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Abstract 
The objective of the present study is to propose a risk evaluation statistical model for a given 
vulnerability by examining the Vulnerability Life Cycle and the CVSS score. Having a better un-
derstanding of the behavior of vulnerability with respect to time will give us a great advantage. 
Such understanding will help us to avoid exploitations and introduce patches for a particular 
vulnerability before the attacker takes the advantage. Utilizing the proposed model one can 
identify the risk factor of a specific vulnerability being exploited as a function of time. Measur-
ing of the risk factor of a given vulnerability will also help to improve the security level of soft-
ware and to make appropriate decisions to patch the vulnerability before an exploitation takes 
place. 
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1. Introduction 
In a recent study, “Cybersecurity: A Statistical Predictive Model for the Expected Path Length” (Journal of In-
formation Security, 2016, 7, 112-128 [1]), we introduced a method by which one can predict the Expected Path 
Length, the expected number of steps the attacker will take, starting from the initial state to achieve his target. 
In the present study, we propose a method using Markov chain to understand the Vulnerability Life Cycle and 
Security Risk behavior.  

Any identified vulnerability [2] is hazardous to a security system and makes the system susceptible to be ex-
ploited until it is well patched. Therefore, we believe it is very important to know how to deal with a vulnerabil-
ity behavior throughout its different stages. “Vulnerability Life Cycle” [3] would certainly help us to better un-

 

 

*Corresponding author. 

http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2016.74022
http://dx.doi.org/10.4236/jis.2016.74022
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


S. M. Rajasooriya et al. 
 

 
270 

derstand the vulnerability and its behavior in a security system with respect to time. There are a number of ways 
to present the life cycle of a particular vulnerability. However, all these different introductions have several im-
portant stages in common. The level of the risk associated with different stages of vulnerability should be dif-
ferent indeed and need to be estimated. 

However, measuring of such a “risk factor” [4] and obtaining a probabilistic estimate are certainly a chal-
lenge given the lack of data resources. If we have a method developed to measure the risk level associated with a 
particular vulnerability at a certain time or stage, it will help the users and organizations to act accordingly with 
well-defined priorities. Then the users and organizations can make sure adequate attention, resources and secu-
rity intellects are employed to address such a risk and proper fixing steps are taken before it is exploited. One of 
the main objectives we have is to obtain a statistical model that can give us the probability of a vulnerability be-
ing exploited or patched at a given time. In this study, we use the well-known theory of Markov Chain Process 
to develop such a model. 

2. Vulnerability and Vulnerability Life Cycle 
In this section we will explain basic concept of Vulnerability, Vulnerability Life Cycle and related technical 
terms to make it easier to understand later sections. 

Microsoft Security Response Center (MSRC) defines the term Vulnerability [2]-[6] as follows.  

“A security vulnerability is a weakness in a product that could allow an attacker to compromise the integri-
ty, availability, or confidentiality of that product”.  

We understand that vulnerability could be derived by investigating the various weaknesses of an implemented 
security system. With a weakness in a custom design software, a vulnerability can come to effect in authentication 
protocols, software reliability and system process, Hardware management and Networking among others. 

2.1. Common Vulnerability Scoring System (CVSS) 
Common Vulnerability Scoring System (CVSS) [7] is a commonly used and freely available standard for as-
sessing the magnitude of Information system Vulnerabilities. CVSS gives a score for each vulnerability scaling 
from 0 to 10 based on several factors. National Vulnerability Database (NVD) provides CVSS score and updates 
continuously with new vulnerabilities are found. CVSS score is calculated using three main matrices named, 
Base Matric, Temporal Metric and Environmental Metric. However, NVD data base provides us with the Base 
Metric Scores for the Vulnerability only because the Temporal and Environmental Scores are varied on other 
factors related to organization that uses the computer system. The Base score for more than 75,000 different 
vulnerabilities are calculated using 6 different Matrices. It is managed by the Forum of Incident Response and 
Security Teams (FIRST). CVSS establishes a standard measure of how much concern a vulnerability warrants, 
compared to other vulnerabilities, so efforts can be prioritized. The scores range from 0 to 10. Vulnerabilities 
with a base score in the range of 7.0 - 10.0 are considered “High”. Those in the ranges of 4.0 - 6.9, and 0 - 3.9 
are considered as “Medium” and “Low” respectively. 

