7* (resp. x_ and 7)isthe adjoint of 7, (resp. »_ and 7 )which s the restriction operator.
The trace operator is defined by

7R @) x(H (@) %(H;(m)}n X(Hi(aQ)Jn

(V¥ ) P 7 (Y 2) = (¥ 7 v?),s
with

yi(Hl(Q))n%[H;(aQ)]n
. 2 72=(Vots 1 Y02y )

and y,:H'(Q)—> H2 (6Q) is the trace operator of order zero which is linear, continuous, and surjective. 5"
(resp. ) denote the adjoint of operator y (resp. y,).
Finally, we reconstruct the operator as follows

n

H, =z VK’ from O into (L (e))

1 n 1 n
[resp. H,. =z 7VK" from O into [H 2 (F)] x(H 2 (F)J ]
Definition 1

The system (2) together with the output (3) is said to be exactly (resp. weakly) G-observable in « if
Im(l-_l):(Lz(a)))n (resp. Im(l-_l):(Lz(a)))n.

The system (2) together with the output (3) is said to be exactly (resp. weakly) G-observable in T if

Im(H) :(H;(F)]n X(H;(F)]n (resp. Im(l—_l):(H;(F)Jn X(H;(F)Jn).
Remark 1.

If the system (2) together with the output (3) is exactly G-observable on T" (resp. in ) then it is weakly
G-observableon T'.

For T', cI', c0Q the system (2) together with the output (3) is exactly (resp. weakly) G-observable on
I'; thenitis exactly (resp. weakly) G-observable on T,. see [9].

Definition 2 The semilinear system (1) augmented by the output function (3) is said to be gradient observable

or G-observable on T' (resp.in ) if we can reconstruct the gradient of its state and speed on a subregion T’
of 0Q (resp.in o of Q).

Let the gradient Vy° = (Vyo,Vyl) of the initial condition y° = (yo, yl) be decomposed as follows:
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Ty° = ¥ inT @®)
y, on dQ\T,
where ¥ =(y;,;), 7 =(3.¥;) and
vy = y, inT Cwye y; inT
ys onoéQ\T y; ondQ\T.

Problem (*)
Given system (1) augmented by the output (3) on ]0,T[, is it possible to reconstruct Vf = (ylo yi) which is
the gradient of initial condition of (1) in @ ? (resp.on T'.)

3. Sectorial Case

In this section, we study Problem (*) under some supplementary hypothesis on A and the nonlinear operator
N .
With the same notations as in the previous case, we reconsider the semilinear system described by the Equ-

ation (5) augmented by the output (6) where one suppose that the operator A generates an analytic semigroup
(S (t))t>o in the state space E.

Let’s consider 4, = A +al such that Re(a(Zl)) > & >0 with a is a positive real number and Re(a(Zl))
denotes the real part of spectrum of A, . Then for 0<a <1, we define the fractional power (ﬂl)a as a closed

operator with domain E* = D(ﬁf‘) which is a dense Banach space on E endowed with the graph norm

e =47 Ol
Let us consider V = Im(;?j?i?*) then the objective is to study the Problem (*) in V endowed with the
norm
I =[5 O, - (©)
we have

||S_(t)||£(E,E”) sct” exp(a— a)t =0 (t)'
where c is a constant. For more details, see ([2] [11] [14]).
For r,s>1, assume that
11

—+—=1
r s (10)

g, el (0,T),
and the operator A : L' (O,T; E”) — L°(0,T;E) is well defined and satisfies the following conditions:
[0 Ay < K O YD Vo) 9%, < U (0.T1E7)
N(0)=0 with k:R*xR* > R* (11)
such that (Glﬂlzi)rg(o’o) k(6,.6,)=0.

L°(0T;E

This hypothesis are verified by many important class of semi linear hyperbolic systems. Various examples are
given and discussed in ([14]-[16]).

We show that there exists a set of admissible initial gradient states and admissible initial gradient speed,
admissible in the sense that allows to obtain system (2) weakly G-observable.

