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Abstract 
It is shown that the non-equilibrium electrically neutral and relativistically invariant vacuum-like 
state with the negative energy density and positive pressure may exist at the non-zero tempera-
ture in the system of spinor particles, antiparticles, and random electromagnetic field generated 
by particle-particle, particle-antiparticle, and antiparticle-antiparticle transitions. At the temper-
ature of the order of 10−5 K, the energy density of its state corresponds to the dark energy density 
in absolute magnitude. The cosmological constant for such material medium turns out to be nega-
tive. 
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1. Introduction 
Article [1] shows that the quantum theory allows building up the relativistically invariant state of matter, for 
which pressure p and energy density ε  are related as follows 

p ε= −                                         (1) 

Interest in the investigation of such states is related to search for the physical interpretation of the cosmologi-
cal constant in the Einstein’s equations [1]-[3] and dark energy nature [4]-[6]. 

If a material medium exists, whose energy-momentum density tensor is expressible in the following form 
( ) ( ) ,T gµν µνε
Λ Λ=                                     (2) 

then the cosmological constant Λ  in the Einstein’s equations [1] can be related to the energy density of such 
medium ( )ε Λ  
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( ) ( )48πG cε ΛΛ = .                                   (3) 

Here G is the gravitation constant, c is the velocity of light. In case of the empty flat space, when the Min-
kovsky’s tensor µνη  with ( )1, 1, 1, 1− − −  diagonal is the metric tensor gµν , energy density ( )ε Λ  and pressure 

( )p Λ  obviously satisfy the relationship (1). 
If ( ) 0ε Λ > , then negative pressure ( )p Λ  can be interpreted [4] [6] as the cause of the antigravity. The oppo-

site possibility, where ( ) 0ε Λ <  [1] [2], is not also excluded. In such a case, the gravitational attraction between 
massive objects starts increasing at the distances exceeding some threshold one. 

The cosmological constant problem is particularly relevant in the context of the experimental confirmation of 
the accelerated expansion of the Universe [6]. However, this phenomenon can be explained not only with the 
help of the General Relativity, but also by the different alternative versions of the Gravity Theory (see [7] and 
the articles cited there), where dark energy concept isn’t introduced. In paper [7] it is shown that the analysis of 
the interference of gravitational waves will allow making a choice for that or another Gravity Theory. 

Experimental discovery of gravitational waves [8] allows hoping for increasing of our understanding of the 
nature of gravitation. Data obtained now confirm justice of the General Relativity [8]. But it is only the first ex-
periments and it is not enough for final conclusions. 

In any case, up to date, the material medium model-building problem, for which relationship (1) is true and 
density 

( ) ( ) 2cρ εΛ Λ=                                      (4) 

is close, at least in the order-of-magnitude, to the value of 
( ) ( ) 30 3  7.21 0.25 10 g cmρ Λ − −≈ ± × ⋅  

resulted from the interpretation of astrophysical data [6] that has not been solved. Solving this problem seems 
important for the understanding of potential physical phenomena leading to the formation of such material me-
dium. 

2. Energy-Momentum Tensor of Random Electromagnetic Field 
Let us consider the model where the electromagnetic field tensor 

( ) ( ) ( )F x A x A xµν µ ν ν µ= ∂ − ∂                               (5) 

is governed by the Maxwell’s equations 

( ) ( ) ( )4πF x e c q xµν ν
µ∂ = ,                               (6) 

with random source ( )q xν  on the right side. Here ( )A xµ  is the vector potential of electromagnetic field, and 
e is the electric charge. 

