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ABSTRACT 

This paper presented a novel method on designing redundant dictionary from known orthogonal functions. Usual way 
of discretization of continuous functions is uniform sampling. Our experiments show that dividing the function defini-
tion interval with non-uniform measure makes the redundant dictionary sparser and it is suitable for image denoising 
via sparse and redundant dictionary. In this case the problem is to find an appropriate measure in order to make each 
atom of dictionary. It has shown that in sparse approximation context, incoherent dictionary is suitable for sparse ap-
proximation method. According to this fact we define some optimization problems to find the best parameter of distribu-
tion measure (in our study normal distribution). For better convergence to optimum point we used Genetic Algorithm 
(GA) with enough diversity on initial population. We show the effect of this type of dictionary design on exact sparse 
recovery support. Our results also show the advantage of this design method on image denoising task. 
 
Keywords: Grassmaniann Frames, Normal Distribution, Mutual Coherence, Genetic Algorithm, Image Denoising 

1. Introduction 

Since the sparse representation of signals has leaded to 
improvements in many applications such as coding, de-
noising, feature extraction and etc. in signal and image 
processing, there has been a growing interest in the study 
of this method in recent years. Sparse and redundant re-
presentation modeling of data assumes an ability to de-
scribe signal as linear combinations of a few atoms from 
a pre-specified dictionary [1], where the linear coeffi-
cients are sparse. In this case we use a matrix  

, as a dictionary, either to compactly 
express or efficiently approximate a signal. Let  
and 

:d N
d ND d
  N

dy
Nx  be the given signal and the coefficient vec-

tor respectively. We can express sparse equation as  
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where 
0

been proposed in order to reach an approximate solution 
and all of them can be categorized as greedy algorithms 
like matching pursuit (MP) [1] and its derivations [3], 
and relaxation method, like basis pursuit (BP) [4]. Image 
denoising via sparse and redundant representation uses 
this fact. Suppose Z is zero-mean white Gaussian noise 
with known standard deviation  , and X be a cleaned 
image. Y = X + Z would be noisy image. Image denoising 
via redundant dictionary is a kind of energy minimization 
[5] and it can be expressed by following functional ex-
pression 

   22

2 2

0

,
,

 

ij ij

ij i

i j

j

j i
X DX Y Rf 



 



  



 



X
   (2) 

The first term of above expression says the difference 
between measured image Y and its denoised version X. 
second and third part of this expression represent sparse 
approximation. Choosing a dictionary D which have to 
be an overcomplete dictionary is one of the most impor-
tant fundamental choices that must be considered [6]. An 
overcomplete dictionary D that leads to sparse represen-

x  is the  norm, counting the nonzero en-
tries of a vector. With 

0l
0  , we have sparse representa-

tion which actually is a NP-hard problem and cannot be 
solved in a reasonable time [2]. Many algorithms have 
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tations can either be chosen as a pre-specified set of 
functions (dictionary of this type include wavelets [7], 
Curvelets [8], Contourlets [9] and bandelets [10], among 
others.) or designed by adapt its content to fit a given set 
of sample signals such as method of optimal direction 
(MOD) [11], the K-SVD [12] and others. Using a 
pre-specified dictionary leads to creating simple and fast 
algorithms for the evaluations of the sparse representa-
tion. These types of dictionaries are called non-adaptive 
dictionaries. Adaptive dictionary is time consuming for 
sparse approximation so working with pre-specified 
functions still have its own interest. 

In this paper we used different ways to signals atom 
from pre-specified functions. Each column of the dic-
tionary is selected from a set of orthogonal functions in a 
specific dimension. In order to make a dictionary of size 

 we should sample d times from each N atoms. 
The main question is how one can sample the function 
definition interval in order to achieve a sparser dictionary. 
To divide the interval of function definition in order to 
select each sample of function formed with normal dis-
tribution 

d N

 ,  , we used some optimization tech-
niques to find the best parameter of normal distribution. 
For confidence in convergence we implement our opti-
mization task with Genetic Algorithm (GA). As describe 
later our objective function has several extremum so 
enough diversity on initial population decrease the possi-
bility of trapping in local minimum. With this discretiza-
tion, the result dictionary has smaller mutual coherence 
than uniform one as a result of this fact better Peak-Sig- 
nal-to-Noise-Ratio (PSNR) achieve in image processing. 
This type of dictionary design is also improved the re-
quired time for image denoising. 

