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Abstract 
Water is a vital resource, and can also sometimes be a destructive force. As such, it is important to 
manage this resource. The prediction of stream flows is an important component of this manage-
ment. Hydrological models are very useful in accomplishing this task. The objective of this study is 
to develop and apply an optimization method useful for calibrating a deterministic model of the 
daily flows of the Miramichi River watershed (New Brunswick). The model used is the CEQUEAU 
model. The model is calibrated by applying a genetic algorithm. The Nash-Sutcliffe efficiency crite-
rion, modified to penalize physically unrealistic results, was used as the objective function. The 
model was calibrated using flow data (1975-2000) from a gauging station on the Southwest Mira- 
michi River (catchment area of 5050 km2), obtaining a Nash-Sutcliffe criterion of 0.83. Model vali-
dation was performed using flow data (2001-2009) from the same station (Nash-Sutcliffe criterion 
value of 0.80). This suggests that the model calibration is sufficiently robust to be used for future 
predictions. A second model validation was performed using data from three other measuring sta-
tions on the same watershed. The model performed well in all three additional locations (Nash- 
Sutcliffe criterion values of 0.77, 0.76 and 0.74), but was performing less well when applied to 
smaller sub-basins. Nonetheless, the relatively strong performance of the model suggests that it 
could be used to predict flows anywhere in the watershed, but caution is suggested for applica-
tions in small sub-basins. The performance of the CEQUEAU model was also compared to a simple 
benchmark model (average of each calendar day). A sensitivity analysis was also performed. 
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1. Introduction 
Water is an essential part of life. Living organisms require this resource for sustenance. As such, the health of an 
ecosystem and that of the environment are highly dependent on water availability. In addition to consumption, 
human beings use water for a multitude of other purposes, such as personal hygiene, washing/cleaning, and food 
preparation. Irrigation, aquaculture, energy production and several industries are also important consumers of 
the resource. These many uses of a single resource can cause problems for those who must manage it, particu-
larly if there is a shortage, such as during a drought. On the other hand, an excess of water can be dangerous. 
Floods can potentially cause a lot of damage, and even fatalities. In order to minimize or even prevent such 
damages, it becomes important to prepare for such an event. Assuming a particular river or watershed is of in-
terest, knowing how it behaves on a regular basis, and how it reacts to certain situations, events, or even physio-
graphic changes is of great importance to water resource managers. A useful tool to accomplish this is by mod-
eling discharge at different locations on the watershed. The present study aims to do this for a significant wa-
tershed in New Brunswick: The Miramichi River watershed. This particular watershed was chosen for its im-
portance in the province (2nd largest in the province, after the Saint John River watershed), and the abundance 
of data available, including many hydrometric gauging stations and meteorological stations located on or near 
the watershed, along with plenty of physical data describing elevation, land use, etc. 

A model is a simplified theoretical representation of a system, whose goal is to not only understand and ex-
plain the system, but also to predict its behavior. A hydrological model is thus very useful in water resource 
management. There are many models with different capacities and levels of complexity. The choice of model to 
represent a system must be made in accordance with these properties. Two broad categories of models can be 
defined: statistic and deterministic. Statistic models attempt to identify the relation between independent va-
riables and explained variables without explicitly accounting for the physical process. On the other hand, deter-
ministic models use mathematical representation of physical processes, such as energy or mass balance. The 
model used in the present study is the CEQUEAU model [1], which belongs to the latter category. The model 
has been applied to many rivers and watersheds in Québec, Canada, and internationally [2]. In New Brunswick, 
the model has been applied on the Catamaran Brook, a sub-basin of the Little Southwest Miramichi River [3].  

Deterministic models can use multiple functions to represent multiple phenomena. This can lead to a large 
number of parameters that need to be estimated, potentially causing an over-parameterization [4]. On the other 
hand, [5] argue that rigorous parameterization can aid in the calibration of a distributed model. In either case, 
one must be careful when deciding what needs to be calibrated and what can be estimated. 

Since models require calibration, this implies an optimization of an objective function as a function of varying 
parameter values. This can be a complex and time consuming task, especially for high dimensional spaces. One 
must also be careful in deciding what method to use for parameter optimization. One still common method is to 
adjust the parameters manually. This can be time consuming and requires a certain level of understanding of 
modeled processes in order to adjust parameters logically. Another method is to apply an optimization algorithm. 
There are many different algorithms, each with its advantages and disadvantages. 

For this study, the primary objective is to adapt an efficient calibration method for the selected model. as such 
an optimization algorithm will be applied. A genetic algorithm is selected for the optimization of the 
CEQUEAU parameters. This choice was made because it is an efficient algorithm when the number of parame-
ters to be optimized is large, which is the case for the CEQUEAU model (29 parameters). A genetic algorithm 
was chosen, and will be adapted for use with the CEQUEAU model and applied in order to estimate its parame-
ters. This is the first time that such an algorithm will be used in conjunction with the CEQUEAU model. The 
modeling objectives listed below will determine if the model’s performance is acceptable, which will in turn de-
termine if the calibration was successful. 

The objectives of the modeling are as follows: 
− To model the hydrological cycle of the Miramichi River watershed, including all the components of the wa-

ter balance equation (precipitation, surface flow, evapotranspiration, and storage). The model must be vali-
dated using existing data; 

− To verify the performance of the applied model at different locations on the watershed. The model must be 
capable of predicting flows at different stations and for water courses of different sizes. Although this veri-
fication is limited to gauged locations, a good model performance at multiple gauged locations would sug-
gest that it could also be applied at ungauged locations as well.  
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2. Methodology 
2.1. CEQUEAU Model 
The CEQUEAU model is a semi-distributed hydrological model. This implies that spatial variability is taken in-
to account for a number of hydrological processes. However, certain parameters and physical variables are con-
sidered constant throughout the basin. Spatially distributed data include both the physiographic properties of the 
study area and the input meteorology. The study area (watershed) must therefore be divided into Elementary 
Representative Areas (ERA) The CEQUEAU model requires two different divisions: whole squares and partial 
squares. The first division (into whole squares), attempts to divide the watershed into relatively homogenous 
ERAs. All whole squares have the same size, creating a grid overlapping the watershed. For each square, certain 
characteristics must be defined: percentages of forest cover, lake area, and marsh area, as well as altitude. The 
second division (into partial squares) subdivides the whole squares according to drainage divides. The purpose 
of this division is to use it to define the drainage network (routing) of the watershed. Figure 1 shows an example 
of these divisions.  