2.2. Stages of Vulnerability Life Cycle 
The Life Cycle of a Vulnerability [2]-[4] can be introduced with different stages that a vulnerability passes 
through. We shall discuss specific stages that are commonly identified in a given situation. Commonly identified 
stages are involved with the events such as the Birth (Pre-discovery Stage), Discovery, Disclosure, Availability 
for Patching and Availability for Exploiting [8]-[10].  

Figure 1 illustrates the life cycle of vulnerability showing key stages to be discussed. 
Birth (Pre-Discovery): 
The birth of vulnerability occurs at the development of a software, mostly due to a weakness or a mistake in 

coding of the software. At this stage the vulnerability is not yet discovered or exploited. In a well-developed soft-
ware package where its reliability has been identified, one can identify the probability of the birth of the problem. 

Discovery: 
Vulnerability is said to be discovered once someone identifies the flaw in the software. It is possible that the 
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vulnerability is discovered by the system developers themselves, skilled legitimate users or by the attackers also. 
If the vulnerability is discovered internally or by white hackers, (who are making breaking attempts on a sys-
tem to identify the flaws and vulnerabilities with good intentions of helping them to be patched so that the sys-
tem security is strengthened) it will be notified to be fixed as soon as possible. But, if a black hacker discovers 
a vulnerability it is possible that he or she will try to exploit it, or sell in the black market or distribute it among 
hackers to be exploited.  

It should be noted here that while vulnerabilities could actually exist prior to the discovery, until it is discov-
ered, it is not a potential security risk. “Time of the discovery” is the earliest time that vulnerability is identified. 
In a vulnerability life cycle the “time of discovery” is an important and critical event. Exact discovery time 
might not be published or disclosed to the public due to the other risks that could be associated with vulnerabili-
ty. However, in general after the “disclosure” of vulnerability, public may know the time of discovery subject to 
security risk review. 

We would like to mention here that in developing our statistical model, we consider only “pre-exploit discov-
ery”. There are rare chances that a discovery of vulnerability could occur after it is actually exploited. As an 
example, an attacker could run an exploit attempt aiming for a particular vulnerability but, the exploit instead 
break the intended system through another unidentified or undiscovered vulnerability at that time. While in-
tending to address and incorporate such rare occurrences in our future research, in the present study we will 
consider vulnerabilities that we discovered before being exploited. 

Disclosure: 
Once a vulnerability is discovered, it is subject to be disclosed. Disclosure could take place in different ways 

based on the system design, authentication and who discovered it. However, “disclosure” in widely accepted 
form in the information security means the event that a particular vulnerability is made known to public through 
relevant and appropriate channels. Definition for the disclosure of vulnerability is however presented differently 
by different individuals.  

In general, public disclosure of a vulnerability is based on several principles. The “availability of access” to 
the vulnerability information for the public is one such important principle. Another such important principle 
is “validity of information”. Validity of information principle is to ensure the user’s ability to use that infor-
mation, assess the risk and take security measures. Also, the “independence of information channels” is also 
considered to be important to avoid any bias and interferences from organizational bodies including the ven-
dor. 

Scripting (Exploiting) and Exploit Availability: 
A Vulnerability enters to the stage of “exploit availability” from the earliest time that an exploit program of 

code is available. Once the exploits are available even low skilled crackers (or in other words a black hat hacker) 
could be capable of exploiting the vulnerability. As we mentioned earlier, there are some occurrences that the 
exploit could happen even before the vulnerability is discovered. However in the present study we consider the 
modelling of Vulnerability Life Cycles with exploit availability occurs only after the discovery.  

Patch Availability and Death: (Patched) 
Patch is a software solution that the vendor or developer release to provide necessary protection from possi-

ble exploits of the vulnerability. Patch will act against possible exploit codes or attacking attempts for a vulne-
rability and protect the system and ensure the integrity. The vulnerability dies when one applies a security patch 
to all the vulnerable systems.  

