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Abstract 
Theoretical foundations of a new algorithm for determining the p-capitulation type K( )  of a 
number field K with p-class rank = 2  are presented. Since K( )  alone is insufficient for 

identifying the second p-class group p K K= 2Gal(F | )G  of K, complementary techniques are deve- 
loped for finding the nilpotency class and coclass of G . An implementation of the complete 
algorithm in the computational algebra system Magma is employed for calculating the Artin 
pattern ,K K K= τAP( ) ( ( ) ( ))  of all 34631 real quadratic fields K d= ( )  with discriminants 

d< < 80 10  and 3-class group of type (3, 3). The results admit extensive statistics of the second 
3-class groups K K= 2

3Gal(F | )G  and the 3-class field tower groups G K K∞= 3Gal(F | ) . 
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1. Introduction 
Let p be a prime number. Suppose that K is an algebraic number field with p-class group Cl : Syl Clp p KK =  and 
p-elementary class group E : Cl

pp p pK K= ⊗  . By class field theory ([1] Cor. 3.1, p. 838), there exist precisely  
1:
1

pn
p
−

=
−



 distinct (but not necessarily non-isomorphic) unramified cyclic extensions |iL K , 1 i n≤ ≤ , of  

degree p, if K possesses the p-class rank : dim E
p p K=  . For each 1 i n≤ ≤ , let | :Cl Cl

iL K p p ij K L→  denote 
the class extension homomorphism induced by the ideal extension monomorphism ([2] 1, p. 74). We let KU , 
resp. 

iLU , be the group of units of K, resp. iL . 
Proposition 1.1. (Order of |ker

iL Kj ) 
The kernel |ker

iL Kj  of the class extension homomorphism associated with an unramified cyclic extension 
|iL K  of degree :iL K p=  is a subgroup of the p-elementary class group E p K  and has the p -dimension 

( )| |1 dim ker log : ( : Norm ) .
p i i iL K p i K L K Lj L K U U≤ = ⋅ ≤                     (1) 
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Proof. The proof of the inclusion |ker E
iL K pj K≤  was given in ([2] 1, p. 74) for 3p = , and generally in ([3] 

Prop. 4.3.(1), p. 484). The relation | |# ker : ( : Norm )
i i iL K i K L K Lj L K U U= ⋅  for the unramified extension |iL K  

is equivalent to the Theorem on the Herbrand quotient ([4] Thm. 3, p. 92) and was proved in [[3] Prop. 4.3, pp. 
484-485]. According to Hilbert’s Theorem 94 ([5] p. 279), the kernel |ker

iL Kj  cannot be trivial.          □ 
Definition 1.1. For each 1 i n≤ ≤ , the elementary abelian p-group |ker

iL Kj  is called the p-capitulation 
kernel of |iL K . We speak about total capitulation [6] [7] if |dim ker

p iL Kj =  , and partial capitulation if  
|1 dim ker

p iL Kj≤ <  .  

If 3p ≥  is an odd prime, and ( )K d=   is a quadratic field with fundamental discriminant : Kd d=  and 
p-class rank 1≥ , then there arise the following possibilities for the p-capitulation kernel in any of the un- 
ramified cyclic relative extensions |iL K  of degree p, which are absolutely dihedral extensions |iL   of 
degree 2p, according to ([3] Prop. 4.1, p. 482). 

Corollary 1.1. (Partial and total p-capitulation over ( )K d=   with 2≥ ) 

|

1 if is complex, 0,
dim ker 1 if is real, 0, and is of type ,

2 if is real, 0, and is of type .
p iL K i

i

K d
j K d L

K d L
δ
α

<
= >
 >

                    (2) 

The p-capitulation over K is total if and only if K is real with 2= , and iL  is of type α . 
Proof. In this special case of a quadratic base field K, the extensions |iL K , 1 i n≤ ≤ , are pairwise non- 

isomorphic although they share a common discriminant which is the pth power 
i

p
L Kd d=  of the fundamental 

discriminant of K [[1] Abstract, p. 831]. If K is complex, the unit norm index equals 1, since the cyclotomic 
quadratic fields do not possess unramified cyclic extensions of odd prime degree. If K is real, we have 

|( : Norm ) 1
i iK L K LU U =  ⇔  iL  is of type δ , and |( : Norm )

i iK L K LU U p=  ⇔  iL  is of type α  [[3] Prop. 
4.2, pp. 482-483].                                                                          □ 

The organization of this article is the following. In §2, basic theoretical prerequisites for the new capitulation 
algorithm are developed. The implementation in Magma [8] consists of a sequence of computational techniques 
whose actual code is given in §3. The final §4 demonstrates the results of an impressive application to the case 

3p = , presenting statistics of all 3-capitulation types ( )K , Artin patterns AP( )K , and second 3-class groups 
2
3Gal(F | )K K=G  of the 34631 real quadratic fields ( )K d=   with discriminants 80 10d< <  and 3-class 

group of type (3,3) , which beats our own records in [3] §6 and [9] §6. Theorems concerning 3-tower groups 
3Gal(F | )G K K∞=  with derived length 2 dl( ) 3G≤ ≤  perfect the current state of the art. 

2. Theoretical Prerequisites  
In this article, we consider algebraic number fields K with p-class rank 2= , for a given prime number p. As 
explained in §1, such a field K has 1n p= +  unramified cyclic extensions iL  of relative degree p. 

Definition 2.1. By the Artin pattern of K we understand the pair consisting of the family ( )Kτ  of the p-class 
groups of all extensions 1, , nL L  as its first component (called the transfer target type) and the p-capitulation 
type ( )K  as its second component (called the transfer kernel type), 

( ) ( ) ( )|1 1
AP( ) : ( ), ( ) , ( ) : Cl , ( ) : ker .

ip i L Ki n i n
K K K K L K jτ τ

≤ ≤ ≤ ≤
= = =                 (3) 

Remark 2.1. We usually replace the group objects in the family ( )Kτ , resp. ( )K , by ordered abelian 
type invariants, resp. ordered numerical identifiers ([10] Rmk. 2.1).  