Water movement calculations throughout the system can be separated into two categories: The production 
function and the transfer function. The production function deals with the vertical movement of water on each 
individual whole square. Figure 2 shows the different components of the production function.  

 

 
Figure 1. Example of watershed division into whole squares (ERAs) and partial squares (sub- 
basin limits) [4].                                                                   

 

 
Figure 2. Conceptual schema of the CEQUEAU model [4].                                  
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As this figure indicates, three interconnected reservoirs are used in the production function. The outflows of 
these reservoirs have their own discharge coefficient. Precipitation can either be in the form of rain or snow. In 
the latter case, a snowmelt model based on degree-days [6] is applied. Evapotranspiration is also calculated for 
the three reservoirs by using the Thornthwaite equation. The transfer function quantifies the movement of water 
from one square to another (routing). [1] describe both of these functions and their components in detail. In total, 
there are 29 parameters that need to be optimized. 

2.2. Parameter Estimation 
Some of the parameters of the production function and heat budget can be calculated or estimated based on the 
known physical processes underlying these functions, whereas the rest must be optimized. This implies that the 
user must assign values to these parameters whose “actual” values are unknown in order to produce the best 
possible simulation. This typically means that the output of the model (simulation time series) is compared to 
the corresponding observation time series for a set calibration period. For the CEQUEAU model, the variation 
of the parameters has been typically done manually. This requires a great deal of time and a certain level of ex-
pertise. For example, the model could overestimate the flows every spring, and the user must be knowledgeable 
enough of the physical processes that influence this flow to understand which parameters may be responsible for 
the overestimation, then to adjust it accordingly. In addition, because each region and each watershed is different, 
this potentially lengthy process must be repeated for each individual watershed to be analyzed. Instead of utiliz-
ing this inefficient method, an automatic calibration algorithm was adapted and applied to the CEQUEAU mod-
el in this study in order to optimize the parameters. In using an optimization algorithm, the hope is that it will 
not only be applicable to any watershed, but that it would also save time and be usable with minimal preparation 
or expertise. 

2.3. Genetic Algorithm 
The optimization algorithm that was applied to the CEQUEAU model was based primarily on a genetic algo-
rithm, developed by [7], and later revised by [8]. This type of optimization algorithm has been applied in many 
fields, including biology, chemistry, civil, mechanical and electrical engineering. There exists two types of ge-
netic algorithms: binary encoding and real value encoding. Real value encoding: vectors containing real num-
bers are used to represent parameter sets. Each element of the vector represents a parameter, and can possess any 
value within a range defined by the user, For example, one of the parameters used by CEQUEAU is the rain- 
snow threshold (STRNE). The user could define a logical range for this value, say between −3˚C and 3˚C, while 
the optimized value could be of 1.234˚C. In this study, due to the complexity of the problem and the CEQUEAU 
model, only real value encoding is used and discussed. Figure 3 presents the flowchart of the genetic algorithm 
used in this study.  

 

 
Figure 3. Flowchart of the genetic algorithm used to optimize the CEQUEAU 
model parameters.                                                      
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The first step in applying a genetic algorithm is defining an objective function. This function is used to eva-
luate the performance of a particular set of parameters. In the context of the CEQUEAU model, a set of parame-
ters will generate a simulation (flow), and this simulation will be compared to observed data to rate the perfor-
mance of the simulation. There are many different ways to quantify the performance, such as Pearson's correla-
tion coefficient (r), the Kling-Gupta efficiency (KGE), Willmott’s index of agreement (d), or the Nash-Sutcliffe 
efficiency criterion (NSE). Weighted and logarithmic versions of these also exist [9]. With all these options 
available, the choice of function becomes important. It is this function that the algorithm will attempt to maxim-
ize or minimize, depending on the case. In this study, the NSE is used, but slightly modified by including the 
possibility of applying a penalty to the value. The NSE is presented in Equation (1). 
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where:  
NSE : Nash-Stutcliffe Efficiency Criterion, ranging from −∞  (bad simulation) to 1 (perfect simulation) 
nDays : Length of the simulation period (days) 

i
OQ : Daily observed flow (m3/s) 
i
SQ : Daily simulated flow (m3/s) 

OQ : Average of all observed daily flows (m3/s) 
The idea behind applying a penalty to the NSE is to avoid solutions which produce good NSE values, but are 

not physically plausible. Given the region and the size of the watershed being studied, three situations were 
identified as being implausible: an empty water table, empty lakes and marshes, and the principal water course 
being almost completely dry. Equations (2) to (4) present the penalties applied in the three different cases.  
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where:  
1PEN : Penalty applied for an empty water table 

iHN : Height of water in the Lower Zone reservoir (water table) on day i (mm) 
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where: 
2PEN : Penalty applied for empty lakes or marshes 
iHLM : Height of water in the Lakes and Marshes reservoir on day i (mm) 
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where:  
3PEN : Penalty applied for a almost dry water course 

MIN
OQ : Minimum observed flow during the simulation period (m3/s) 

The total applied penalty (PENAPP) is the average of PEN1, PEN2, and PEN3, multiplied by the magnitude 
of the penalty. In this study, a magnitude of 0.00333 was applied. This implies that a simulation which possesses, 
on average, a single day per year in which each of the three penalties is applied (not necessarily all on the same 
day), would incur a penalty of 0.01 to the NSE value. To distinguish between the original NSE and the penalized 
NSE, NSEPEN is used as the objective function for the genetic algorithm while optimizing the flow model. The 
relation between NSE and NSEPEN is shown in Equation (5).  