When a White Hat Researcher discovers a vulnerability, the next transition is likely to be the internal dis-
closure leading to patch development. On the other hand, if a Black Hat Hacker discovers a vulnerability, the next 
transition could be an exploit or internal disclosure to his underground community. Some active black hats might 
develop scripts that exploit the vulnerability. Figure 1 illustrates the process of the above discussion. 

3. Methodology 
3.1. Markov Chain and Transition Probabilities 
A discrete type stochastic process { }, 0NX X N= ≥  is called a Markov chain [11] if for any sequence 
{ }0 1, , , NX X X�  of states, the next state depends only on the current state and not on the sequence of events 
that preceded it, which is called the Markov property. Mathematically, we can write this property as presented  
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Figure 1. The life cycle of vulnerability [3]. 

 
in Equation (1) below. 

( ) ( )0 0 1 1 2 2 1 1, , , ,  .N N N N N NP X j X i X i X i X i P X j X i− − − −= = = = = = = =�             (1) 

We will also make the assumption that the transition probabilities  
( )0 0 1 1 2 2 1, , , ,N N N NP X j X i X i X i X i− − −= = = = =�  do not depend on time. This is called time homogeneity. 

The transition probabilities (Pi,j)for Markov chain can be defined as follows. 

( ), 1 ,i j N NP P X j X i−= = = , 

That is the probability of being in state j given that we were in state i. 
The transition matrix P of the Markov chain is the N × N matrix whose ( ),i j  entry ijP  satisfied the fol-

lowing properties. 
0 1, 1 ,ijP i j N≤ ≤ ≤ ≤                                  (2) 

and 

1
1, 1 .N

ijj
P i N

=
= ≤ ≤∑                                   (3) 

Any matrix satisfying Equations ((2) and (3)) above is a Transition Probability Matrix for a Markov chain. 
To simulate a Markov chain, we need its stochastic matrix P and an initial probability distribution πo.  
Here, we shall simulate an N-state Markov chain (X; P; π0) for 0,1, 2, ,N N= � , time periods. Let X be a 

vector of possible state values from sample realizations of the chain. Iterating on the Markov chain we will pro-
duce a sample path {XN} where for each N, XN ∈ X. When writing a simulation program this is about using un-
iformly distributed U [0, 1] random numbers to obtain the corrected probability distribution in every step. 

3.2. Transient States 
Let P be the probability transition matrix [11] for Markov chain Xn. A “state i” is called transient state if with 
probability 1 the chain visits i only a finite number of times. Let Q be the sub matrix of P which includes only 
the rows and columns for the transient states. The transition matrix for an absorbing Markov chain has the fol-
lowing canonical form. 

0 I
P

Q R
=


 
 

.                                     (4) 

Here in Equation (4), P is the transition matrix, Q is the matrix of transient states, R is the matrix of absorbing 
states and I is the identity matrix. 

The matrix P represents the transition probability matrix of the absorbing Markov chain. In an absorbing 
Markov chain the probability that the chain will be absorbed is always 1. Hence, we have 

0 asnQ n→ →∞ . 

Thus, is it implies that all the eigenvalues of Q have absolute values strictly less than 1. Hence, I Q−  is an 
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invertible matrix and there is no problem in defining the matrix  

( ) 1 2 3M I Q I Q Q Q−= − = + + + +� .                           (5) 

This matrix M in Equation (5) is called the Fundamental Matrix of P. Let i be a transient state and consider 
iY , the total number of visits to state i. Then we can show that the expected number of visits to state i starting at 

state j is given by ijM  the ( ),i j  entry of the matrix M.  
Therefore, if we want to compute the expected number of steps until the chain enters a recurrent class, as-

suming starting at state j, we need only sum ijM  over all transient states i. 