We know from Proposition 1.1 that each kernel |ker
iL Kj  is a subgroup of the p-elementary class group 

E p K  of K. On the other hand, there exists a unique subgroup ClKS <  of index p such that |Norm Cl
i iL K LS = , 

according to class field theory. Thus we must first get an overview of the connections between subgroups of 
index p and subgroups of order p of ClK . 

Lemma 2.1. Let p be a prime and A be a finite abelian group with positive p-rank and with Sylow p-subgroup 
Syl p A . Denote by 0A  the complement of Syl p A  such that 0 Syl pA A A× . Then, any subgroup S A<  of 
index p is of the form 0S A U×  with a subgroup Syl pU A<  of index p.  

Proof. Any subgroup S of 0 Syl pA A A×  is of the shape 0S S U×  with 0 0S A≤  and Syl pU A≤ . We 
have 0 0 0 0( : ) ( Syl : ) ( : ) (Syl : )p pp A S A A S U A S A U= = × × = ⋅ . Since 0 0( : )A S  is coprime to p, we conclude 
that 0 0S A=  and (Syl : )p A U p= .                                                           □ 
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An application to the particular case ClKA =  and |Norm Cl Cl
i iL K L KS = <  shows that 0(Cl )KS U×  

with |Norm Cl Cl
iL K p i pU L K= < . 

Three cases must be distinguished, according to the abelian type of the p-class group Cl p K . We first 
consider the general situation of a finite abelian group A with type invariants 1( , , )na a  having p-rank 

( ) 2pr A = , that is, 2n ≥ , | np a , 1| np a − , but gcd( , ) 1ip a =  for 1i n< − . Then the Sylow p-subgroup Syl p A  
of A is of type ( , )u vp p  with integer exponents 1u v≥ ≥ , and the p-elementary subgroup pA  of A is of type 
( , )p p . We select generators ,x y  of Syl ,p A x y= 〈 〉  such that ord( ) ux p=  and ord( ) vy p= . 

Lemma 2.2. Let p be a prime number. 
Suppose that G is a group and x G∈  is an element with finite order := ord( )e x  divisible by p. 

Then the power mx  with exponent : em
p

=  is an element of order ord( )mx p= .  

Proof. Generally, the order of a power mx  with exponent m∈  is given by 
ord( )ord( ) .

gcd( ,ord( ))
m xx

m x
=                                (4) 

This can be seen as follows. Let : gcd( , )d m e= , and suppose that 0m d m= ⋅  and 0e d e= ⋅ , then  
0 0gcd( , ) 1m e = . We have 0 0 0 0( ) ( ) 1e m d e mm ex x x⋅ ⋅= = = , and thus : ord( )mn x=  is a divisor of 0e . On the other 

hand, 1 ( )m n m nx x ⋅= = , and thus 0e d e= ⋅  divides 0m n d m n⋅ = ⋅ ⋅ . Consequently, 0e  divides 0m n⋅ , and thus 
necessarily 0e  divides n, since 0 0gcd( , ) 1m e = . This yields 0n e= , as claimed. 

Finally, put : em
p

= , then ord( )
gcd( , ) gcd( , )

m e e ex pe em e e
p p

= = = = .                             □ 

Now, we apply Lemma 2.2 to the situation where A is a finite abelian group with type invariants 1( , , )na a  
having p-rank ( ) 2pr A = , that is, 2n ≥ , | np a , 1| np a − . 

Proposition 2.1. (p-elementary subgroup) 
If A is generated by 1, , ng g , then the p-elementary subgroup of A is given by 1/ /

1 ,n na p a p
n ng g−
−〈 〉 .  

Proof. Let generators of A corresponding to the abelian type invariants 1( , , )na a  be ),,( 1 ngg  , in 
particular, the trailing two generators have orders 1 1ord( )n ng a− −=  and nn ag =)(ord  divisible by p. Ac- 
cording to Lemma 2.2, the powers 1/

1
na p

ng −
−  and /na p

ng  have exact order p and thus generate the p-elementary 
subgroup of A.                                                                            □ 

Proposition 2.2. (Subgroups of order p) 
If the p-elementary subgroup ,pA w z= 〈 〉  of A is generated by ,w z , then the subgroups of pA  of order p 

can be given by 1M z= 〈 〉  and 2i
iM wz −= 〈 〉  for 2 1i p≤ ≤ + .  

Proof. According to the assumptions, pA  is elementary abelian of rank 2, that is, of type ( , )p p , and con- 
sists of the 2p  elements { | 0 , 1}i jw z i j p≤ ≤ − , in particular, 0 0 1w z =  is the neutral element. A possible  

selection of generators for the 
2 1 1

1
p p
p
−

= +
−

 cyclic subgroups iM  of order p is to take 1M z= 〈 〉  and  

2i
iM wz −= 〈 〉  for 2 1i p≤ ≤ + , since the two cycles of powers of iwz  and jwz  for 1 1i j p≤ < ≤ −  meet 

in the neutral element only.                                                                  □ 
Proposition 2.3. (Connection between subgroups of index p, resp. order p) 
1) If 1u v= = , which is equivalent to Sylp pA A= , then 

{ Syl | (Syl : ) } { | # }p p pU A A U p U A U p< = = < = . 