NSEPEN NSE PENAPP= −                               (5) 

where: 
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PENAPP : Total applied penalty  
NSEPEN : NSE criterion with applied penalty 
As pointed out by [10], the NSE is dependent on the strength of the annual cycle. In order to properly judge 

whether or not a model performed well, a baseline or “benchmark” model should be evaluated. Say, for example, 
that while calibrating a model, such as the CEQUEAU model, we obtain a NSE value of 0.80. We might be in-
clined to state that the model preformed well, since this value is close to the maximum of 1. However, if we 
examine the same data using a benchmark model, such as the use of the inter-annual mean flow per calendar day 
as a model ( i

SQ  In Equation (1)), we could obtain a NSE value of 0.75. The high NSE value of the benchmark 
model would indicate that there is little variation in flow between years. The fact that the calibrated model bare-
ly outperforms the benchmark model could indicate that the calibrated model correctly modeled the seasonal 
variation (e.g. high flow during snowmelt, low flow during summer droughts), just as the benchmark model did, 
but failed to capture additional smaller-scale variability that the benchmark model would not have. The model 
could therefore be ineffective, if this was in fact its purpose. As such, the high NSE value would be misleading. 
On the other hand, if the benchmark model obtained an NSE value of 0.4 instead of 0.75 while the calibrated 
model still obtained a NSE value of 0.8, then it would be much clearer that the calibrated model performed well, 
since there is a lot of variability in the data and the model managed to capture that variability reasonably well. 

The next step in applying the genetic algorithm to the CEQUEAU model is defining the range of values that 
each respective parameter can take. This is done to ensure that the parameters stay within physically plausible 
limits. For example, the rain-snow threshold (STRNE) would certainly not be 10˚C. It would therefore be rea-
sonable to limit the value to between −3˚C and +3˚C, or something similar.  

Once the range of each parameter is defined (see Table 2), the next step of the genetic algorithm is the initia-
lization. This consists of creating the initial population of individuals. An individual is a vector whose elements 
each represent a different parameter. The length of the vector is equal to the number of parameters to be opti-
mized (NPAR). The initialization assigns random values to each of the parameters (within its limits) to each of 
the individuals of the population. The result is a population of individuals, each with its own unique set of ran-
dom parameters. Each of the individuals is then evaluated using the objective function. The size of the popula-
tion (NIND) is somewhat arbitrary, and can be based on the number of parameters to be optimized, on the exper-
tise of the user, on the choice made in similar problems, or by trial and error.  

2.4. General Loop 
After the initialization, the initial population passes through the general loop of the genetic algorithm. This loop 
contains the following elements: Selection crossover and mutation. Each repetition of the loop is called a gener-
ation. This loop is repeated until a maximum number of generations (NGMAX) is reached, an acceptable value 
of the objective function is reached, or the population becomes stagnant (no change for a large number of gener-
ations).  

The selection process consists of choosing two individuals to continue to the crossover function. The method 
proposed by [11] is used in this study, although many other methods exist. This method can be likened to a 
weighted roulette, where the better performing individuals (according to their NSEPEN) have a better probabili-
ty of being selected. 

The method suggested by [12] is used for the crossover function. The first step is to generate a random num-
ber, between 0 and 1. If this number is smaller than a user determined crossover probability (PCROSS), then the 
crossover function is applied. Otherwise, crossover is skipped, and the algorithm moves onto the next section 
(mutation). PCROSS is typically close to 100%, but is ultimately the user’s choice. The objective of the cros-
sover function is to create new individuals (offspring) by modifying the parents chosen by the selection process, 
P1 and P2. Three offspring (R1, R2, and R3) are created, each are a copy of one of the parents, but with random 
parameters modified in a way specific to each offspring. The two best performing offspring are kept and replace 
the parents in the population.  

The methodology described by [13] is used for the mutation function. Similar to the crossover function, a 
probability of mutation (PMUTA) is defined, typically close to 0%. If a random number, between 0 and 1, is 
smaller than PMUTA, than the mutation function is applied. Otherwise, it is skipped for the generation. If there 
is mutation, then a random individual is selected from the population. A random parameter is selected from this 
individual. This parameter is modified in the way described by [13], before returning to the population, thus 
completing a generation. 
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At the end of each generation, potentially three individuals differ from the original population: Two from 
crossover, one from mutation. Repeating this process simulates the evolution of the population, which should 
get stronger with time. In other words, as the generations go by, better performing individuals should start re-
placing worse performing individuals. Eventually, the population should converge towards an optimum solution, 
or at least very close to it. 

2.5. Sensitivity Analysis 
The main objective of this sensitivity analysis is to integrate the uncertainty on the estimated parameters in the 
prediction process. The uncertainty on the parameters is estimated by the separate calibration of several overlap-
ping periods of identical length (1975-1984, 1976-1985, 1977-1986, etc.). This creates a sample of calibrated 
parameter sets. In other words, the years 1975-1984 (10 years) would be calibrated resulting in a set of parame-
ters. The years 1976-1985 (also 10 years) would be calibrated separately as well, resulting in another set of pa-
rameters, most likely with at least slightly different values from the first. The same is done for 1977-1986, 
1978-1985, etc. This results in several sets of parameters, from which the mean and standard deviation of each 
parameter is calculated. Given that the support of each parameter is physically bounded (belong to the interval [x 
min, x max]), a Beta distribution (Equation (6)) is assumed to represent each parameters’ distributions. This 
would give 29 different Beta distribution, one for each parameter of the CEQUEAU model.  