We consider that for flow density ( )q xµ  the conservation law is true  

( ) 0q xµ
µ∂ = ,                                    (7) 

and for potential ( )A xµ  the Lorentz’ gage condition is true 

( ) 0A xµ
µ∂ = .                                    (8) 

Suppose, devices available enable measuring only some time interval and/or volume mean values, which will 
be indicated with brackets ... . Suppose that 

( ) 0q xµ = ,                                    (9) 

but at the same time for decomposition components ( )q xµ  on some set of functions ( ), ,q xµ λ λ′ , 

( ) ( ), ,q x q xµ µ
λ λ λ λ′

′= ∑ ∑                              (10) 

the following relationship is true: 

( ) ( ) { }
( )

4 4d d , , , , exp

, , ; , ,

x x q x q x ik x i x

n k

µ ν α α
α α

µν
λσ λ σ

σ σ λ λ χ

δ δ σ σ χ λ λ

∗

′ ′

′′ ′ ′′ ′ ′ ′ ′′ ′′− +

′ ′=

∫ ∫ ,               (11) 
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where ( ), , ; , ,n kµν σ σ χ λ λ′ ′  is the tensor, whose exact form will be defined later on. 
The formal solution of Equations (6) for ( )A xµ  meeting the initial condition 

( ) 0 at 0A x tµ = < ,                                 (12) 

taking into account Decomposition (10), can be written down in the following form 

( ) ( ) ( ) ( ) ( ){ } ( )4 4 4
04π 2π d d , , exp 2k

kA x e c x q x i x x iµ µ ν ν
νλ λ χ λ λ χ χ χ αχ−

′
′ ′ ′= − − − +∑ ∑ ∫ ∫ ,   (13) 

where 0, 0α α> → . According to Equations (5), (9), and (13) 

( ) ( )0,  0A x F xµ µν= = .                             (14) 

Let us determine energy-momentum density tensors of electromagnetic field ( )F xµν  and its interaction 
with charged flow ( )q xν  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )14π 1 4k kl
k klt A x c F x F x F x F xµν µ ν µνη−= − − ,            (15.1) 

( ) ( )( ) ( ) ( ) ( )2,t q x A x e c q x A xµν µ ν= − .                      (15.2) 

These tensors can be presented using quadratic combinations ( )q xν , and therefore their average values may 
be non-zero. Using Formula (11), for the average value of the sum of tensors ( )( )t A xµν  and ( ) ( )( ),t q x A xµν , 
we obtain 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ){ }4 4

,

d d , ; , exp ,

s

s l
l l

T x t A x t q x A x

kT k i k x

µν µν µν

µν
λ λ χ χ λ λ χ′

= +

′= − −∑ ∑ ∫ ∫
            (16.1) 

( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( ){
( )( ) ( ) ( )

( ) ( ) ( )}

182 3
0 0

0

, ; , 4π 2π 2 2

1 2 , , ; , ,

2 , , ; , , , , ; , ,

, , ; , , 1 2 , , ; , , .

sT k e c k k i k i

k k n k

k k k i k n k k n k

k n k k n k

µν α α
α α

µ ν µν β α
β α

α α µν α ν µ
α α α

µ αν µν α β
α β α

χ λ λ α χ χ αχ

χ η χ λ λ χ λ λ

χ α λ λ χ λ λ χ λ λ χ λ λ

χ λ λ χ λ λ η χ λ λ χ λ λ

−−′ = − − +

′ ′× −

′ ′ ′ ′+ − − −

′ ′ ′ ′− +

  (16.2) 

Suppose, tensor ( ), , ; , ,n kµν λ λ χ λ λ′ ′  describes transitions between acceptable states of spinor particles and 
antiparticles with mass m and charges e and −e in the binary mixture of their gases. Then it can be defined using 
the following relationships 

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )

6 8 ,2
,

, ,
, ,

, , ; , , 2π 2π , ; ,

, ; , , ; , ,

e e
r r

h h h e
r r r r

n k c mc ћ n k p p

n k p p n k p p

µν µν

µν µν

λ λ χ λ λ χ

χ χ

′

′ ′

′ ′ ′= 
′ ′+ + 

           (17.1) 

( )
( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )
( ) ( ) ( )

( ) ( )