2. Tight Frames 

The concept of a frame is a generalized concept of an 
orthonormal basis. Each vector in the space can be rep-
resented as the sum of the elements in the frame, but it is 
not necessarily unique. The frame theory gives energy 
equivalence conditions to solve both synthesis and analy-
sis problems with stable operators. A family  p  is a 
frame of the Hilbert space . If  then 
we can have [7]: 

dV  0B A

22

Λ

, , p
m

h V A h h B h


    2
        (3) 

where the usual Hermitian inner product is denoted with 
.,. , and .  is written for the associated norm. when A = 

B we will have tight frames. We can achieve the unit 
norm tight frames when 1p  . With concatenating N 
frames of  we have overcomplete dictionary. In fol-
lowing part of this section we explain the process of de-

signing overcomplete dictionary from a specific family 
of frames. 

d

2.1. Overcomplete Dictionary  

Suppose  1 2, N  

d ND 

 are a set of N orthogonal con-
tinuous functions in the [a,b] interval. In order to make N 
vectors of size “d” (d < N), we should sample these func-
tions d times on its definition interval. The outcome of 
this process is a :d N d N   matrix called over- 
complete dictionary that is used in sparse representations. 
Which distribution we should use to sample these frames? 
The answer of this question completely depends on the 
type of orthonormal frames, but experiments show that 
normal distribution is suitable for majority of orthonor-
mal functions. Normal distribution  ,    has two 
parameters; mean   and standard deviation  . Dif-
ferent parameters of this distribution define different type 
of discretization so we have distinct dictionary for each 
pair of parameters. In this paper we want to discuss dif-
ferent methods in order to find the best parameters of 
normal distribution, after that we define some optimiza-
tion problem to find these parameters. At first we men-
tion some definitions for dictionary selection in sparse 
representations. A substantial parameter in dictionary 
selection for sparse representation is mutual coherence. 
The mutual coherence of a dictionary D, , express 
the coherency between atoms of dictionary. This pa-
rameter defined by inner product between each distinct 
normalized atoms of dictionary D [13]  

D 

 
| |

max
T
i j

i j T T
i j i j

a a
D

a a a a
            (4) 

Minimum  D  is suitable for sparse representation. 
For an orthogonal matrix D, we have . But for 
a redundant dictionary mutual coherence is greater than 
zero because of its redundancy in known dimension. For 
an overcomplete dictionary (N > d) it has shown that 
there exist a lower bound. It has been shown in [14] that 
for all full rank matrix of size  

   0D 

d N

 
 

1G

k n

n k
  



             (5) 

G  is the mutual coherence of Grassmannian frames 
which a dictionary with minimum coherence [14]. In 
order to have sparse representation, finding a dictionary 
with minimum of  D  is the competing area [15], 
[16]. As mention in previous section different sampling 
of orthogonal set make different redundant dictionary so 
with suitable tuning in sampling process we can hope to 
find a dictionary that has minimum distance to Grass-
mannian frames. So we need an objective function to 
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minimize this distance. Following part represent con-
struction of our objective function. 

2.2. Optimization Problem 

Let  1 2 , ,,  ND    
 .T

D D D
be a dictionary in , we de-

fine  as gram matrix of D. Each element of 
this matrix represents the coherency of each two atoms 
that obtain with an inner product between corresponding 
atoms. Suppose G  be a square matrix in which the 
absolute value each of off diagonal elements are 

d N

  and 
the diagonal element is 1 (Gram matrix of Grassmannian 
frames). In order to make a dictionary, which have min-
imum distance in frobenious norm to Grassmannian 
frames, we can define our objective function as a dis-
tance minimization of D  and  G

: D G F
OBJ                (6) 

.
F

 stands for frobenious norm; D  and G  is 
Gram matrix of dictionary D and Grassmannian frames 
respectively 