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 1

1 2 1

1 2 min max
1 2 max min

p p

p p

p p x x x x
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p p x x
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Γ + − −
=

Γ Γ −
                  (6) 

where: 
Beta(x): Beta probability density function 
p1: Parameter (>0) of the Beta distribution 
p2: Parameter (>0) of the Beta distribution 
xmin: Inferior limit of the variable x 
xmax: Superior limit of the variable x 
The parameters of the Beta distributions are estimated by the method of the moment based on the mean and 

the variance. A bootstrap approach [14] is then used to simulate a large population of possible combinations of 
the parameter vector. Random values for each parameter are generated from its corresponding Beta distribution. 
This population is evaluated by the objective function, allowing an evaluation of the sensitivity of the objective 
function to the variations of each parameter. 

3. Case Study 
The study area is the Miramichi River watershed. It is situated in central New Brunswick (Figure 4). It is the 
second largest watershed in the province with a drainage area of approximately 14,000 km2, second only to that  

 

 
Figure 4. Map of the Miramichi River watershed and the sub-basins corresponding to the hydrological gauging stations used 
in this study.                                                                                            
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of the Saint John River. Its maximum dimensions are approximately 190 km east-west and 95 km north-south. 
There are two major sub-basins: the Northwest Miramichi (3900 km2) and the Southwest Miramichi (7700 km2) 
[15].  

The study period is separated in two: 
− Calibration period: January 1st, 1975 to December 31st, 2000 (26 years). This time period is used to optim-

ize the model’s parameters. 
− Validation period: January 1st, 2001 to December 31st, 2009 (9 years). This time period is used to verify the 

model’s performance. 

3.1. Physiographic Characteristics 
The southeast region of the watershed is part of the New Brunswick plains, whereas the northwest region is in 
the highlands. The extreme northwest is part of the mountainous region that contains Mount Carleton, the prov-
ince’s highest point, at 817 m. The two major tributaries, the Northwest and Southwest Miramichi, run princi-
pally from west to east. These two tributaries meet and form the Miramichi River, which runs for approximately 
25 km before it discharges into its estuary of approximately 300 km2. A few smaller rivers also discharge into 
this estuary, combing for around 1400 km2 of the watershed. Although there are very few large lakes in the wa-
tershed, the highlands contain several small lakes. The plains region of the watershed contains a significant 
amount of wetlands. Around 90% of the watershed is covered by forest.  

3.2. Division of the Watershed 
For the application of the CEQUEAU model, the watershed was divided into 128 whole squares of 12 km × 12 
km. These whole squares were then divided into 328 partial squares. The percentages of these squares covered 
by lakes, wetlands and forests are determined using GIS data available from Natural Resources Canada. 

3.3. Meteorology 
On average, the watershed receives precipitation 160 days per year [16]. The mean annual rainfall is approx-
imately 1130 mm [17]. November has the highest average precipitation at 109 mm [17]. The mean annual air 
temperature is 4.3˚C [16], with the mean monthly temperatures varying between 11.8˚C in January to 18.8˚C in 
July [17]. Ten meteorological stations were used in this study. For whole squares without meteorological sta-
tions, an interpolation of the data measured at the nearest three stations is done.  

3.4. Hydrology 
The mean annual flow of the Miramichi River is estimated at 317 m3/s and the median at 158 m3/s [17]. The ru-
noff associated with a 5 year recurrence flood is 23.9 mm and that of a 5 year recurrence drought is 0.16 mm 
[17]. This represents a flow at the river outlet of 3 870 m3/s and 25 m3/s respectively. Maximum flows typically 
occur in April or May, largely due to snowmelt [16]. The lowest flows occur in winter and summer. 

Four hydrometric gauging stations are active on the watershed. The largest of the four, with a drainage area of 
5050 km2, is located on the Southwest Miramichi at Blackville. This station is used for the calibration. The other 
three stations are used as a spatial validation. In other words, they are used to see if the parameters determined 
by the optimization at one location can be used elsewhere on the watershed. The data used were obtained from 
the HYDAT database [18]. Table 1 presents information regarding these stations. 

4. Results 
The allowed range for each parameter and its optimized value are presented in Table 2. The parameters seem to 
have taken physically logical values and do not seem to be limited by either the maximum or minimum limit. 
The parameters of the algorithm itself (NIND, PCROSS, PMUTA, and NGMAX) were chosen to be 400, 85%, 
1%, and 10,000 respectively. However, when NGMAX was reached, the population was still evolving, therefore 
the algorithm was allowed to run for an additional 5000 generations, which allowed the population to converge 
to an optimum solution, and thus become stagnant. The optimal solution was obtained after slightly more than 
12,000 generations (of the total 15,000 that were run). In other words, no change in the optimum solution was  
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Table 1. Hydrological gauging stations information.                                                              

 
Station 

Southwest Miramichi Little Southwest Miramichi Northwest Miramichi Catamaran Brook 

ID 01BO001 01BP001 01BQ001 01BP002 

Years 1975-2009 1975-2009 1975-2009 1989-2009 

Latitude 46˚44'09" 46˚56'09" 47˚05'41" 46˚51'24" 

Longitude 65˚49'32" 65˚54'27" 65˚50'11" 66˚11'24" 

Drainage area (km2) 5050 1340 948 28.7 

Daily Mean flow (m3/s) 120.2 33.6 21.7 0.63 

Daily Median flow (m3/s) 64.7 18.0 10.1 0.29 

Daily Min flow (m3/s) 10.6 2.7 1.4 0.02 

Daily Max flow (m3/s) 1730.0 552.0 445.0 13.0 

 
Table 2. Parameters of the CEQUEAU model optimized by genetic algorithm.                                        