2) If 1u v> = , then there exists a unique bicyclic subgroup ,px y〈 〉  of index p which contains pA . The 
other p subgroups U of index p are cyclic of order up , and they only contain the unique subgroup 

1upx
−

〈 〉  of 
pA  generated by the 1up − th powers. 
3) If 1u v≥ > , then each subgroup Syl pU A<  of index p completely contains the p -elementary subgroup 
pA . 
Proof. If 1u v= = , then Syl ( , )p pA p p A  . Thus, 2 ( :1) ( : ) ( :1)p pp A A U U= = ⋅  implies  

( : ) ( :1)pA U U p= = , for each proper subgroup U. 
If 1u v> = , then a subgroup U of index p is either of type ( )up , i.e., cyclic, or of type 1( , ) ( , )up p p p− ≥ . 
If 1u v≥ > , then each subgroup U of index p is either of type 1( , ) ( , )u vp p p p− >  or of type  
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1( , ) ( , )u vp p p p− > .  
Theorem 2.1. (Taussky’s conditions A and B, see Formula (5)) 
Let |L K  be an unramified cyclic extension of prime degree p of a base field K with p-class rank 2= . 

Suppose that |Norm Cl ClL K L KS = <  and |Norm Cl ClL K p pU L K= <  are the subgroups of index p associated 
with |L K , according to class field theory. 

Then, we generally have | |ker kerL K L Kj S j U=  , and in particular: 
1) If 1u v= = , then 
L is of type A if either |ker EL K pj K=  or |ker L Kj U= , and 
L is of type B if |ker {E , }L K pj K U∉ . 
2) If 1u v> = , let : , Clp

pN x y K= 〈 〉 <  denote the unique bicyclic subgroup of index p, then 
L is of type A if either |ker EL K pj K=  or U N=  or U N≠  and 

1

|ker
up

L Kj x
−

= 〈 〉 , and 
L is of type B if U N≠  and 

1

|ker {E , }
up

L K pj K x
−

∉ 〈 〉 . 
3) If 1u v≥ > , then L is always of type A. 
Proof. This is an immediate consequence of Proposition 2.3.                                      □ 
Theorem 2.2. (Orbits of TKTs expressing the independence of renumeration) 
1) If 1u v= = , then λ  if and only if 1

0λ σ σ−=    for some permutation 1pSσ +∈  and its ex- 
tension 0 2pSσ +∈  with 0 (0) 0σ = . 

2) If 1u v> = , then λ  if and only if 1
0λ π ρ−

∗=    for two permutations , pSπ ρ ∈  and the ex- 
tensions 0 2pSπ +∈  with 0 (0) 0π = , 0 ( 1) 1p pπ + = + , and 1pSρ∗ +∈  with ( 1) 1p pρ∗ + = + . 

3) If 1u v≥ > , then λ  if and only if 1
0λ σ τ−=    for two permutations 1, pSσ τ +∈  and the ex- 

tension 0 2pSσ +∈  with 0 (0) 0σ = . 
Proof. The proof for the case 1u v= =  was given in ([2] p. 79) and ([11] Rmk. 5.3, pp. 87-88). It is the 

unique case where subgroups of index p coincide with subgroups of order p, and a renumeration of the former 
enforces a renumeration of the latter, expressed by a single permutation 1pSσ +∈  and its inverse 1σ − . 

If 1u v> = , then the distinguished subgroups 1
1 , ( , )p u

pU N x y p p−
+ = = 〈 〉   of index p, and 

1

1
up

pV x
−

+ = 〈 〉  
of order p, should have the fixed subscript 1p + . The other p subgroups iU , resp. iV , can be renumerated 
completely independently of each other, which can be expressed by two independent permutations , pSπ ρ ∈ . 
For details, see ([11] Rmk. 5.6, p. 89). 

In the case 1u v≥ > , finally, the 1p +  subgroups of index p of Cl p K  and the 1p +  subgroups of order 
p of Cl p K  can be renumerated completely independently of each other, which can be expressed by two in- 
dependent permutations 1, pSσ τ +∈ .                                                          □ 

3. Computational Techniques  
In this section, we present the implementation of our new algorithm for determining the Artin pattern AP( )K  
of a number field K with p-class rank 2=  in MAGMA [8] [12] [13], which requires version V2.21-8 or 
higher. Algorithm 3.1 returns the entire class group : ClKC =  of the base field K, together with an invertible 
mapping mC  from classes to representative ideals. 

Algorithm 3.1 (Construction of the base field K and its class group C) 
Input: The fundamental discriminant d of a quadratic field ( )K d=  . 
Code:  
 

 
 
Output: The conditional class group ( , )C mC  of the quadratic field K, assuming the GRH.  
Remark 3.1. By using the statement K: =QuadraticField(d); the quadratic field ( )K d=   is constructed 
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directly. However, the construction by means of a polynomial ( )P X X∈  executes faster and can easily be 
generalized to base fields K of higher degree.  

For the next algorithm it is important to know that in the MAGMA computational algebra system [8], the 
composition A A A× → , ( , )x y x y+ , of an abelian group A is written additively, and abelian type 
invariants 1( , , )na a  of a finite abelian group A are arranged in non-decreasing order 1 na a≤ ≤ . 

Given the situation in Proposition 2.1, where A is a finite abelian group having p-rank ( ) 2pr A = , Algorithm 
3.2 defines a natural ordering on the subgroups S of A of index ( : )A S p=  by means of Proposition 2.2, if the 
Sylow p-subgroup Syl p A  is of type ( , )p p . 

Algorithm 3.2. (Natural ordering of subgroups of index p) 
Input: A prime number p and a finite abelian group A with p-rank ( ) 2pr A = . 
Code:  
 

 

 
 
Output: Generators ,x y  of the p-elementary subgroup pA  of A, two indicators, NonCyc for one or more 

non-cyclic maximal subgroups of Syl p A , Cyc for one or more cyclic maximal subgroups of Syl p A , an ordered 
sequence seqS of the 1p +  subgroups of A of index p, and, if there are only cyclic maximal subgroups of 
Syl p A , an ordered sequence seqI of numerical identifiers for the elements S of seqS.  