, , 4 4
,

, ,
, ,

, ; , , , ,

, , ,

e e e e e
r r

e e e e
r r r r

n k p p Q p p F k p p ћ p p ћ

w p p w p p

µν

µ ν

χ δ δ χ′

∗
′ ′

′ ′ ′ ′= Θ − − − −

′ ′×
       (17.2) 

( )
( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )
( ) ( ) ( )

( ) ( )

, , 4 4
,

, ,
, ,

, ; , , , ,

, , ,

h h h h h
r r

h h h h
r r r r

n k p p Q p p F k p p ћ p p ћ

w p p w p p

µν

µ ν

χ δ δ χ′

∗
′ ′

′ ′ ′ ′= Θ − − − −

′ ′×
       (17.3) 

( )
( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )
( ) ( ) ( )

( ) ( )

, , 4 4
,

, ,
, ,

, ; , , , , ,

, , ,

h e h e e h
r r

h e h e
r r r r

n k p p Q p p F F k p p ћ p p ћ

w p p w p p

µν

µ ν

χ δ δ χ′

∗
′ ′

′ ′ ′ ′= Θ − − − −

′ ′×
     (17.4) 

( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( )( )( ) ( )( )( )( ), 2, , , , , 1 , ,e e e e e e e
e eQ p p F E p E p mc f s p F f s p Fθ′ ′ ′Θ = − Θ − Θ ,  (17.5) 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )( )( ) ( )( )( )( ), 2( , , , ) , , 1 , ,h h h h h h h
h hQ p p F E p E p mc f s p F f s p Fθ′ ′ ′Θ = − Θ − Θ ,  (17.6) 
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( ) ( ) ( )( ) ( )( )( ) ( )( )( ), , , , , , , , ,h e e h e h
e hQ p p F F f s p F f s p F′ ′Θ = Θ Θ .              (17.7) 

Here indices e and h pertain to particles and antiparticles, respectively; ћ  is the Plank’s constant divided by 
2π ; pµ , and p µ′  are four-dimensional momenta of particles and antiparticles, for which the following dis-
persion relationship is true 

( ) ( )
1 22 2 2 2

0 0, ,p mc p p= + > = p p ,                          (18) 

indices r and r′  take on the values of ±1 and correspond to the two possible spin states of particles and anti-
particles; ( )eF  and ( )hF  are chemical potentials of particles and antiparticles, which we will consider as con-
stant;  

Bk TΘ = ,                                     (19) 

Bk  is the Boltzmann’s constant, T is the temperature; 

( ) { }( ) 1
exp   1f s s

−
= +                                  (20) 

the Fermi-Dirac distribution function; 
( )( ) ( )( ),   e h

e hs p U F s p U Fµ µ
µ µ= − Θ = + Θ ,                      (21) 

U µ  is the hydrodynamic velocity [9] that meets the relationship 
2

0,  0U U c Uµ
µ = > .                                 (22) 

Vectors ( )
( ) ( ),

, ,a b
r rw p pµ

′ ′  correspond to flows of transitions between the states of particles and antiparticles 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

, ,
, ,

,
,

, , , ,

, ,

e e e e h h h h
r s r sr s r s

h e h e
r sr s

w p p ū p u p w p p ū p u p

w p p ū p u p

µ µ µ µ

µ µ

γ γ

γ

′ ′ ′ ′= =

′ ′=
         (23) 

where µγ  is the Dirac gamma-matrices, ( ) ( )e
ru p  and ( ) ( )h

ru p  are spinors that satisfy Equations 

( ) ( ) ( ) ( ) ( ) ( )0,  0e h
r rp mc u p p mc u pµ µ

µ µγ γ− = + = ,                 (24.1) 

and normalization conditions 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),e e h h

r s rs r s rsū p u p ū p u pδ δ= = −                    (24.2) 

It is easy to show that the relations of orthogonality are true 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ), , ,