Parameter 
Description Range Value 

Snowmelt 

STRNE Rain-snow threshold (˚C) [−5, 5] 0.023 

TFC Melting rate in forested areas (mm/˚C/jour) [1, 7] 3.931 

TFD Melting rate in open areas (mm/˚C/jour) [1, 7] 4.557 

TSC Melting threshold in forested areas (˚C) [−5, 5] 0.945 

TSD Melting threshold in open areas (˚C) [−5, 5] −2.455 

TTD Cold content coefficient for the snowpack [0, 1] 0.034 

TTS Ripening threshold of the snowpack (˚C) [−5, 5] −2.777 

TMUR Initial index of snowpack ripeness [0, 500] 201.7 

TSTOCK Initial snowpack temperature (˚C) [−20, 5] −15.3 

Evapotranspiration 

XAA Thornthwaite equation exponent [0.5, 1.5] 0.960 

EVNAP Percentage of evapotranspiration taken from the Lower Zone [0, 1] 0.580 

HPOT Reduction threshold of evapotranspiration (mm) [0, 100] 3.846 

Lakes and Marshes Reservoir 

CVMAR Lakes and Marshes discharge coefficient [0, 1] 0.494 

HMAR Lakes and Marshes discharge threshold (mm) [0, 1500] 346.1 

HMINI Initial water level of the reservoir (mm) [0, 1500] 235.9 

Upper Zone Reservoir 

CIN Percolation coefficient from the Upper Zone to the Lower Zone [0, 1] 0.057 

CVSB Upper Zone discharge coefficient (lower) [0, 1] 0.018 

CVSI Upper Zone discharge coefficient (upper) [0, 1] 0.131 

HINF Percolation threshold from the Upper Zone to the Lower Zone (mm) [0, 1500] 15.5 
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Continued 

HINT Upper Zone discharge threshold (upper) (mm) [0, 1500] 42.7 

HSOL Upper Zone capacity (mm) [0, 1500] 129.3 

XINFMA Daily maximum infiltration into the Lower Zone (mm) [0, 100] 12.9 

HSINI Initial water level of the reservoir (mm) [0, 1500] 46.1 

Lower Zone Reservoir 

CVNB Lower Zone discharge coefficient (lower) [0, 1] 0.016 

CVNH Lower Zone discharge coefficient (upper) [0, 1] 0.368 

HNAP Upper Zone discharge threshold (upper) (mm) [0, 1500] 289.3 

HNINI Initial water level of the reservoir (mm) [0, 1500] 25.2 

Miscellaneous 

HRIMP Available water (mm) necessary for impervious surface runoff [0, 50] 14.7 

EXXKT Routing coefficient [0, 1] 0.013 

 
obtained in the last 3000 generations. This was deemed a sufficient amount to consider the population as stag-
nant, with the optimum solution having been obtained. 

For the calibration period (1975-2000), using the station on the Southwest Miramichi River, both the NSE and 
NSEPEN are 0.83, and NSEBM is 0.50. For the validation period (2001-2009, same station), both the NSE and 
NSEPEN are 0.78, which is slightly lower than that of the calibration period. The NSEBM for the validation pe-
riod is 0.53. The flow duration curve (FDC) for these periods are shown in Figure 5. It should be noted that the 
NSEPEN and NSE values are identical every year for both the calibration and validation. For this reason, only 
the NSEPEN will be shown in remaining tables. 

Figure 5(a) shows that the lowest simulated flows (surpassed 90% - 100% of the time) are similar to those 
observed, but slightly overestimated, with an average bias of 3.1 m3/s (13.8%). The low and medium flows 
(surpassed 30% - 90%) are generally overestimated, with an average bias of 10.1 m3/s (22.3%). The higher 
flows (10% - 30%) were underestimated, with an average bias of −13.2 m3/s (7.6%). The highest simulated 
flows (0% - 10%) are similar to the observed flows, with an average bias of 16.25 m3/s (3.1%). The simulated 
median (75.8 m3/s) is higher than the observed median (64.0 m3/s). The FDC for the validation period (Figure 
5(b)) resembles the FDC of the calibration period, with similar comments to be made. 

4.1. Annual Decomposition 
To better visualize the results, each year was analyzed individually. Table 3 shows the NSE and NSEPEN of 
each individual year. The year 1997 had the best performance (NSEPEN = 0.96, NSEBM = 0.52), whereas 1992 
had the worst performance (NSEPEN = 0.41, NSEBM = 0.33), both of which are during the calibration period.  

Figure 6(a) and Figure 6(b) present the hydrograph and FDC of 1992 respectively, while Figure 6(c) and 
Figure 6(d) present the hydrograph and FDC of 1997 respectively. During the validation period, the year with 
the best performance is 2003, with an NSEPEN of 0.87 and NSEBM of 0.68, whereas the worst performing year 
is 2006, with an NSEPEN of 0.46 and NSEBM of −0.12.  

The 1997 hydrograph shows that the spring and summer flows were very well simulated, but the winter and 
fall flows were not quite as well simulated. It is also noticeable that no significant fall peak was observed, which 
is not typical for the region. The FDC is similar to the FDC of the entire period, with similar tendencies of over 
and underestimation. On the other hand, the 1992 hydrograph shows that although the fall and winter flows were 
well simulated, the spring floods were significantly overestimated. The observed spring peak was on April 22nd 
(522 m3/s), while the simulated peak was on April 23rd (774 m3/s). This is an error for the intensity of the peak 
of 42.5%, while the timing of the peak was off by a day. On average, the daily flow was overestimated by 40.4 
m3/s during the spring; an average error of 24.9%. Smaller peaks were also observed and underestimated in the 
summer. These peaks are not typical in the region.  



J. Boisvert et al. 
 

 
161 

 
(a)                                  (b) 

Figure 5. Observed and simulated FDCs of the Southwest Miramichi gauging station for both (a) the calibration period and 
(b) the validation period.                                                                                     

 

 
Figure 6. Year with the worst performing simulation’s (a) hydrograph and (b) FDC, and the year with the worst performing 
simulation’s (c) hydrograph and (d) FDC.                                                                     

4.2. Spatial Validation 
Spatial validation was done using three additional hydrological gauging stations: Northwest Miramichi River 
(NWM), Little Southwest Miramichi River (LSWM) and Catamaran Brook (CAT) (see Table 1 and Figure 4). 
The NSEPEN and NSEBM values of the three stations for their respective validation periods is presented in Ta-
ble 4. The NSE values were not presented in this table because they are all identical to the NSEPEN values. 