Proof. This is precisely the implementation of the Propositions 2.1, 2.2 and 2.3 in MAGMA [8].         □ 
Remark 3.2. The modified statement seqS: =Subgroups(A: Quot:=[p,p]); yields the biggest subgroup of A of 

order coprime to p, and can be used for constructing the Hilbert p-class field 1Fp K  of the base field K in 
Algorithm 3.3, if the p-class group Cl p K  is of type ( , )p p .  

The class group ( , )C mC  in the output of Algorithm 3.1 is used as input for Algorithm 3.2. The resulting 
sequence seqS of all subgroups of index p in C, together with the pair ( , )C mC , forms the input of Algorithm 
3.3, which determines all unramified cyclic extensions |iL K  of relative degree p using the Artin corre- 
spondence as described by Fieker [14]. 

Algorithm 3.3. (Construction of all unramified cyclic extensions of degree p). 
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Input: The class group ( , )C mC  of a base field K and the ordered sequence seqS of all subgroups S of index 
p in C. 

Code:  
 

 
 
Output: Three ordered sequences, seqRelOrd of the relative maximal orders of |iL K , seqAbsOrd of the 

corresponding absolute maximal orders of |iL  , and seqOptAbsOrd of optimized representations for the 
latter.  

Remark 3.3. Algorithm 3.3 is independent of the p-class rank   of the base field K. In order to obtain the 
adequate coercion of ideals, the sequence seqRelOrd must be used for computing the transfer kernel type ( )K  
in Algorithm 3.4. The trailing three lines of Algorithm 3.3 are optional but highly recommended, since the size 
of all arithmetical invariants, such as polynomial coefficients, is reduced considerably. Either the sequence 
seqAbsOrd or rather the sequence seqOptAbsOrd should be used for calculating the transfer target type ( )Kτ  
in Algorithm 3.5.  

Algorithm 3.4. (Transfer kernel type, ( )K ). 
Input: The prime number p, the ordered sequence seqRelOrd of the relative maximal orders of |iL K , the 

class group mapping mC  of the base field K with p-class rank 2= , the generators ,x y  of the p- 
elementary class group pE  of K, and the ordered sequence seqI of numerical identifiers for the 1p +  
subgroups S of index p in the class group C of K. 

Code:  
 

 
 
Output: The transfer kernel type TKT of K.  
Remark 3.4. In 2012, Bembom investigated the 5-capitulation over complex quadratic fields K with 5-class 

group of type (5,5)  ([15] p. 129). However, his techniques were only able to distinguish between permutation 
types and nearly constant types, since he did not use the crucial sequence of numerical identifiers. We refined 
his results in ([16] §3.5, pp. 445-451) by determining the cycle decomposition and, in particular, the fixed points 
of the permutation types, which admitted the solution of an old problem by Taussky ([16] §3.5.2, p. 448).  

Algorithm 3.5. (Transfer target type, ( )Kτ ). 
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Input: The prime number p and the ordered sequence seqOptAbsOrd of the optimized absolute maximal 
orders of |iL  . 

Code:  
 

 
 
Output: The conditional transfer target type TTT of K, assuming the GRH.  
With Algorithms 3.4 and 3.5 we are in the position to determine the Artin pattern AP( ) ( ( ), ( ))K K Kτ=   of 

the field K. For pointing out fixed points of the transfer kernel type ( )K  it is useful to define a corresponding 
weak TKT ( )Kκ κ=  which collects the Taussky conditions A, resp. B, of Theorem 2.1, for each extension 

|iL K : 

| |

| |

A if ker Norm Cl 1,
:

B if ker Norm Cl 1.
i i

i i

L K L K p i
i

L K L K p i

j L

j L
κ

>=  =





                          (5) 

Algorithm 3.6. (Weak transfer kernel type, ( )Kκ , containing Taussky’s conditions A, resp. B) 
Input: The indicators NonCyc, Cyc, and the TKT. 
Code:  
 

 
 
Output: The weak transfer kernel type TAB of K.  
Proof. This is the implementation of Theorem 2.1 in MAGMA [8].                                □ 

4. Interpretation of Numerical Results  
By means of the algorithms in §3, we have computed the Artin pattern AP( ) ( ( ), ( ))K K Kτ=   of all 34,631 
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real quadratic fields ( )K d=   with 3Cl (3,3)K   in the range 80 10d< <  of fundamental discriminants. 
The results are presented in the following four tables, arranged by the coclass cc( )G  of the second 3-class 
group 2

3G K=G . Each table gives the type designation, distinguishing ground states and excited states 
2( , , )↑ ↑  , the transfer kernel type ( )K=  , the transfer target type ( )Kτ τ= , the absolute frequency AF, 

the relative frequency RF, that is the percentage with respect to the total number of occurrences of the fixed 
coclass, and the minimal discriminant MD ([17] Dfn. 5.1). Additionally to this experimental information, we 
have identified the group G  by means of the strategy of pattern recognition via Artin transfers ([10] §4), and 
computed the factorized order of its automorphism group Aut( )G  and its relation rank  

2
2 ( ) : dim H ( , )

p pd =  G G . Groups are specified by their names in the SmallGroups Library [18] [19]. The 
nilpotency class cl( )c = G  and coclass cc( )r = G  were determined by means of ([20] Thm. 3.1, p. 290, and 
Thm. 3.2, p. 291), resp. ([17] Thm. 3.1). 

4.1. Groups G  of Coclass =cc( ) 1G  
The 31,088 fields whose second 3-class group G  is of maximal class, i.e. of coclass cc( ) 1=G , constitute a 
contribution of 89.77%, which is dominating by far. This confirms the tendency which was recogized for the  

restricted range 70 10d< <  already, where we had 
2303 89.4%
2576

≈  in ([3] Tbl. 2, p. 496) and ([9] Tbl. 6.1, p.  