Let’s consider
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o(¥).): L (0T;E") > L' (0,T;E%),
given by
o(V.7))=SOVF 7 % +S(t) 7 +L(t)Ny te[o,T],

where y is the restriction in T and g7 is the residual part of the initial gradient condition Vy° given by
(8). we assume that

H§ V77

r

<g,(t) with g,eL*(0,T), (12)

c(v.E%)

then we have the following result

Proposition 1 Suppose that the system (2) is weakly G-observable on T', and (10), (11) and (12) satisfied,
then the following assertion hold:
e Thereexists a >0 and m>0 suchthatforall ¥’ €B(0,m)cV the function (p(Vf,.) has a unique

fixed point y inthe ball B(0,a,)c L' (O,T;E“) solution of the system (5).
e Thereexist m=m(a,) and m =m (a) such that ||y§||E <m,, the mapping f is Lipschitzian where
f:B(0,m)—B(0,a)
e
Proof.
o Since limy, ,\ o0 Kk(6,6,)=0, then there exists a, <]0,1[ such that

1
a =T ”gl

L'(oT) ﬂsﬁligal k(6,6,)<1,

and we have o, €10,1[.
Let us consider y and X in B(0,a)c L'(O,T;E“) and 2 eV we have

“w(ylo ' V) B (0(710 ' Y)HL'(O,T;E“)

- "L()( NV_ NX)”L'(O,T;E‘Z)

' dt)F ,
ElX

([ (- 5%)
where
|L(0)(N - Rx)],
J:S (t=2)(Ny () - NR () d=
<[, S (t-7) (5 (r)-Rx(0))], d
< 8 =) e e (5()- R (), e
<[, (0N ()~ N (2))] a=.

Using Holder’s inequality we take

||L(t)(r\_17—N7)

E“

r — —

L"(0T) ”NV —Nx

r

L(oT:E)’

;a S"91 (t)

and using (11), we have

)
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=

o (52 9)= (5.7 UH%

SHAC LAY

L'(o0T) ” Ny - l\_R"rLs(o,T E) dt)

OTE

1
T 0o KU IEDIY = Xlorfor.ge

ST laary, 20 KT

<a ”y - X”L 0T:E® )

On the other hand, we have

O 7750740
§||§()§ | 0T E” " yg” 0.TE” +||L() N_V"LF(O,T;E")
(107 25 ) +([ 59 ) +( (oL ]
but we have

agk(U??ﬁﬁ

ofve?) 5], < 9. 0],

and
s ©) 5] =[S . [%2] < 0. (]3]

Using Holder’s inequality, we obtain

[NOLI/
<[, || (t- TII e e INV (7). 0
<Jos Ol o) yl Hforee)
<19, Ol nﬁowmmE)
<[0s (D0 Pk (8.0) [Tl

then we have
1

|L(E,E‘Z) :(J.T "S_ t 6*7*)?*710"; d't)F
SEHGIA R
<||gz " ) " |L/

SO0 (NS ‘°||Ladt)F

1
<([Jor )92 )

= ”gl (t)"L'(o,T) ")72 ||E !

()
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and

1
" dt)?
E

9 (t)"L’(o,T) ?955 (8:0) ||V"‘(°'T;Ea)

ILON e = (1 L) R

1
<Tr

N2 "7”1:(01;5“) '

1
where a, =T"|g, (t)"L'(O,T) sUp,.,, k(6.0).
Finally

H(D(ylo’ 7)”U(0,T;EC‘) < "g2 (t)"L'(o,T) ||710||v + ”gl (t)”U(o,T) " yg”E + "7”~C(U,T:E’1) '

a, (1-ap) ~[2] 0. ()
"g2 (t)"U(o,T)

Let’s consider m = m(al) = L'(oT)

a(l-a,)
d m = - al—%)
and m =m,(a) "g1 (t)"Lf(o,T)

It is sufficient to take ||y3 <m, and ||71°|V <m, thenforall yeB(0,a) wehave (pﬁVf,V)eB(O,al).
e Let y, and X, bethe solution of the system (5) corresponding respectively to the initial gradient condition,

we suppose that we have the same residual part ( §2 = %9 ), then for 710,710 € B(O, m) we have
[f(5%)- (%)

, 1-a,>0,then m>0.

0

)=H¢(Vl°,7)—<o(71 )
lo(52.9)-o(% %)
=[5V Z (% - %)+ L()(Ny - )

< ”710 _710||v + "L()( Ny - _7)||Lr(O,T;E"’) !

Ufom:e” U(omie) - ||7_7"U(0,T;E")

L'(O,T;E"’)

Lr(O,T;E"’)

but we have

: _
”L()( Y- 7>||L'(O,T;E”) =T "gl (o) "NV— NY"LS(O,T;E)

1
T Nolor) 30 K (BT e

so ”7 - Y”L’(O,T;EC‘) !

and we deduce that

[t (w)-1(x)

Finally, f is Lipschitzian in B(0,m).

Remark 2 The given results show that there exists a set of admissible gradient initial state. If the gradient
initial state is taken in B(0,m), with a bounded residual part then the system (5) has only one solution in
B(0,a).