All three stations have inferior performances to that of the calibration station, which is to be expected. How-
ever, the difference is not large, and the performances are still good. The best performing station seems to be the 
largest of the three, whereas the worst performing stations is the smallest of the three. For the sake of brevity, 
the FDCs or hydrographs are not shown. It should however be noted that they are similar to those of the calibra-
tion. 
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Table 3. Nash-Sutcliffe Efficiency criterion with penalty (NSEPEN) and benchmark (NSEBM) for each year of calibration 
(1975-2000) and validation (2001-2009).                                                                      

Calibration Validation 

Year NSEPEN NSEBM Year NSEPEN NSEBM Year NSEPEN NSEBM 

1975 0.72 0.49 1988 0.90 0.37 2001 0.80 0.49 
1976 0.81 0.58 1989 0.90 0.54 2002 0.87 0.50 
1977 0.78 0.43 1990 0.84 0.63 2003 0.87 0.68 
1978 0.77 0.51 1991 0.90 0.66 2004 0.81 0.10 
1979 0.72 0.38 1992 0.41 0.33 2005 0.86 0.48 
1980 0.81 0.49 1993 0.76 0.39 2006 0.46 −0.12 
1981 0.88 0.27 1994 0.94 0.51 2007 0.82 0.40 
1982 0.75 0.67 1995 0.90 0.71 2008 0.70 0.45 
1983 0.64 0.39 1996 0.75 0.37    
1984 0.90 0.60 1997 0.96 0.52    

1985 0.75 −0.32 1998 0.87 0.46    

1986 0.90 0.69 1999 0.79 0.54    

1987 0.85 0.17 2000 0.90 0.49    

 
Table 4. Nash-Sutcliffe Efficiency criterion with penalty (NSEPEN) and benchmark (NSEBM) per year for each gauging sta-
tion used for spatial validation.                                                                                 

Year 
LSWM NWM CAT 

NSEPEN NSEBM NSEPEN NSEBM NSEPEN NSEBM 
1975 0.59 0.53 0.57 0.52 - - 
1976 0.62 0.54 0.64 0.54 - - 
1977 0.87 0.58 0.73 0.46 - - 
1978 0.78 0.55 0.89 0.44 - - 
1979 0.75 0.39 0.68 0.46 - - 
1980 0.68 0.38 0.70 0.50 - - 
1981 0.64 0.37 0.79 0.32 - - 
1982 0.54 0.64 0.88 0.63 - - 
1983 0.67 0.50 0.72 0.54 - - 
1984 0.88 0.66 0.88 0.69 - - 
1985 0.67 −0.02 0.45 −1.33 - - 
1986 0.92 0.63 0.83 0.66 - - 
1987 0.85 −0.64 0.85 0.01 - - 
1988 0.76 0.25 0.80 0.34 - - 
1989 0.83 0.52 0.89 0.50 - - 
1990 0.53 0.50 0.67 0.44 0.57 0.48 
1991 0.92 0.63 0.70 0.54 0.78 0.51 
1992 0.71 0.53 0.85 0.46 0.62 0.41 
1993 0.69 0.32 0.71 0.20 0.59 0.27 
1994 0.87 0.59 0.84 0.56 0.84 0.57 
1995 0.77 0.80 0.77 0.78 0.82 0.73 
1996 0.81 0.52 0.82 0.61 0.65 0.37 
1997 0.90 0.61 0.92 0.65 0.89 0.49 
1998 0.60 0.30 0.53 0.23 0.75 0.53 
1999 0.77 0.57 0.82 0.54 0.51 0.59 
2000 0.81 0.41 0.82 0.42 0.81 0.40 
Total 0.77 0.52 0.76 0.50 0.74 0.50 
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4.3. Sensitivity Analysis 
A population of 2 000 parameter sets was created using the fitted Beta distribution of each parameter. A histo-
gram of NSEPEN is presented in Figure 7. 

Most of the NSEPEN values are greater than 0, with a good portion of these being greater than 0.5. A value of 
0 indicates a simulation that is equivalent to using a single constant value, the mean of all observed values, as a 
simulation. A value of 0.5 indicates that the simulations is approximately equal to the benchmark model used, 
and is therefore a decent simulation, but no better than a very basic model. The maximum NSEPEN value ob-
tained during the analysis was 0.74. This is less than the 0.83 obtained during the model calibration, which is to 
be expected. The minimum NSEPEN value obtained (−3.75) is very low. There are a few other bad simulations 
as well in the population of 2 000. 29% of the population have an NSEPEN greater than 0.5, and are thus an im-
provement on the benchmark model, and are therefore fairly good simulations. 47% of the population have an 
NSEPEN between 0 and 0.5. These are decent simulations in the sense that they are better than using just a sin-
gle mean value as a model, but perform worse than the benchmark model. The remaining 24% have an NSEPEN 
smaller than 0, and are thus poorly performing simulations. There does not appear to be a particular value (or 
small range of values) of any one parameter that consistently produces these bad simulations. This indicates that 
no one parameter is sensitive enough to be responsible for most or all of the bad simulations. It is more likely 
that particular combinations of parameter values would cause these bad simulations. For example, a simulation 
with a high snowmelt rate might have a low NSEPEN value if the soil (Upper Zone) parameters didn't allow for 
much absorption into the reservoir or gradual discharge out of the reservoir. This could cause excessive spring 
floods, whereas a simulation with the same high snowmelt rate might provide a much better simulation if the 
soil parameters allowed for a better modeling of the spring flood. 