451). However, there is a slight increase of 0.37% for the relative frequency of cc( ) 1=G  in the extended 
range. 

Theorem 4.1. (Coclass 1) The Hilbert 3-class field tower of a real quadratic field K whose second 3-class 
group 2

3Gal(F | )K K=G  is of coclass cc( ) 1=G  has exact length 3 2K = , that is, the 3-class tower group 
3Gal(F | )G K K∞=  is isomorphic to G , and 1 2

3 3 3F F FK K K K∞< < = .  
Proof. This is Theorem 5.3 in [17].                                                          □ 
In Table 1, we denote two crucial mainline vertices of the unique coclass-1 tree 1 2( 3 , 2 )〈 〉  by  

7
7 : 3 ,386M = 〈 〉  and 2

9 7: ( #1;1)M M= − , and we give the results for cc( ) 1=G . 
The large scale separation of the types a.2 and a.3, resp. a.2↑ and a.3↑, in Table 1 became possible for the 

first time by our new algorithm. It refines the results in ([3] Tbl. 2, p. 496) and ([9] Tbl. 6.1, p. 451), and 
consequently also the frequency distribution in ([16] Fig. 3.2, p. 422). 

Inspired by Boston, Bush and Hajir’s theory of the statistical distribution of p-class tower groups of complex 
quadratic fields [21], we expect that, in Table 1 and in view of Theorem 4.1, the asymptotic limit of the relative 
frequency RF of realizations of a particular group 2

3 3G GK G K∞= =G  is proportional to the reciprocal of the 
order #Aut( )G  of its automorphism group. In particular, we state the following conjecture about three do- 

 
Table 1. Statistics of 3-capitulation types ( )K=   of fields K with cc( ) 1=G . 

Type   τ  AF RF MD 2
3G=G  #Aut  2d  

a.1 0000 2 2 32 , (1 )  2180 7.01% 62,501 63 ,99 101〈 〉  1 82 3  3 

a.2 1000 2 321, (1 )  7104 22.85% 72,329 43 ,10〈 〉  1 52 3  3 

a.3 2000 2 321, (1 )  10,514 33.82% 32,009 43 ,8〈 〉  2 42 3  3 

a.3* 2000 3 2 31 , (1 )  10,244 32.95% 142,097 43 ,7〈 〉  2 42 3  3 

a.1↑ 0000 2 2 33 , (1 )  58 0.19% 2,905,160 
7 #1;5 7M −   1 122 3  3 

a.2↑ 1000 2 332, (1 )  242 0.78% 790,085 63 ,96〈 〉  1 92 3  3 

a.3↑ 2000 2 332, (1 )  713 2.29% 494,236 63 ,97 | 98〈 〉  2 82 3  3 

a.1↑2 0000 2 2 34 , (1 )  3  40,980,808 
9 #1;5 7M −   1 162 3  3 

a.2↑2 1000 2 343, (1 )  9 0.03% 25,714,984 
7 #1;2M −  1 132 3  3 

a.3↑2 2000 2 343, (1 )  20 0.06% 10,200,108 
7 #1;3 | 4M −  2 122 3  3 

a.2↑3 1000 2 354, (1 )  1  37,304,664 
9 #1;2M −  1 172 3  3 

Total of cc( ) 1=G  31,088 89.77% with respect to 34,631 
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minating types, a.3*, a.3 and a.2. 
Conjecture 4.1. For a sufficiently extensive range 0 d B< <  of fundamental discriminants, both, the 

absolute and relative frequencies of realizations of the groups 43 ,7〈 〉 , 43 ,8〈 〉  and 43 ,10〈 〉 , resp. 63 ,97〈 〉 , 
63 ,98〈 〉  and 63 ,96〈 〉 , as 3-class tower groups 2

3 3G GK K∞ =  of real quadratic fields ( )K d=   satisfy the 
proportion 3 : 3 : 2 .  

Proof. (Attempt of an explanation) A heuristic justification of the conjecture is given for the ground states by 
the relation for reciprocal orders  

4 1 4 1 4 1
2 4 1 5
1 3 1 3#Aut( 3 ,7 ) #Aut( 3 ,8 ) = #Aut( 3 ,10 ) ,

2 22 3 2 3
− − −〈 〉 = 〈 〉 = ⋅ = ⋅ 〈 〉  

which is nearly fulfilled by 310244 10514 7104
2

≈ ≈ ⋅ , resp. 332.95% 33.82% 22.85%
2

≈ ≈ ⋅ , for the bound  
810B = , and disproves our oversimplified conjectures at the end of ([10] Rmk. 5.2). 

For the first excited states, we have the reciprocal orders  

6 1 6 1 6 1
2 8 1 9
1 3 1 3#Aut( 3 ,97 ) #Aut( 3 ,98 ) #Aut( 3 ,96 ) ,

2 22 3 2 3
− − −〈 〉 = 〈 〉 = = ⋅ = ⋅ 〈 〉  

but here no arithmetical invariants are known for distinguishing between 63 ,97〈 〉  and 63 ,98〈 〉 , whence we  

have 713 3 242≈ ⋅ , resp. 2.29% 3 0.78%≈ ⋅ , with cumulative factor 32 3
2
⋅ = .                       □ 

4.2. Groups G  of Coclass =cc( ) 2G  
The 3328 fields whose second 3-class group G  is of second maximal class, i.e. of coclass cc( ) 2=G , 
constitute a moderate contribution of 9.61%. The corresponding relative frequency for the restricted range  

70 10d< <  is 260 10.1%
2576

≈ , which can be figured out from ([3] Tbl. 4-5, pp. 498-499) or, more easily, from  

([9] Tbl. 6.3, Tbl. 6.5, Tbl. 6.7, pp. 452-453). So there is a slight decrease of 0.49% for the relative frequency of 
cc( ) 2=G  in the extended range. 