Here, we show that if the measurements are in B(0, p), with o is suitably chosen then the gradient initial
state can be obtained as a solution of a fixed point problem.

)

9ol
< " ]{L;ZT) "710 _710"\/ . (13)

L'(o,T;E“) -



A. Khazari, A. Boutoulout

Let us consider the mapping

and assume that vy, eV,CL(\)Nf (7})e Im(IZV;f;?; ) :

Then we have the following result.
Proposition 2 Assume that

3¢,>0 suchthat |CL()YV], <c[Vlypre VYeL(O.TSE),

)
and 3c,>0 suchthat |CS()y| <c,[y], vyeE

(14)

(15)

(16)

and if the linear system (2) is weakly G-observable on T" and (11) holds, then there exists a, > 0 and
p=p(a,)>0,such that forall zeB(0,p)<=Y , the function (14) admit a unique fixed point in B(0,m)
which correspond to the gradient initial condition y. observed on I . Furthermore, the function

h:ZeB(0,p)—> ¥, €B(0,m) is Lipschitzian.
Proof. Let us consider y’ and x’ in B(O, m)cv using ((9),(11), (13), (15) and (16)) we have

o (z.57) - (z.%)] - H () (R (32) - N (%) H
_ (Kw*—;)(}zv 77 ) (CLO)(N (3¢)- N (30 )))H
<c H NF (37) - Nf (—0)”0(0‘“@
<ak(lF @ R =)o
Or limy, 1 00 K(61,6,) =0, then there exists a, >0 such that
@ =¢, sup K(0,0) "glbj <1,
and we have a, <]0,1] .
Then we obtain
o (2.50) - (7.%°), <2 -7,
On the other hand, using the inequalities (11), (15) and (16), we have
o (2.5, =|z-CS ()98 -CLNE (%),
<[zl, +[es 52l +ernr ()],
<[z, +c, |55, + . N (5°) core
<[zl +ea 2], +ek([ () ) £ (5]

<|z], +¢, ||)7§ ||E + 6,2, SUp k(6,0).
<a,

Let’s consider p=p(a,)=m-c, ||37;J ||E —C,a,up,., k(6,0).

In order to have ¢ (7, 710) € B(0,m), it suffices to consider |z], < p.
For 7,7, € B(0, p), we have
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h(z)-h(z)=Y-Vi = ( 1 y11) ( A )

:¢’1(71’h(71))_¢1(22 )

which gives
||h(71)—h(72)|L/ S||¢1(_l'h(_l))_¢l(7 h(TZ " +||¢1(711h(fz))_%(fzvh(fz))"\,
<a|n(z)-h(z)|, +[z-zl,-
Then
Ih@)-n@, <= lm -zl

which shows that h is Lipschitzian.
Remark 3 We can consider the regional intern problem in a subregion « of Q (see [17]).

4. Numerical Approach

We show the existence of a sequence of the initial gradient state and initial gradient speed which converges
respectively to the regional initial gradient state and initial gradient speed to be observed on T .

Proposition 3 We suppose that the hypothesis of the proposition (3.2) are verified, then for 7 e B(0, p), the
sequence of the initial gradient condition defined in B(0,m)<=V by

)710,0 =0
%ons=(H") (2-C5 ()52 ~CL()NE (52, ),

convergesto y, the reglonal initial gradient condition (the regional initial gradient state y? and the regional
initial gradient speed y; ) to be observed on I'. where §J is the residual part of the initial gradient condition.
Proof. We have,

17)

||yg,n+1 - ylon v =P (71 Y:I?ml) - (7’ y:l?,n—l) v
<oy |90 = 9o

<-<afl|l§

Sa32|

<0 <0

yl,n—l - yl,n—Z \/
0 _ N0

- yLo”v = y1,1|L/ '

i P —
or lim a3 =0,then 3nyeN VneN, Vvpxn,.
&0 0 &0 0 -0 &0 -0 0
||y1n+p yl,p" S||y1n+p_y1n+p 1|L/ +|yln+p l_yln+p—2|| +||y1,n+p—2_yl,n+p—3||v +'”+||y1,p+1 ylp"

n+p -1 n+p-2 0 p|l0
||yu| [0, +572 [0, -+ a5,

+a,
>l = |52 (1 P j‘%p Il [ﬁ]

Then (y{{n )nzo is a Cauchy sequence on V and is convergent.

n+p-— 3|

— P50
=4 ||y1,1

We consider Y, = f (yfn) and z, =Cy, with

N
|
N
Il
N
|
w
—
~
<
N o
|
O
—
—_
~—
=
—h
—_—
=

]
\_/
I
.:<
E]

Il
I
A
=t

]