It would appear that the scatter plots of NSEPEN as a function of the parameter value (one plot per parameter) 
can be categorized into three different categories, shown in Figure 8, as follows: 
− A maximum value of NSEPEN with a high variance near the center of the point mass. Left and right extrem-

ities with less variability, but with lower values of NSEPEN (Figure 8(a)); 
− An asymmetric distribution, concentrated near one of the limits of the parameter. The variability of NSEPEN 

is higher at this limit than elsewhere on the plot (Figure 8(b)); 
− Very little correlation between NSEPEN and the value of the parameter. There can be a maximum or areas 

of high or low variability (Figure 8(c)). 
As can be seen in Figure 8, there is a lot of variability in the scatter plots. This implies that there is a lot of 

uncertainty in the parameters. In other words, the 17 different calibrations of 10 year periods did not produce the 
same parameter sets as one another. 

 

 
Figure 7. Histogram of the NSEPEN values of the sensitivity analysis.                     
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(a)                                  (b)                                  (c) 

Figure 8. Different scatter plot distribution categories found in the sensitivity analysis. (a) STRNE; (b) HINT; (c) EXXKT.    

5. Discussion 
The study showed that the optimization of the CEQUEAU model using a genetic algorithm appeared to be suc-
cessful. The NSE (without penalty) and NSEPEN (with penalty) of 0.83, and the NSEBM (benchmark model) 
was of 0.50. The NSEBM of 0.50 would seem to indicate that there is an annual cycle present, but that there is 
still a significant inter-annual variability. The CEQUEAU model improved upon this value by 0.33, a significant 
increase. These results show that the model performed well during the calibration, accounting for much of the 
variability not accounted for by the benchmark model. The model also performed well during the temporal vali-
dation, producing a NSEPEN of 0.80. This is slightly inferior to the NSEPEN value of 0.83 obtained for the ca-
libration period. This can be explained by many different factors. The physical characteristics of the watershed 
can change with time, but the model considers them as being constant. For instance, some logging is known to 
have occurred on the drainage basin, but this was not accounted for in the physiographic data extraction. Also, 
there are fewer active meteorological stations during the validation period than during the calibration period. 
This could lead to less accurate meteorological input. By the end of the validation period, only three stations 
were active, which makes accurately portraying the meteorology over such a large area very difficult. Given 
these facts, the model still performed well, indicating that it could be used for future predictions. The NSEBM 
for the validation period was of 0.53, a very similar value to that of the calibration period. Similar conclusions 
can be drawn here as were drawn for the calibration period. 

The model also performed well during the spatial validations using three stations on the watershed. These sta-
tions produced NSEPEN values of 0.77, 0.76 and 0.74 respectively. This is less than the NSEPEN value at the 
calibration station (0.83). This can be partially explained by the fact that the three validation stations are located 
on a different sub-basin than the calibration station. The latter is part of the Southwest Miramichi sub-basin, 
whereas the others are part of the Northwest Miramichi sub-basin. Different latitudes, meteorology, elevations, 
soil type, etc., could easily cause a difference in the behaviour of these sub-basins’ respective systems. For ex-
ample, snowmelt could occur at a different threshold and rate for the two regions, or the ground could be less 
permeable for one of the regions, implying different infiltration and discharge coefficients. It should also be 
noted the NSEBM values of the entire period for each station were 0.52, 0.50, and 0.50 respectively. These are 
similar to the values obtained for the calibration station (Southwest Miramichi, calibration and validation pe-
riods). This is to be expected, since the stations are in the same region, and should be subject to the same in-
ter-annual variability (e.g. a unusually wet autumn would most likely be observed at all the stations, and not just 
one). It is also interesting to note that the difference between the NSEPEN and NSEBM for these stations (ap-
proximately 0.25) is smaller than that noted for the calibration station (033). This could be due to the reasons 
listed above, but could also be influenced by the size difference between the watersheds. Smaller watersheds 
tend to be less stable and more susceptible to perturbation. As such there may be smaller time scale variability 
that is not present in the larger watershed. Therefore, when the larger watershed was being calibrated, there was 
no need for the algorithm to attempt to model the kind of smaller scale variation that is present in small water-
sheds. Consequentially, this become unaccounted for, resulting in smaller NSEPEN values. 
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It should be noted that for both the calibration and validation periods, the NSE and NSEPEN are always nearly 
identical. This implies that the penalty was sufficient in directing the algorithm away from implausible solutions 
(empty lakes, wetlands, water table or river). It would be interesting to use different magnitudes of penalties to 
verify the effect on the algorithm. It should also be noted that the algorithm was applied using on the raw NSE 
value in a separate attempt to calibrate the model. The results were similar in terms of NSE values, but there was 
a difference between the two calibrations. The raw NSE calibration would tend to simulate flows near 0 m3/s 
during low flow periods, but would slightly more accurately model the peak flow periods. This is most likely 
because of the definition of the NSE itself, where the error between the observation and simulation is squared. 
That would mean that an error of 200 m3/s on an observed peak of 2000 m3/s would have a much larger negative 
impact on the NSE value than simulating a flow of 0 m3/s for an observed flow of 20 m3/s. As such, it was 
deemed that the application of a penalty was useful, because it kept the calibration from producing unrealistic 
simulations. It should also be noted that the algorithm can have difficulty distinguishing between two or more 
excellent solutions. Consequently, the algorithm may return a solution that is not optimum, but close to optimum. 
For the present application, this is deemed acceptable.  

Observing the FDCs, it is noticeable that there seems to be a tendency to overestimate low flows and underes-
timate high flows with the optimized model. Reference [19] showed in order to maximize the NSE, the variance 
must be underestimated. This is probably the cause of the overestimated low flows and underestimated high 
flows. In addition, the NSE criterion compares simulated results to one specific value (mean). Consequentially, 
time series with more variations tend to be more penalized than those without these variations (long droughts, 
for example).  