, , ,, 0, , 0, , 0e e h h h e
r s r s r sp p w p p p p w p p p p w p pµ µ µ

µ µ µ µ µ µ′ ′ ′ ′ ′ ′− = − = + = .    (25) 

With account of these definitions, Expressions (25), and the formula for the transition from the summation 
over composite index λ  to the integration over momentum p 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 24 2 2 3
0 0... d ... d ...r rmc p p mc p p m c mc p pµ

µλ θ δ− −→ − =∑ ∑ ∑∫ ∫ , 

we obtain from Relationships (16.1) and (16.2) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,s e e h h h eT x T x T x T xµν µν µν µν= + + ,                      (26.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2, ,2 3 3
0 02π 2π d d , , , , , ,a b a b

r rT x ћ mc p p p p T p r p r a b e hµν µνα −

′
′ ′ ′ ′= − =∑ ∑ ∫ ∫ ,  (26.2) 

( ) ( )
( ) ( ) ( ) ( )( )( ) ( )( )( ) ( )( )( )( )

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

,

2

2, ,
, ,

, , ,

, , 1 , ,

, , 1 2 , ,

e e

e e e e
e e

e e e e
r r r r

T p r p r

E p E p mc f s p F f s p F

w p p w p p n n n n n n n p p

µν

β µ ν µν β β µ µ µ
β β β

θ

η
−∗

′ ′

′ ′

′ ′= − Θ − Θ

′ ′ ′× − = −

      (26.3) 
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( ) ( )
( ) ( ) ( ) ( )( )( ) ( )( )( ) ( )( )( )( )

( )
( ) ( ) ( )

( ) ( ) ( )( )( )

,

2

2, ,
, ,

, , ,

, , 1 , ,

, , 1 2 , ,

h h

h h h h
h h

h h h h
r r r r

T p r p r

E p E p mc f s p F f s p F

w p p w p p n n n n n n n p p

µν

β µ ν µν β β µ µ µ
β β β

θ

η
−∗

′ ′

′ ′

′ ′= − Θ − Θ

′ ′ ′× − = −

      (26.4) 

( ) ( ) ( )( )( ) ( )( )( ) ( )
( ) ( )

( )
( ) ( ) ( )( ) ( )

, ,
,

2,
,

, , , , , , , ,

, 1 2 , ,

h e e h h e
e h r r

h e
r r

T p r p r f s p F f s p F w p p

w p p n n n n n n n p p

µν β

µ ν µν β β µ µ µ
β β βη

∗
′

−

′

′ ′ ′ ′= Θ Θ

′ ′× − = +
      (26.5) 

where 2e ћcα =  is the fine-structure constant approximately equal to 1/137, if e is the electron charge. 

3. Energy Density and Pressure of Interacting Mixture 
Assume, the inequations are true 

( ) ( )2 2,e hF mc F mc> < − ,                               (27) 

i.e. particle and antiparticle gases are degenerating ones. Let us consider the range of temperature and chemical 
potential values that satisfy the following conditions: 

( ) ( )2 2 2 2,e h
F Fp m mc p m mcΘ Θ    .                       (28) 

Here ( )e
Fp  and ( )h

Fp  are Fermi momenta defined in the following relationships: 

( ) ( )( ) ( ) ( )( )1 2 1 22 21 2 4 1 2 4,  e e h h
F Fp с F m c p с F m c− −= − = − .                 (29) 

In the frame of reference where 0=U , we obtain the expressions for energy density and pressure 
( ) ( ) ( ) ( ) ( ) ( ) ( )23 2 2 28π 4 π 1 2π π 4 π 1s

Bc ћ m emk T ћε α − −≈ − − Θ = − − ,            (30.1) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 23 2 2 23 8π 3 4 π 1 2π 3π 4 π 1s s
Bp c ћ m emk T ћε α