4. Vulnerability Life Cycle Analysis Method 
4.1. Vulnerability Life Cycle Graph 
The core component of the Vulnerability Life Cycle Analysis method we propose here is the Life Cycle Graph 
[4]. When we draw a Life Cycle Graph for a given vulnerability it has several nodes which represent the Vulne-
rability Life Cycle stages. We can assign a possible probability to reach each state by examining the properties 
of a specific vulnerability. Also, a Life Cycle Graph has two absorbing states [11]-[13] that are named 
“Patched state” and “Exploited state” [3] [4]. Therefore, this allows us to model the Life Cycle Graph as an 
absorbing Markov chain. 

The Markov Model Approach to Vulnerability Life Cycle we develop is given in Figure 2. In this figure, we 
present a Markov approach of Vulnerability Life Cycle with five states. It should be noted that the states three 
and five are absorbing states of this Life Cycle Graph as there are no out flaws from those states.  

We define,  
iλ  = the probability of transferring state i to state j. 

In actual situations the probability of discovering a vulnerability can be assumed very small. Therefore, for 
1λ  we can assign a small value. Then we assigned probabilities to 2 3 4 5, , ,λ λ λ λ , accordingly. 
Using these transition probabilities we can derive the absorbing transition probability matrix for a Vulnera-

bility Life Cycle, which follows the properties defined under Markov Chain Transformation Probability Me-
thod. 

4.2. Transition Matrix for Vulnerability Life Cycle 
Thus, we can write the transition probability matrix for vulnerability life cycle as follows. 

 

 
Figure 2. Markov model approach to vulnerability life cycle with five states.  
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( )
1 1

2 3 4 2 3 4

5 6

0 0 0
0
0 0 1 0 0
0 0 0
0 0 0

1

0

1

1

P

λ λ
λ λ λ λ λ λ

λ λ

 
 
 
 =

−
− + +

 
 
  

 

where, 
( )tP t - Probability that the system is in state i at time t. 

For 0t =  we have 
( )1 0 1P = , Probability that the system is in State 1 at the beginning ( 0t = ). 
( )2 0 0P = , ( )3 0 0P = , ( )4 0 0P = , ( )5 0 0P = . 

Therefore, the initial probability can be given as [ ]1 0 0 0 0 , that is, the probabilities of each state of 
the Vulnerability Life Cycle initially. It is clear that, the “State 1” (Not Discovered) with probability of one 
represents that at the initial time (for t = 0), the Vulnerability is not yet been discovered and therefore the proba-
bilities for all others stages are zero. 

We can assign some reasonable values to iλ ’ s and create the transformation matrix P as follows. As an ex-
ample, if we consider a time intervals of days, for probabilities of each stage to a specific vulnerability can be 
derived using the Markov process as follows. 

For 0t = , we have 
( ) [ ]0 1 0 0 0 0P = . 

For 1t = , results in 
( ) ( )1 0P P P= . 

For 2t = , we can write 
( ) ( ) ( )2 0 2P P P= ,  

And thus, for = n, we have 
( ) ( ) ( )0n nP P P= . 

Using this method, we can find the pattern of probability that is changing with time and is related to each 
“state” and then to work on finding the statistical model that can fit the vulnerability life cycle. 

For 1 0.1λ = , 2 0.2λ = , 3 0.3λ = , 4 0.4λ = , 5 0.4λ = , 6 0.6λ =  transition probability matrix can be 
written as follows: 

0.9 0.1 0 0 0
0 0.1 0.2 0.3 0.4
0 0 1 0 0
0 0 0.4 0 0.6
0 0 0 0 1

P

 
 
 
 =
 
 
    

As we execute this algorithm, the stationarity was reached (considering to 4 decimal digits) at 107t = , that is 
at 107t = , we can find the minimum number of steps so that the vulnerability reaches its absorbing states and 
the resulting vector of probabilities for each of the states is obtained as follows. As the row vector presents, the 
transition probabilities are completely absorbed into the two absorbing states which gives the probability of the 
vulnerability that is being exploited and the probability of the vulnerability will be patched. All other states have 
reached the probability of zero. That is, 

