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Abstract 
A parallel related uniform machine system consists of m machines with different processing 
speeds. The speed of any machine is independent on jobs. In this paper, we consider online sche-
duling for jobs with arbitrary release times on the parallel uniform machine system. The jobs ap-
pear over list in terms of order. An order includes the processing size and releasing time of a job. 
For this model, an algorithm with competitive ratio of 12 is addressed in this paper. 
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1. Introduction 
For the online scheduling on a system of m uniform parallel machines, denoted by max/ /mQ online C , each ma-
chine ( )1,2, ,iM i m=   has a speed is , i.e., the time used for finishing a job with size p on iM  is ip s . 
Without loss of generality, we assume 1 2 ms s s≤ ≤ ≤ . Cho and Sahni [1] are the first to consider the on-line 
scheduling problem on m uniform machines. They showed that the LS algorithm for ( )max/ / 2mQ online C m ≥  
has competitive ratio not greater than 1 1 2m+ − . When ( )1 1,2, , 1is i m= = −  and 1ms s= > , they  

proved that the algorithm LS has a competitive ratio { }1 41 min , 2 3
1 1

m s
m s m

−
+ ≤ −

+ − +
 and the bound 
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43
1m

−
+

 is achieved when ( )2 3s m= ≥ . 

For 2 max/ /Q online C , Epstein et al. [2] showed that LS has the competitive ratio 
2 1 1min ,

1
s s

s s
+ + 

 
+ 

 and is 

an optimal online algorithm, where the speed ratio 2 1s s s= . 
Cai and Yang [3] considered 3 max/ /Q online C . Let 2 1s s s=  and 3 2t s s=  be two speed ratios. They 

showed that the algorithm LS is an optimal online algorithm when the speed ratios ( ) 1 2,s t G G∈ ∪ , where  

( )1 2

1 31 3, |1 < ,
6 5 2 6

tG s t t s
t t

 + = ≤ ≥ 
+ −  

 and ( ){ }2 , | 1 , 1, 1G s t t s s t= ≥ + ≥ ≥ . Moreover, for the general 

speed ratios, they also presented an upper bound of the competitive ratio. 
Aspnes et al. [4] are the first to try to design algorithms better than LS for max/ /mQ online C . They presented 

a new algorithm that achieves the competitive ratio of 8 for the deterministic version, and 5.436 for its rando-
mized variant. Later the previous competitive ratios are improved to 5.828 and 4.311, respectively, by Berman et 
al. [5]. 

Li and Shi [6] proved that for 3m ≤  LS is optimal when ( )1 1,2, , 1is i m= = −  and 2ms =  and pre-
sented an online algorithm with a better competitive ratio than LS for 4m ≥ . Besides, they also showed that the  

bound 43
1m

−
+

 could be improved when ( )1 1,2, , 1is i m= = −  and 1ms s= > . For 4m ≥  and 1 2s≤ ≤ , 

Cheng et al. [7] proposed an algorithm with a competitive ratio not greater than 2.45. 
A generalization of the Graham’s classical on-line scheduling problem on m identical machines was proposed 

by Li and Huang [8]-[10]. They describe the requests of all jobs in terms of order. For an order of the job jJ , 
the scheduler is informed of a 2-tuple ( ),j jr p , where jr  and jp  represent the release time and the 
processing time of the job jJ , respectively. The orders of request have no release time but appear on-line one 
by one at the very beginning time of the system. Whenever the request of an order is made, the scheduler has to 
assign a machine and a processing slot for it irrevocably without knowledge of any information of future job or-
ders. In this on-line situation, the jobs’ release times are assumed to be arbitrary. 

Our task is to allocate a sequence of jobs to the machines in an on-line fashion, while minimizing the maxi-
mum completion time of the machines. In the following of this paper, m parallel uniform machines which have 
speeds of 1 2 ,ms s s≤ ≤ ≤  respectively, are given. Let { }1 2, , , nL J J J=   be any list of jobs, where job jJ  
is given as order with the information of a release time jr  and a processing size of jp . 

The rest of the paper is organized as follows. In Section 2, some definitions are given. In Section 3, an algo-
rithm U is addressed and its competitive ratio is analyzed. 

2. Some Definitions 
In this section we will give some definitions. 

Definition 1. We have m parallel machines with speeds 1 2, , , ms s s . Let { }1 2, , , nL J J J=   be any list of 
jobs, where jobs arrives online one by one and each jJ  has a release time jr  and a processing size of jp . 
Algorithm A is a heuristic algorithm. Let ( )max

AC L  and ( )max
OPTC L  be the makespan of algorithm A and the 

makespan of an optimal off-line algorithm respectively. We refer to  

( ) ( )
( )

max

max

, sup
A

OPT
L

C L
R m A

C L
=

 
as the competitive ratio of algorithm A.  

Definition 2. Suppose that jJ  is the current job to be scheduled with release time jr  and size jp . We say 
that machine iM  has an idle time interval for job jJ , if there exists a time interval [ ]1 2,T T  satisfying the 
following two conditions:  

1) Machine iM  is idle in interval [ ]1 2,T T  and a job with release time 2T  is assigned on machine iM  to 
start at time 2T .  