.
F

 stands for frobenious norm. This is a 
big objective function to minimization, so we need to 
break down this function in order to achieve better opti-
mization problem. In other words, we want to link this 
problem to sampling process of orthogonal set. The main 
ongoing question is how to sample orthogonal functions. 
Suppose k ,  be a set of N orthogonal func-
tions in the [a,b] interval. To divide this interval to d 
sample we use methods that are explained as  

1k  N

, 10 0 1   , , 1,2,k k k kt t t d              (7) 

where  , and the values of 
1

0

d

k
k

b a




  k  are de-  

termined by normal distribution  , ,t   . As it has 
been explained before, each element of D

 

 is an inner 
product of corresponding atoms  
(       , , ,, j ti       , ,ti jD ). We can 
rewrite the objective function as below: 

 

     
1 2

2
, ,D G D GF

i j

i ,F uj i j s
 

   
 
    (8) 

So with this assumption the objective function only 
depends on , 



. So we can use any optimization algo-
rithm to minimize this objective function [17]. The value 
of  ,F u s  or distance between Gram matrix of de-
signed dictionary and Grassmannian frames implicitly 
depend on orthogonal function, so different set of or-
thogonal function has different value for  ,F u s . 

2.3. Solving the Problem: GA 

Objective function that defined in (7) is a non-convex 
problem. We might be in trouble if we want to solve this 
problem with gradient methods; because these methods 

need an initial intelligent guess on initial point for confi-
dence in real convergence and not trapped in local min-
ima. GA is a method that we should use to conquest to 
this problem. The main part of GA is its initial popula-
tion that should have enough diversity. Our experiments 
show that uniform distribution on   and   is suit-
able for finding absolute minimum. This algorithm re-
peatedly modifies a population of individual solutions. 
At each step, it randomly selects individuals from the 
current population to be parents and uses them to pro-
duce children for the next generation [18]. Number of 
variables in optimization process is two. In the next sec-
tion we implement our algorithm on trigonometric func-
tion as an orthogonal set. 

3. Implementation and Results 

This section illustrated our simulation results. As men-
tion above we can apply this algorithm on any set of or-
thogonal function. We implement our algorithm on Si-
nusoid functions   sin nx  as a specific set of or-
thogonal function. At first we perform our optimization 
process and find the best parameters of normal distribu-
tion and compare the distance to Grassmannian frames 
with uniform version of this function. Second part of this 
section demonstrated the ability of this kind of dictionary 
design on sparse coding. The last part shows the effect of 
normal sampling type dictionary design on image de-
noising. 

3.1. Design Dictionary 

  sin nx  is an orthogonal set in  0,π . We want to 
compare uniform and normal distributions in order to 
make overcomplete dictionary in sparse representations. 
To optimize the (8) function we used “ga” command of 
Matlab software. We implement our algorithm on several 
lengths of dictionary’s atom and different redundancy 
factor and plotted the distance of Gram matrix of each 
dictionary from Grassmannian frames in Figure 1. As it 
is obvious, the dictionary that has been designed with 
normal distribution is closer to Grassmannian frames 
than the uniform one. Optimize parameters for normal 
distribution, are listed in Table 1 for different atom 
length and dictionary redundancy.  

3.2. Sparse Coding 

This part demonstrated the ability of sampling with nor-
mal distribution in terms of exact sparse recovery. In this 
experiment we use the method that presented in [19] and 
plotted the probability of success in sparse coding versus 
the cardinality of solution and our result be depicted in 
Figure 1. As it clear from the Figure 2, normal type dis-
ribution has better performance. t  

Copyright © 2011 SciRes.                                                                                 JSIP 



Improving Mutual Coherence with Non-Uniform Discretization of Orthogonal Function for  
Image Denoising Application 

Copyright © 2011 SciRes.                                                                                 JSIP 

187

 

2 2.5 3 3.5 4 4.5 5
4

6

8

10

12

14

16

18

20

22

Redundancy

D
is

ta
nc

e 
F

ro
m

 G
ra

ss
m

an
ni

an
 F

ra
m

es

2 2.5 3 3.5 4 4.5 5
10

15

20

25

30

35

40

45

50

Redundancy

D
is

ta
nc

e 
F

ro
m

 G
ra

ss
m

an
ni

an
 f
ra

m
esUniform Distribution Uniform Distribution

Normal Distribution Normal Distribution

 
(a)                                                          (b) 