T

b

=<

=]
~—~—

)



A. Khazari, A. Boutoulout

then

|, <9,

in Y on the other hand, we have

"7 - fn”Y = " yfml - an

which show that the sequence Z, convergesto Z

||Z A

|37 - 52a], =[n(@)-n(z,

hence yln converges to the regional initial gradient y;’ to be observedon T'.
Algorithm

Let’s consider T, =Z—-CS(.)¥; —CL(.)Nf (yfn) , then we have
ylo,ml = (FI*)T Mo and fn = _*yfn +7- fa =T +7 - g

Thus, we obtain the following algorithm:

Step 1 : The initial condition %9 = (y°,y'), the subregion I', The domain D and
the function of distribution f and the accuracy threshold ¢,

ri=2—C8()j — CLL)N (iR )-

Step 2 : Repeat -
S Gy = (H")rn

S
Ogn(t -
Wl Zgu(t) + Nt
5.(0) =V X8, + 8

Until || 2 - Z, ||, <e.

Step 3 : %{,, which corresponds to the initial gradient condition to be observed §{ on T'.

else rp41 =1, + Z + 2, and go to step 2.

5. Simulations

In this part, we give a numerical illustrating example and the simulations are related to the choice of the
subregion, the sensor location.

5.1. Internal Subregion Target

Consider the one dimensional semilinear hyperbolic system
ZL(x0)=Z2(x)+ Ty a)l{y(0) a)a(x) o <o

y(x,0)=Yy° (x),%(x,o) =y'(x) in]oq
y(&t)=0 on]o,T[,
augmented with the output function described by a pointwise sensor located in b=0.20 and T =2
z(t)=y(b,t). (19)
where (¢,),., isacomplete setof L*(Q). Let’s consider
y; =0.4log(0.8x+1)(1-x)+0.5 theinitial gradient state initial,

(18)

Y, = (x(l— x))2 +0.4 the initial gradient speed to be observed in a subregion w =]0.4,0.5].
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Using the previous algorithm, we obtain the following figures.
e Figure 1 shows that the estimate gradient state is very close to the real initial gradient state in €.
e Figure 2 shows that the estimate gradient speed is very close to the real initial gradient speed in Q.

5.2. Boundary Subregion Target
Consider the two dimensional system described in © =10,1] x]0,1] by

ﬂ(xl,xz,t)=0.01{2232/@1,xz,t)+%(x1,xz,t)}+ i <y,(pij>‘<y,(oij>¢)ij in]0,4[x]0,T[

2
ot X, 5

y(%,%,0)= yo(xl'xz)'%(xl’xz’o) =y (X, %) in]0.1 @

y(&m,t)=0 on]0,T[,

where (¢, )ij is a complete set of H'(Q).

The system (20) augmented by output function described by a pointwise sensor located in b.
z(t)=y(b,t), te]o,T][, (21)

0.4
0.3
0.2
0.1
0.0

-0.1

-0.2

T T T T T T T T T T T
0 20 40 60 80 100

Figure 1. The estimated initial gradient state in o .

0.20 +

0.15 7

-0.20

T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. The estimated initial gradient speed in .

)
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0.0025 —
0.0020 —
0.0015 —
0.0010 —

0.0005 +

0.0000

-0.0005 u T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. The estimated initial gradient state on T.

0.015
0.010
0.005
0.000—-

-0.005

-0.010

0.0 0.2 0.4 0.6 0.8 1.0
Figure 4. The estimated initial gradient speedon T .

with
e T =2, thesensor located at b=(0.3,0.6).
* ©=1]0,0.2[x]0,1 isthe intern region.
e I'={0}x]0,1 isthe boundary region.
e The initials gradient conditions
VY (% %) = (2% = 1) %, (X, ~1);(2%, =1) % (¥, ~1))
VY (%, %) = ((1-%) (% =1)(2%, =1); (1= %, ) (%, =1)(2% ~1)),
to be observedon T'.
Using the previous algorithm, we obtain the following results:
e Figure 3 shows that the estimate boundary gradient state is very close to the real initial boundary gradient
stateon T.

e Figure 4 shows that the estimate boundary gradient speed is very close to the real initial boundary gradient
speedon T'.

6. Conclusion

The question of the regional internal and boundary gradient observability for semilinear hyperbolic systems was
discussed and solved using the sectorial approach, which used sectorial properties of dynamical operators, the
fixed point techniques and the properties of the linear part of the considered system. Many questions remain
open, such as the case of the regional gradient observability of semilinear systems using Hilbert Uniqueness
Method (HUM) and the constrained observability of semilinear hyperbolic system.
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