2) { }2 1max , j
j

i

p
T T r

s
− ≥ .  
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It is obvious that if machine iM  has an idle time interval for job jJ , then we can assign jJ  to machine 
iM  in the idle interval. 
In the following we consider m parallel uniform machines with speeds 1 2, , , ms s s  and a job list 
{ }1 2, , , nL J J J=   with information ( ),j jr p  for each job jJ L∈ , where ir  and ip  represent its release 

time and size, respectively. For convenience, we assume that the sequence of machine speeds is non-decreasing, 
i.e., 1 2 .ms s s≤ ≤ ≤  

3. Algorithm U and Its Performance 
Now we present the algorithm U by use of the notations given in the former section in the following: 

Algorithm U:  
Step 0. (*start the first phase*) 

: 1, : 1h j= = , { }: 0,0, ,0l =


 , :h j j mr p s∆ = + . 

Step 1. If there is a new job jJ  with release time jr  and processing size jp  given to the algorithm then 
go to Step 2. Otherwise stop. 

Step 2. If there is a machine iM  which has an idle time interval for job jJ , then we assign jJ  to machine 
iM  in the idle interval. Set : 1j j= +  and go to Step 1. 
Step 3. Set { }{ }: | max , 3i j j i hS i l r p s= + ≤ ∆ . If S ≠ ∅  then set { }: min |k i i S= ∈ , { }: max ,k k j kl l r p= + , 
: , , : 1.i il l i k j j= ≠ = +  Go to Step 1. 
Step 4. (*start a new phase*) 
Set { }0,0, ,0l =



 , : 2 .h∆ = ∆  { }: 1, : 0,0, ,0h h l= + =


 , : , :h j j∆ = ∆ =  and go to Step 3. 
Now we begin to analyze the performance of algorithm U. 
The following statement is obvious: 
Lemma 1. Let hL  be the stream of jobs scheduled in phase h and jJ  is the first job assigned in phase 

1h + . Let *
hΓ  be the largest load in an optimal schedule for job list { }h jL J∪ . Then we have * .h hΓ > ∆  

Proof:  I f  *
hΓ ≤ ∆ ,  le t  r  be the fastest  machine whose load does not  exceed *2 hΓ ,  i .e.  

( ){ }*max | 1 2i hr i l j= − ≤ Γ . If there is no such machine, we set 0r = . If r m= , then ( ) *1 2m hl j − ≤ Γ . It is  

obvious that * .j
j h

m

p
r

s
+ ≤ Γ  Hence we have  

( ){ } * *max , 1 2 3 .j
j m h h h

m

p
r l j

s
− + ≤ Γ + Γ ≤ ∆

 
It means that jJ  can be assigned to the fastest machine mM  in phase h. It is a contradiction to the fact that 
jJ  is the first job assigned in phase 1h + . Define { }|i i rβ = > , the set of machines with finishing time big-

ger than *2 hΓ  by the end of phase h. Since r m< , β ≠ ∅ . Denote by iS  and *
iS  the set of jobs assigned to 

machine iM  by the on-line and the off-line algorithms, respectively. Since for any job u hJ L∈  the following 
inequalities hold  

* ,u
u u h

m

pr r
s

< + ≤ Γ
 

we get:  

*1 , .
i

u h
u Si

p i
s

β
∈

> Γ ∀ ∈∑
 

That means:  

* .i
u

i u S
h

i
i

p

S
β

β

∈ ∈

∈

> Γ
∑∑

∑
 

This implies that there exists a job uJ  ( ii
u S

β∈
∈


) such that *
ii

u S
β∈

∉


, i.e. there exists a job uJ  as-
signed by the on-line algorithm to a machine ( )iM i β∈  and assigned by the off-line algorithm to a slower 
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machine ( )iM i β′ ′∉ . 

By our assumptions, we have *u
u h h

i

p
r

s ′

+ ≤ Γ ≤ ∆ . Since r i′≥ , machine rM  is at least as fast as machine 

iM ′ , and thus *u
u h h

r

p
r

s
+ ≤ Γ ≤ ∆ . Since job uJ  was assigned before job jJ  and i β′∉ , we have  

( ) ( ) *1 1 2 .r r hl u l j− ≤ − ≤ Γ  
This implies  

( ){ } ( ){ } ( ) *max , 1 max , 1 1 3 .u u u
u r u r r u h

r i i

p p pr l u r l j l j r
s s s′ ′

− + ≤ − + ≤ − + + ≤ Γ
 

But this means that the on-line algorithm should have placed job uJ  on rM  or a slower machine instead of 
iM , which is a contradiction.                                                                 
Theorem 2. Algorithm achieves a competitive ratio of 12. 
Proof: Let hρ  denote the maximum load generated by jobs that were assigned during phase h; denote the 

last phase by lasth . By the rules of our algorithm we have 1
12h

h
−∆ = ∆  and  

1
13 3 2 .h

h hρ −< ∆ = ⋅ ∆  

Hence the total height generated by the assignment is:  

( ) 1
1

3 2 1 .
last

last
h

h
h

h
ρ

=

Γ = ≤ − ∆∑
 

The claim of the theorem is trivially true if 1lasth = . For 1h > , phase h is started only if *
1 1h h− −Γ > ∆ . In par-

ticular we have  
2* *

1 1 12 2 .last
last last last

h
h h h

−
− −Γ ≥ Γ > ∆ = ∆ = ∆

 
Therefore we have  

( ) *
13 2 1 12 .lasthΓ ≤ − ∆ < Γ                                   

4. Concluding Remarks 
In this paper, we consider on-line scheduling for jobs with arbitrary release times on uniform machines. An al-
gorithm with the competitive ratio of 12 is given. It should be pointed out that more detailed consideration 
should be taken in order to improve the competitive ratio. 
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