Theorem 4.2. (Section D) The Hilbert 3-class field tower of a real quadratic field K whose second 3-class 
group 2

3Gal(F | )K K=G  is isomorphic to either of the two Schur σ -groups 53 ,5〈 〉  or 53 ,7〈 〉  has exact 
length 3 2K = , that is, the 3-class tower group 3Gal(F | )G K K∞=  is isomorphic to G , and  

1 2
3 3 3F F FK K K K∞< < = .  

Proof. This statement has been proved by Scholz and Taussky in ([22] 3, p. 39). It has been confirmed with 
different techniques by Brink and Gold in ([23] Thm. 7, pp. 434-435), and by Heider and Schmithals in ([24] 
Lem. 5, p. 20). All three proofs were expressed for complex quadratic base fields K, but since the cover ([25] 
Dfn. 5.1, p. 30) of a Schur σ -group G  consists of a single element, cov( ) { }=G G , the statement is actually 
valid for any algebraic number field K, in particular also for a real quadratic field K.                     □ 

Table 2 shows the computational results for cc( ) 2=G , using the relative identifiers of the ANUPQ package 
[26] for groups G  of order 8# 3≥G , resp. G of order 8# 3G ≥ . The possibilities for the 3-class tower group G 
are complete for the TKTs c.18, c.21, E.6, E.8, E.9 and E.14, constituting the cover of the corresponding 
metabelian group G . For the TKTs c.18↑, c.21↑, the cover cov( )G  is given in ([25] Cor. 7.1, p. 38, and Cor. 
8.1, p. 48), and for E.6↑, E.8↑, E.9↑ and E.14↑, it has been determined in ([27] Cor 21.3, p. 187). A selection of 
densely populated vertices is given for the sporadic TKTs G.19* and H.4*, according to ([17] Tbl. 4-5). We 
denote two important branch vertices of depth 1 by 7

9, : 3 ,303 #1;1 #1;jN j= 〈 〉 − −  for {3,5}j∈ . 
Whereas the sufficient criterion for 3 2K =  in Theorem 4.4 is known since 1934 already, the following 

statement of 2015 is brand-new and constitutes one of the few sufficient criteria for 3 3K = , that is, for the 
long desired three-stage class field towers [28]. 

Theorem 4.3. (Section c) The Hilbert 3-class field tower of a real quadratic field K whose second 3-class 
group 2

3Gal(F | )K K=G  is one of the six groups 63 , 49〈 〉 , 63 ,54〈 〉 , 73 , 285 #1;1〈 〉 − , 73 ,303 #1;1〈 〉 − ,  
7 33 , 285 ( #1;1)〈 〉 − , 7 33 , 285 ( #1;1)〈 〉 −  has exact length 3 3K = , that is, 

1 2 3
3 3 3 3F F F FK K K K K∞< < < = .  

Proof. This is the union of Thm. 7.1, Cor. 7.1, Cor 7.3, Thm 8.1, Cor 8.1, and Cor 8.3 in [25].           □ 
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Table 2. Statistics of 3-capitulation types ( )K=   of fields K with cc( ) 2=G . 