The results show that there is a high variability in the yearly NSE values, with some being close to 1, while 
others were below 0.5. This can be partially explained by the differences in the hydrographs between years. 
Some years there are very strong periods of high flow in the fall, perhaps even higher than those in the spring. 
Other years there may be no fall floods at all. The freeze and thaw may not happen at the same time every year, 
or may happen several times in a year. This is often reflected in the NSEBM of that year. The years that differ 
from the typical annual cycle would have lower NSEBM because the benchmark model is based on average val-
ues. In general, a low NSEBM is accompanied by a low NSEPEN for the same year. The opposite is also true, 
with a high NSEBM being generally accompanied by a high NSEPEN. It seems that the Little Southwest Mira-
michi (LSWM) station does always follow this pattern. For example, the year 1987 was an atypical year, with 
almost no spring peak (300 m3/s). This is reflected in the NSEBM value for that year (−0.62). However, the 
NSEPEN value was still very good (0.85). There are also two years (1982, 1995) where the NSEBM values were 
higher than the NSEPEN values, and several others where the two values were close. This does happen at other 
stations, but not frequently. This could perhaps indicate that the parameters calibrated at the Southwest Mirami-
chi station suit its own annual cycle well, but not that of the Little Southwest Miramichi. Another possible ex-
planation would be that there are significant differences in the regime at the Little Southwest Miramichi, and 
that there is maybe a cause of variability present at that basin that is not present at the Southwest Miramichi ba-
sin, or vice-versa. A more detailed analysis should be conducted to determine if this is the case. There could be 
localized storm events, which may not be properly measured by the meteorological stations, causing high ob-
served flows where the model has little or no input precipitation. The best performing year, 1997 (see Figure 6), 
had generally few flow variations, with the exception of a typical spring flood. Winter and summer flows were 
fairly constant, and fall did not see any particularly high flows either. In contrast, the worst performing year, 
1992 (see Figure 6), had a very small spring flood, with a fall flood that saw almost the same peak flows. There 
were also multiple smaller peaks during the summer months. This is not typical of the region. Observations on 
individual years, however, should be made carefully. A particular year is dependent on the previous ones. For 
example, a year that is well simulated, save for the last few days would have a high NSE, but those last few 
badly simulated days could carry over to the next year and cause a bad NSE for that year. 

Similarly to this study, [3] studied the Catamaran Brook using the CEQUEAU model. This is particularly in-
teresting, since this gauging station is used to validate the model in this study. In this study, the NSE value found 
while calibrating manually using the Catamaran Brook discharge data was close to 0.61 (from 1990-1995). In 
the present study, the value was found to be 0.70 for the same time period. Since this was only used as a valida-
tion, if the station would have been used to calibrate, it is logical to assume that the NSE would have been even 
higher. [20] also applied the CEQUEAU model to a small watershed (70 km2), obtaining NSE values between 
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0.40 and 0.78. [21] analyzed a semi-arid watershed (1442 km2) with long periods of drought and a dam, obtain-
ing NSE values of above 0.89. The NSE found in the present study (0.83) is within these ranges of values. Of 
course it is difficult to compare NSE values of different areas with different variability and cycles, so evidently 
the results of other studies should be taken lightly. 

The sensitivity analysis showed that the NSEPEN values were mostly greater than 0.5. This implies that the 
model is not sensitive to the point where random individuals produce bad results. There is doesn't seem to be 
any particular parameter that is solely responsible for the poorly performing simulations; i.e. good performing 
simulations can be found throughout the entire range of each parameter. The inverse is also true, where bad per-
forming simulations can be found throughout the entire range of each parameter. There was also a significant 
gap between the maximum value of the sensitivity analysis and the value optimized by the genetic algorithm. 
This indicates that the algorithm was beneficial in finding an optimum solution. This means that even with a 
large amount of individuals generated randomly, with a good portion of them having similar parameters to the 
optimized values found by the algorithm (parameters producing an NSEPEN of 0.83), these random individuals 
did not match the optimized value. This indicates that the model is sensitive to small perturbations in the para-
meters. Given this, and the fact that the entire range of each parameter can produce good performing simulations, 
it would seem to indicate that it is more important that the parameters work well together as opposed to there 
being one perfect value for each parameter. It should be noted that there is a large variability in the scatter plots, 
indicating uncertainty in the parameters. This is probably caused by the small sample size (17). Consequentially, 
the Beta distributions used to model each parameter distribution allows an important variability in the parame-
ters, which is reflected in the NSEPEN values. It could also be caused by variability in the hydrographs from 
year to year. This would cause the different samples of 10 years to be calibrated differently, causing higher va-
riability in the random values produced by the Beta distribution. Some parameters have a stronger correlation to 
the NSEPEN then others, implying they have a greater impact on the latter.  

These results indicate that the model performed well, implying that the genetic algorithm was successful in 
calibrating it. However, it should not be forgotten that the efficiency of the genetic algorithm can be influenced 
by several factors, such as: population size, crossover probability, mutation probability, and stopping criterion. 
Different combinations of these should be tested to see the impact on the algorithm.  

6. Summary and Conclusions 
A deterministic approach using the CEQUEAU model was used to model water flow and temperature of the 
Miramichi River watershed. As is the case with many deterministic models, parameter optimization can be 
challenging. A genetic algorithm was used for the calibration of the CEQUEAU model in order to optimize its 
parameter values. These results were compared to the results obtained by using a simple benchmark model (av-
erage flow per calendar day). The results show that the calibrated flow model performed well during the calibra-
tion period, the temporal validation period, and while using the three spatial validation gauging stations. This 
implies that the model can be used for predictions at multiple locations on the watershed. The fact that the cali-
brated CEQUEAU model performs well indicates that the genetic algorithm also performed well. There is no 
guarantee that the calibrated model is in fact the best solution possible, it does however appear that the algorithm 
at the very least provides a good solution. 

It would be interesting for further studies to use the genetic algorithm applied in this study on different wa-
tersheds and different situations in order to better explore its strengths and weaknesses, and potentially improve 
the algorithm. In particular, different objective functions should be considered, since the Nash-Sutcliff Efficien-
cy seemed to be at least partially responsible for the underestimation of high flows and overestimation of low 
flows. Different types and magnitudes of penalties could also be explored in order to better understand their ef-
fect on the algorithm and the calibrated model. 
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