2 2.5 3 3.5 4 4.5 5
10

20

30

40

50

60

70

Redundancy

D
is

ta
nc

e 
F

ro
m

 G
ra

ss
m

an
ni

an
 f

ra
m

es

2 2.5 3 3.5 4 4.5 5
20

30

40

50

60

70

80

90

100

Redundancy

D
is

ta
nc

e 
F

ro
m

 G
ra

ss
m

an
ni

an
 f

ra
m

es Uniform DistributionUniform Distribution

Normal Distribution Normal Distribution

 
(c)                                                          (d) 

Figure 1. Distance from Grassmannian frames for different length of atom and redundancy factor (a) d = 16, (b) d = 64, (c) d 
= 128, (d) d = 256. 
 
3.3. Image Denoising process for Boat image in different noise level. Paying 

attention to the figures the advantages of using this type 
of design is obvious. In Figure 4 these two types of 
overcomplete dictionaries are shown as an element in 
gray scale. 

As a result of this type of dictionary design, we per-
formed our algorithm on image denoising. We used im-
age denoising method which was proposed in [17]. In 
this type of image denoising a controversial point is se-
lecting overcomplete dictionary. Signal to noise ratio 
(PSNR) of resulted image with these two types of over-
complete dictionaries are illustrated in Table 2 (the value 
of PSNR are average for 10 times running the pro-
gram )The length of each atom of dictionary in this ex-
periment selected to 64 and redundancy factor is 4. A 
considerable point in this method of image denoising is 
decreasing of denoising process time in normal type dic-
tionary design. Figure 3 shows the time of denoising  

4. Conclusions 

In this paper we defined new method on overcomplete 
dictionary design from orthogonal functions. Our experi-
ment showed that non-uniform sampling of thesefunction 
makes a dictionary that is closer to Grassman nian frames 
 
Table 2. PSNR of denoised image for uniform and normal 
type sampling dictionary (bolded numbers are related to 
normal type dictionary design). 

 
Table 1. Optimized  ,    for each dictionary. 

Redundancy 
d 

2 3 4 5 

16 (–0.25,0.64) (–0.3,0.88) (1.76,0.1) (–0.6,0.7)

64 (–0.25,0.8) (–0.45,0.58) (1.02, –0.35) (–0.65,1.95)

128 (–0.45,1) (–0.5,0.8) (1.4, –0.35) (–0.65,1.22)

256 (–0.5,1.16) (–0.5,1.26) (1, –0.5) (–0.70,1.22)

Noise Level 
Image 

10 20 30 40 50 

barbara
33.40/ 
33.59 

29.80/ 
30.00 

27.71/ 
27.83 

26.16/ 
26.34 

25.01/ 
25.13 

lena 
34.61/ 
34.73 

31.51/ 
31.64 

29.65/ 
29.76 

28.34/ 
28.41 

27.29/ 
27.41 

boat 
33.01/ 
33.10 

29.61/ 
29.69 

27.72/ 
27.83 

26.48/ 
26.49 

25.50/ 
25.54 

pepper
34.07/ 
34.18 

31.43/ 
31.51 

29.73/ 
29.87 

28.40/ 
28.51 

27.46/ 
27.54 
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Figure 2. Comparison of two type dictionary design in exact 
sparse recovery. 
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Figure 3. Time required for denoising process for two type 
dictionary design. 

 
The uniform DST dictionary

 

The non-uniform DST dictionary

 
(a)                          (b) 

Figure 4. (a) uniform DST dictionary, (b) non-uniform 
(normal) DST dictionary. 

 
compared to the uniform one. Normal distribution is used 
for sampling and its parameters (mean and standard de-
viation) are optimized through some optimization proce- 
sses. Proposed method design has some advantage in 
sparse coding and we show this result with plotted the 

probability of success in exact sparse recovery. In this 
framework we showed that this type of dictionary design 
has better performance than uniform sample dictionary 
design in image denoising application with improving the 
PSNR of result image and decrease the required time for 
image denoising. As mention in paper, we can apply this 
type redundant dictionary design on any orthogonal set 
and also we can use other distribution for sampling the 
interval of function definition. 
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