Type   τ  AF RF MD 
2
3G=G  
3GG ∞=  

#Aut  2d  

c.18 0313 2 32 , 21,1 ,21  347 10.4% 534,824 
63 , 49〈 〉  2 82 3  4 

73 , 284 | 291〈 〉  2 8 1 82 3 | 2 3  3 

c.21 0231 2 32 , (21)  358 10.8% 540,365 
63 ,54〈 〉  2 82 3  4 

73 ,307 | 308〈 〉  2 8 1 82 3 | 2 3  3 

c.18↑ 0313 2 33 , 21,1 ,21  8 0.2% 13,714,789 73 , 285 #1;1〈 〉 −  2 122 3  4 

c.21↑ 0231 2 33 , (21)  12 0.4% 1,001,957 73 ,303 #1;1〈 〉 −  2 122 3  4 

D.5 4224 3 31 , 21,1 ,21  546 16.4% 631,769 53 ,7〈 〉  2 62 3  2 

D.10 2241 321,21,1 ,21  1122 33.7% 422,573 53 ,5〈 〉  1 62 3  2 

E.6 1313 332,21,1 ,21  40 1.2% 5,264,069 
73 , 288〈 〉  1 102 3  3 

63 , 49 #2;4〈 〉 −  1 102 3  2 

E.8 1231 332, (21)  30 0.9% 6,098,360 
73 ,304〈 〉  1 102 3  3 

63 ,54 #2;4〈 〉 −  1 102 3  2 

E.9 2231 332, (21)  83 2.5% 342,664 
73 ,302 | 306〈 〉  1 102 3  3 

63 ,54 #2;2 | 6〈 〉 −  1 102 3  2 

E.14 2313 332,21,1 ,21  63 1.9% 3,918,837 
73 , 289 | 290〈 〉  1 102 3  3 

63 , 49 #2;5 | 6〈 〉 −  1 102 3  2 

E.6↑ 1313 343,21,1 ,21  1  75,393,861 73 , 285 #1;1 #1;4〈 〉 − −  1 142 3  3 

E.8↑ 1231 343, (21)  2  26,889,637 73 ,303 #1;1 #1;2〈 〉 − −  1 142 3  3 

E.9↑ 2231 343, (21)  1  79,043,324 73 ,303 #1;1 #1;4 | 6〈 〉 − −  1 142 3  3 

E.14↑ 2313 343,21,1 ,21  1  70,539,596 73 , 285 #1;1 #1;5 | 6〈 〉 − −  1 142 3  3 

G.16 4231 332, (21)  27 0.8% 8,711,456 73 ,301 | 305 #1;4〈 〉 −  2 122 3  4 

G.16↑ 4231 343, (21)  1  59,479,964 
9,3|5 #1;2N −  1 162 3  4 

G.19* 2143 4(21)  156 4.7% 214,712 
63 ,57〈 〉  4 82 3  4 

73 ,311〈 〉  2 82 3  3 

H.4* 4443 3 2 3(1 ) , 21,1  493 14.8% 957,013 

63 , 45〈 〉  2 82 3  4 

73 , 270 | 271〈 〉  2 8 2 92 3 | 2 3  3 

73 , 272 | 273〈 〉  1 9 1 82 3 | 2 3  3 

H.4 3313 332,21,1 ,21  37 1.1% 1,162,949 73 , 286 | 287 #1;2〈 〉 −  2 122 3  4 

Total of cc( ) 2=G  3328 9.61% with respect to 34,631 

 
A sufficient criterion for 3 3K =  similar to Theorem 4.3 has been given in ([29] Thm. 6.1, pp. 751-752) for 

complex quadratic fields with TKTs in section E. Due to the relation rank 2d  of the involved groups, only a 
weaker statement is possible for real quadratic fields with such TKTs. 

Theorem 4.4. (Section E) The Hilbert 3-class field tower of a real quadratic field K whose second 3-class 
group 2

3Gal(F | )K K=G  is one of the twelve groups 73 , 288 290〈 〉 , 73 ,302 | 304 | 306〈 〉 ,  
73 , 285 #1;1 #1; 4 6〈 〉 − −  , 73 ,303 #1;1 #1; 2 | 4 | 6〈 〉 − −  has either length 3 3K = , that is,  

1 2 3
3 3 3 3F F F FK K K K K∞< < < = , or length 3 2K = , that is, 1 2

3 3 3F F FK K K K∞< < = .  
Proof. This is the union of Thm. 4.1 and Thm. 4.2 in [17].                                       □ 
Example 4.1. That both cases 3 {2,3}K ∈  occur with nearly equal frequency has been shown for the 

ground states in Thm. 5.5 and Thm. 5.6 of [17]. Due to our extended computations, we are now in the position to 
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prove that the same is true for the first excited states. We have 3 3K =  for the two fields ( )K d=   with 
70539596d = , type E.14↑, and 75393861d = , type E.6↑, but only 3 2K =  for the three fields with 
79043324d = , type E.9↑, and {26889637, 98755469}d ∈ , both of type E.8↑,  

Recently, we have provided evidence of asymptotic frequency distributions for three-stage class field towers, 
similar to Conjecture 4.1 for two-stage towers. 

Conjecture 4.2. For a sufficiently extensive range 0 d B< <  of fundamental discriminants, both, the 
absolute and relative frequencies of realizations of the groups 73 , 284〈 〉  and 73 , 291〈 〉 , resp. 73 ,307〈 〉  and 

73 ,308〈 〉  as 3-class tower groups 3
3 3G GK K∞ =  of real quadratic fields ( )K d=   satisfy the proportion 

1: 2 .  
Proof. (Attempt of a heuristic justification of the conjecture) 
For the first two groups, which form the cover of 63 , 49〈 〉 , we have the reciprocal order relation  

7 1 7 1
1 8 2 8
1 1#Aut( 3 , 291 ) 2 2 #Aut( 3 , 284 ) ,

2 3 2 3
− −〈 〉 = = ⋅ = ⋅ 〈 〉  

which is nearly fulfilled by the statistical information 18 2 10≈ ⋅ , resp. 64% 2 36%≈ ⋅ , given in ([25] Thm. 7.2, 
pp. 34-35) for 710B = . 

For the trailing two groups, which form the cover of 63 ,54〈 〉 , only arithmetical invariants of higher order are 
known for distinguishing between 73 ,307〈 〉  and 73 ,308〈 〉 . It would have been too time consuming to 
compute these invariants for ([25] Thm. 8.2, p. 45).                                               □ 

Conjecture 4.3. For a sufficiently extensive range 0 d B< <  of fundamental discriminants, both, the 
absolute and relative frequencies of realizations of the groups 73 , 270〈 〉 , 73 , 271〈 〉 , 73 , 272〈 〉  and 73 , 273〈 〉  
as 3-class tower groups 3

3 3G GK K∞ =  of real quadratic fields ( )K d=   satisfy the proportion 3 :1: 2 : 6 .  
Proof. (Attempt of an explanation) All groups are contained in the cover of 63 , 45〈 〉 . We have the following 

relations between reciprocal orders  

7 1 7 1
2 8 2 9
1 1#Aut( 3 , 270 ) 3 3 #Aut( 3 , 271 ) ,

2 3 2 3
− −〈 〉 = = ⋅ = ⋅ 〈 〉  

7 1 7 1
1 9 2 9
1 1#Aut( 3 , 272 ) 2 2 #Aut( 3 , 271 ) ,

2 3 2 3
− −〈 〉 = = ⋅ = ⋅ 〈 〉  

7 1 7 1
1 8 1 9
1 1#Aut( 3 , 273 ) 3 3 #Aut( 3 , 272 ) .