( ) ( ) ( ) [ ]0 0 0 0.3556 0 0.6444n nP P P= =  
The following figures illustrate the behavior of the probabilities as a function of time with respect to the dif-

ferent states. For states one, three, four and five taking initial probabilities as mentioned above, the behavior as a 
function of time is graphed. For states one and three the probability of “Not-discovered” and “Disclosed not 
patched” respectively, decreases with respect to time and approach zero eventually.  
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Figure 3 presents the behavior of the probability of each state based on the initial probabilities we assigned. It 
is clear that the probability of being in the state 1 decreases and approach zero eventually. This indicates that the 
probability of a vulnerability being “Not-discovered” over the time is decreasing and eventually reaches zero at 
the time of the “discovery” (Figure 3(a)). Once a vulnerability is discovered, the probability of being “Ex-
ploited” over time indeed increases. And as the system security activities also will immediately take place, the 
probability of being “Patched” also increases. This behavior is presented in Figure 3(b) and Figure 3(d), re-
spectively. There is also a time gap between the disclosure and patching of the vulnerability. Initially, the proba-
bility of the vulnerability being “Disclosed not patched” will rise for a very short period of time then will de-
crease eventually as this is not an absorbing state in the life cycle.  

For a better understanding, comparison and to have a more generalize observation we proceed to check the 
behavior of these probabilities over the time with different probability assigned values. We change λ1 values and 
compare the probability changes in each state with time. The following graphs, illustrate the behavior of each 
state for λ1 = 0.1, 0.2, 0.4, 0.5 and 0.7. Figure 4(a) and Figure 4(b) represent those behaviors graphically. Each 
graph presents the behavior of the probability of being in that “state” of the life cycle over time. It is interesting 
to observe that the initial probability that we assign for λ1 did not really affect much on the behavior of the 
probability over time. 

However, it is important to note that a vulnerability with a higher initial probability of being “discovered” will 
go to stationarity faster than to those with a lower initial probability of being “discovered”. This is observable 
from the graphs labeled “Probability of being Exploited as a function of time” and “Probability of being Patched 
as a function of time” in Figure 4(a) and Figure 4(b) respectively. 

5. The Risk Factor and Parametric Model 
5.1. Introducing the Risk Factor and Evaluating the Risk Level as a Function of Time 
Vulnerabilities which have been discovered but not patched represents a security risk [14]-[16] which can lead 
to considerable financial damage or loss of reputation (credibility).Therefore estimating the risk is very impor-
tant and in the present study we introduce a method to evaluate the risk level [3] [4] of discovered vulnerabilities 
[16]. 

By examining Figure 3 we discussed above, that is related to the state “Exploited” in the Vulnerability Life 
Cycle, we can clearly see the pattern of exploitability as a function of time. As a function of time, the probability  

 

 
Figure 3. Behavior of the probability of different states as a function of time. 
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Figure 4. (a) Comparison of the behavior of the probabilities of different states with different initial probabilities for the discov-
ery; (b) Comparison of the behavior of the probabilities of different states with different initial probabilities for the discovery. 
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of being exploited increases significantly up to some stage and then eventually become stable. 
To evaluate the risk factor [4] of exploiting with respect to the time we consider the changes in the probability 

and also the CVSS score of a specific vulnerability. We explore the use of the CVSS vulnerability metrics which 
are publically available and are being used for ranking the strength of all vulnerabilities. 

Let’s proceed to define the risk factor as follows: 
Let, vi be any specific vulnerability. Then, 

( ) ( ) ( )Risk Pr is in state 3 at time Exploitability scorei i iv t v t v= ×                 (6) 

We shall use this definition of the Risk Factor in developing our proposed statistical model to evaluate the 
risk behavior.  

5.2. Development of a Parametric Model to Predict the Probability of  
Vulnerability Being Exploited 

To accomplish our objective, we developed two statistical models where the response variable Y is the probabil-
ity of being exploited and is driven by the attributable variable𝑡𝑡, the time. At first, for statistical accuracy to ho-
mogenize the variance we filtered the data using natural logarithm, ln t . For the second model, to obtain a bet-
ter fit to the data we introduce a term with an inverse transformation in addition to the filter using the natural 
logarithm.  

Thus, the proposed final forms of the statistical model to estimate the probability of being exploited at time t 
is given in the table below. 