−−≈ − ≈ − Θ = −     (30.2) 

related to the components of the energy-momentum tensor by simple relationships 
( ) ( ) ( ) ( ) ( ) ( )( )00 0

0, 3s s s s scT p c T Tµ
µε = = − − .                        (31) 

The following formulas are true under Conditions (28) in the same frame of reference for concentrations of 
particles and antiparticles ( )en  and ( )hn , their energy densities and pressures 

( ) ( ) ( )( ) ( ) ( ) ( )( )3 3
8π 3 2π , 8π 3 2πe e h h

F Fn p ћ n p ћ≈ ≈ ,                   (32.1) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )3 32 2 2 28π 3 2π , 8π 3 2πe e e h h h
F Fmc p ћ mc n mc p ћ mc nε ε≈ = ≈ = ,        (32.2) 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )

32 2

32 2

16π 15 2 2π 2 5 2 ,

16π 15 2 2π 2 5 2 .

e e e e e
F F F

h h h h h
F F F

p p m p ћ p m n

p p m p ћ p m n

≈ =

≈ =
               (32.3) 

The condition of electroneutrality of the particle and antiparticle gases mixture has the following form 
( ) ( ) 0e hF F+ = ,                                    (33) 

whence it follows that 
( ) ( )e h

F F Fp p p= = .                                  (34) 

In such a case, we obtain for the total energy density and pressure 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

3 3 2216π 3 2π 8π 4 π 1 2πe h s e
Fmc p ћ c ћ mε ε ε ε α −= + + ≈ − − Θ ,        (35.1) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )3 28π 3 4 π 1 2πe h sp p p p c ћ mα −= + + ≈ − Θ .                 (35.2) 

The energy density and pressure of electrically neutral particle and antiparticle gases mixture will be relativis-
tically invariant in two cases [1] where 

0, 0pε = =  

and where condition (1) is met. In the first case, we obtain from Equations (35.1) and (35.2) 
0, 0FT p= = .                                   (36) 

Furthermore, according to Formulas (32.1), concentrations of particles and antiparticles are zero. 
In the second case, we obtain the condition of implementing the electrically neutral and relativistically inva-

riant state for the mixture under consideration from Relationships (1), (35.1) and (35.2) 

( ) ( ) ( ) ( ) ( )233 2 2 2 2 24 π 1 4 π 1 Bp mc mc e k T m ћcαΛ Λ Λ= − Θ = − .              (37) 

Here the Fermi momentum and temperature, at which conditions (1) is met, are indicated using pΛ  and TΛ . 
It is easy to show that momentum pΛ  satisfying Equation (37) satisfies also Inequations (28) 

( ) ( ) ( ) ( )2 1 23 3 22 2 2 1p m mc mc m mcα αΛ Λ Λ Λ ΛΘ ⇒ Θ Θ ⇒ Θ    

The following expressions are true for the concentrations of particles and antiparticles, energy density and 
pressure of the mixture 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

13 2 2 3

1 22 2

8π 3 2π 3π 4 π 1

3π 4 π 1 ,

e h

B

n n n p ћ m cћ

m ek T ћ c

α
−Λ

Λ Λ

−

Λ

= = ≈ = − Θ

= −
            (38.1) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2

1 22 2 2

8π 3 2π 4 π 1

3π 4 π 1 .B

p c ћ m

emk T ћ mc n

ε α −Λ Λ
Λ

− Λ
Λ

≈ − ≈ − − Θ

= − − = −
                    (38.2) 

We receive the following from Formulas (3), (4), and (38.2) for the cosmological constant and dark energy 
density 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

42 2 2 2 2

2 2

8π 8 3π 4 π 1

8 3π 4 π 1 8 3π 4 π 1 ,

B

G B G T

Gm c n Gm e k T ћc

k T ћc Rαα αα

Λ
Λ

−
Λ

Λ ≈ − = − −

= − − = − −
             (39.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

13 2 2 1 2

1 22 2

8π 3 4 π 1 2π 3π 4 π 1

3π 4 π 1 .