2 3 2 3
− −〈 〉 = = ⋅ = ⋅ 〈 〉  

Unfortunately, no arithmetical invariants are known for distinguishing between 73 , 271〈 〉  and 73 , 272〈 〉 . 
Therefore, we must replace the two values in the middle of the proportion 3 :1: 2 : 6  by a cumulative value 
3 : 3 : 6 , resp. 1:1: 2 . The resulting proportion is fulfilled approximately by the statistical information 
2 5 2 8 11⋅ ≈ ⋅ ≈ , resp. 2 19% 2 29% 41%⋅ ≈ ⋅ ≈ , given in ([17] Thm. 5.7) for 710B = . However, a total of 24 
individuals cannot be viewed as a statistical ensemble yet.                                         □ 

4.3. Groups G  of Coclass =cc( ) 3G  
There are 190 fields whose second 3-class group G  is of coclass cc( ) 3=G . They constitute a very small con-  

tribution of 0.55%. The corresponding relative frequency for the restricted range 70 10d< <  is 
10 0.4%

2576
≈ ,  

which can be figured out from ([3] Tbl. 5, p. 499) or, more easily, from ([9] Tbl. 6.2, p. 451). Thus, there is a 
slight increase of 0.15% for the relative frequency of cc( ) 3=G  in the extended range. 

For the groups G  of coclass cc( ) 3≥G , the problem of determining the corresponding 3-class tower group 
G is considerably harder than for cc( ) 2≤G , and up to now it is still open. 

In Table 3, we denote two important mainline vertices of the coclass-2 tree 2 7( 3 ,64 )〈 〉  by 7
7 : 3 ,64P = 〈 〉  

and 9 7: #1;3 #1;1P P= − − , and we give the statistics for cc( ) 3=G . 

4.4. Groups G  of Coclass =cc( ) 4G  
We only have 25 fields whose second 3-class group G  is of coclass cc( ) 4=G . They constitute a negligible 
contribution of 0.07%. The corresponding relative frequency for the restricted range 70 10d< <  is  
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3 0.1%
2576

≈ , which can be seen in ([9] Tbl. 6.9, p. 454). So there is a slight decrease of 0.03% for the relative  

frequency of cc( ) 4=G  in the extended range. 
In Table 4, we denote some crucial mainline vertices of coclass-4 trees 4

9,( )jS  by 
7

9, : 3 ,64 #2;jS j= 〈 〉 −  and 10,39 9,39: #1;7S S= − , 10,44 9,44: #1;1S S= − , 10,54 9,54: #1;8S S= − , 

10,57 9,57: #1;1S S= − , 10,59 9,59: #1;6S S= − , 

a sporadic vertex by 7
9 : 3 ,64 #2;34T = 〈 〉 − , and we give the computational results for cc( ) 4=G . 

For the essential difference between the location of the groups G  as vertices of coclass trees for the types 
d.25* and d.25, see ([30] Thm. 3.3-3.4 and Exm. 3.1, pp. 490-492). 

The single occurrence of type H.4 belongs to the irregular variant (i), where 1
3 3Cl F (9,9,9,9)K  . This is  

 
Table 3. Statistics of 3-capitulation types ( )K=   of fields K with cc( ) 3=G . 

Type   τ  AF RF MD 2
3G=G  #Aut  2d  

b.10 0043 2 2 3 2(2 ) , (1 )  95 50.0% 710,652 
7 #1;21 26P −   2 12 1 122 3 | 2 3  5 

b.10↑ 0043 2 2 3 23 , 2 , (1 )  6 3.2% 17,802,872 
9 #1;21 29P −   1 162 3  5 

d.19 4043 2 3 232,2 , (1 )  49 26.0% 2,328,721 
7 #1;4 | 5P −  1 122 3  5 

d.23 1043 2 3 232,2 , (1 )  16 8.4% 1,535,117 
7 #1;6P −  1 122 3  5 

d.25 2043 2 3 232,2 , (1 )  22 12.0% 15,230,168 
7 #1;7 | 8P −  2 122 3  5 

d.19↑ 4043 2 3 243,2 , (1 )  1  27,970,737 
9 #1;2 | 3P −  1 162 3  5 

d.23↑ 1043 2 3 243,2 , (1 )  1  87,303,181 
9 #1;4P −  1 162 3  5 

Total of cc( ) 3=G  190 0.55% with respect to 34,631 

 
Table 4. Statistics of 3-capitulation types ( )K=   of fields K with cc( ) 4=G . 

Type   τ  AF RF MD 2
3G=G  #Aut  2d  

d.25* 0143 2 3 23 ,32, (1 )  4 16% 8,491,713 10,57|59S  2 162 3  5 

F.7 3443 2 3 2(32) , (1 )  3 12% 10,165,597 7 #2;55P −  1 142 3  4 

      7 #2;56 | 58P −  2 142 3  4 

F.11 1143 2 3 2(32) , (1 )  3 12% 66,615,244 7 #2;36 | 38P −  1 142 3  4 

F.12 1343 2 3 2(32) , (1 )  6 24% 22,937,941 7 #2;43 | 46 | 51 | 53P −  1 142 3  4 

F.13 3143 2 3 2(32) , (1 )  5 20% 8,321,505 7 #2;41 | 47 | 50 | 52P −  1 142 3  4 

F.7↑ 3443 3 243,32, (1 )  1  24,138,593 10,39|44 #1;5 | 6S −  1 182 3  4 

F.12↑ 1343 3 243,32, (1 )  1  86,865,820 10,39 #1;2 | 9S − , 10,44 #1;3 | 8S −  1 182 3  4 

      10,54 #1;2 | 4 | 6 | 8S −  1 182 3  4 

F.13↑ 3143 3 243,32, (1 )  1  8,127,208 10,39 #1;3 | 8S − , 10,44 #1;2 | 9S −  1 182 3  4 

      10,57 #1;2 | 4S − , 10,59 #1;3 | 4S −  1 182 3  4 

H.4i 4443 3 243,32, (1 )  1  54,313,357 9 #1;7T −  1 162 3  4 

Total of cc( ) 4=G  25 0.07% with respect to 34,631 
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explained in ([3] p. 498) and ([9] pp. 454-455). It is the only case in Table 4 where G  is determined uniquely. 
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