For 1 0.2λ = , 2 0.2λ = , 3 0.3λ = , 4 0.4λ = , 5 0.4λ = , 6 0.6λ =  values we proposed a model to predict 
the probability at different time intervals as follows. 

As an example, let’s take a specific vulnerability labeled as CVE-2016-0467. This has CVSS Base score 4.00, 
which categorized as medium score with “Impact sub score: 2.9” and “Exploitability sub score: 8.0”. For 
This vulnerability we can measure risk as follows. 

( ) ( ) ( )
( ) ( )( )

Risk for exploit Pr is in state 3 at time Exploitability score

0.1772 0.27189 1 0.0326ln 8.
i it v t v

t t

= ×

= − + ×
             (7) 

Using equation (7) above, we can predict the risk factor of specific vulnerability at any time interval. 
This is an excellent model that gives us an 2R  of 0.8526 and 2

adjR  of 0.8507. The 2R , named Coefficient 
of Determination tells us how much can the change in the response variable be explained and predicted by the at-
tributable variables of the model and considered as the key criterion in evaluating the quality of a model. In other 
words, 2R  equals to the ratio of the Sum of Squares of the Regression to the Total Sum of Squares. That is, 

2

Total Total

1= = −Reg ResSS SSS
R

SS SS
.                                (8) 

Let’s consider an example to illustrate these two models further. For the given values for 1λ  to 6λ  given 
above, consider the values of the response variable Y (Probability of being exploited) at several values of time t. 
Table 1 presents two model equations we have developed with respective R2 values. Table 2 illustrates several 
results obtained and we can obtain the Sum of Squared Error for the model using such data.  

While the second model qualify to be much better as 2R  is higher compared to the first model as we men-
tioned previously, it should be noted here that our comparison with respect to the probability of being exploited 
is in comparison with the probability obtained from our transition metrics for a particular time t.  

We can generate such set of models for different vulnerabilities involving different CVSS score and improve 
further for predicting probabilities with respect to critical stages in Vulnerability Life Cycle of a particular Vul-
nerability. 

 
Table 1. Proposed models for estimating the probability of being exploited at time t. 

Model 2R  
2
adjR

 
( )0.0868 0.0523lnY t= +  0.7544 0.7528 

( ) ( )0.1772 0.27189 1 0.0326lnY t t= − +
 0.8526 0.8507 
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Table 2. Probabilities estimated using two models for several values of time, t. 

t Model 1 Estimate Model 2 Estimate 

1 0.0868 −0.09469 

2 0.123051598 0.063851598 

3 0.144257423 0.122384761 

18 0.237966443 0.256321119 

19 0.240794159 0.258878711 

20 0.243476798 0.261266372 

28 0.261074296 0.27611951 

29 0.262909572 0.277598327 

30 0.264682623 0.279016035 

58 0.299161169 0.304882684 

59 0.300055208 0.305519416 

60 0.300934221 0.306144133 

88 0.320964715 0.320071521 

89 0.321555682 0.320474602 

90 0.322140046 0.320872795 

98 0.326593799 0.323895552 

99 0.327124768 0.324254543 

100 0.327650401 0.324609648 

6. Conclusions 
Using of the Markov Model Approach to Vulnerability Life Cycle, we can have a better understanding of the 
behavior of vulnerability as a function of time. In the present study, we have developed a successful statistical 
model to estimate the probability of being in a certain stage of a particular vulnerability in its life cycle. In Sec-
tions 3 and 4, we have presented our methodology of using the Markov Approach and Life Cycle Graph Analy-
sis. This analysis with the application of Markov Chain Theory gave us the basis for calculating estimates for 
probabilities for different stages of a life cycle of the vulnerability considered.  

Further in Section 5, we have also developed a “RISK FACTOR”, and statistical models to estimate the risk 
for a particular vulnerability being exploited combining our methodology with the exploitability score given in 
the CVSS score. Using the developed method, we can evaluate the risk level of a particular vulnerability at a 
certain time.  

These developments ensure us with a great advantage in taking measures to avoid exploitations and introduce 
patches for the vulnerability before attacker takes the advantage of that particular vulnerability. 
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