e T

B

c ћ m mR R

emk T ћ c mn

ρ α α
−−Λ − −

Λ

− Λ
Λ

= − − Θ = − −

= − − = −
         (39.2) 

Here the following is specified 
2

G Gm ћcα = , 

−a dimensionless value representing a gravitational analogue of the fine structure constant in terms of the 
build-up method, if m is the mass of electron, then 451.75 10Gα

−≈ × ; 

T BR ћc k TΛ=  

is the analogue of the Compton wave-length 

eR ћ mc=  

for an object with the energy equal to ΛΘ . 
If e and m are the charge and mass of electron, and dark energy density  

( ) 30 3 56 2 57.21 10 g cm , then 1.34 10 cm , 1.54 10 KTρ Λ − − − − −
Λ= − × ⋅ Λ ≈ × ≈ × , 

4 281.49 10 cm 149 m, 6.5 10 g cm s ,  0.71 cm sTR p v p m−
Λ Λ Λ≈ × = ≈ × ⋅ = ≈ . 
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The second of Formulas (39.2) for density ( )ρ Λ  has the strongly non-isotropic form. As if the dark energy is 
distributed in a parallelepiped with the very small height eR  as compared with the typical dimensions of edges 
of bases TR  

152.5 10e TR R −≈ × . 

Note that the contribution of the random electromagnetic field, including the contribution of interaction of this 
field with particles and antiparticles, to the total energy density in absolute magnitude is thrice as much as the 
contributions of particles and antiparticles equal to each other 

( ) ( ) ( ) ( ) ( )2 2, 3e h smc n mc nε ε εΛ Λ= = = − . 

Just due to the random electromagnetic field generated by transitions between particles and antiparticles, the 
state that satisfies Condition (1) is possible in the system studied. 

In the approximation considered, energy density ( )sε  and pressure ( )sp  are resulting mainly from particle- 
particle and antiparticle-antiparticle transitions. The energy density and pressure related to particle-antiparticle 
transitions are much less than ( ) ( ), ,, ,e e h hε ε  and ( ) ( ), ,,e e h hp p  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3, , , ,3 2 232 9 2π , ~ 1h e h e h e s h e s
F Fp c p m c p ћ p pε α ε ε≈ ≈ −  . 

Furthermore, the energy dominance [2] is disrupted for ( )sε  and ( )sp , and their components. 

4. Conclusions 
The model of the material medium, for which the electrically neutral relativistically invariant state with non-zero 
energy density, pressure, concentrations of particles and antiparticles is possible, has been considered. At the 
same time particles and antiparticles are in the thermal equilibrium, but far from the chemical equilibrium state 
governed by the equality of their chemical potentials. In the considered case, the expression is true  

( ) ( ) ( ) ( ) ( ) ( )( )2 31 2 22 2 2 2 22 2 1 1 2 4 π 1e h
F BF F c m c p mc k T mcα Λ

 
− = + ≈ + − 

 
. 

This non-equilibrium electrically neutral state exists due to the random electromagnetic field generated by 
spontaneous transitions between particles and antiparticles being in different quantum states. The average vector 
potential and intensity of this field are zero. But the average components of the energy-momentum density ten-
sor in the random process of transitions between the states of particles and antiparticles are non-zero. 

The energy density of the above vacuum-like state can be expressed in terms of its temperature TΛ . The state 
electroneutrality requirement leads to the equality of Fermi momentum of particles and antiparticles, and the re-
lativistic invariance requirement to the equation relating the Fermi momentum with the temperature. 

If the energy density of the system considered is identified with the dark energy density, then temperature TΛ  
turns to be of the order of 10−5 K and Fermi velocity of particles and antiparticles v p mΛ Λ=  to be approx-
imately 1 cm/s (m is the mass of electron). Furthermore, the dark energy density and cosmological constant are 
negative. 
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