
Applied Mathematics, 2016, 7, 1124-1133 
Published Online June 2016 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2016.710100   

How to cite this paper: Liu, H. and Ding, Y.C. (2016) Delay and Its Time-Derivative Dependent Stable Criterion for Differen-
tial-Algebraic Systems. Applied Mathematics, 7, 1124-1133. http://dx.doi.org/10.4236/am.2016.710100  

 
 

Delay and Its Time-Derivative Dependent 
Stable Criterion for Differential-Algebraic 
Systems 
Hui Liu, Yucai Ding 
School of Science, Southwest University of Science and Technology, Mianyang, China 

 
 
Received 21 April 2016; accepted 21 June 2016; published 24 June 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this paper, the stable problem for differential-algebraic systems is investigated by a convex op-
timization approach. Based on the Lyapunov functional method and the delay partitioning ap-
proach, some delay and its time-derivative dependent stable criteria are obtained and formulated 
in the form of simple linear matrix inequalities (LMIs). The obtained criteria are dependent on the 
sizes of delay and its time-derivative and are less conservative than those produced by previous 
approaches. 
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1. Introduction 
Differential-algebraic systems, also referred to as singular systems, descriptor systems or generalized state-space 
systems, arise in a variety of practical systems such as chemical processes, nuclear reactors, biological systems, 
electrical networks and economy systems. Differential-algebraic systems include not only dynamic equations 
but also static equations [1] [2]; the study of such systems is much more complicated than that for standard state- 
space systems. The existence and uniqueness of a solution to a given differential-algebraic system are not 
always guaranteed and the system can also have undesired impulsive behavior, which can lead to the instability 
and poor performance [3]. 

Because of the extensive applications in many practical systems, a great number of fundamental notions and 
results in control and system theory based on standard state-space systems have been extended successfully to 
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differential-algebraic systems. In recent years, much attention has been focused on stability, robust stability and 
H∞  control problems for differential-algebraic systems, and some results have been derived using the time 
domain method [4]-[11]. The existing results can be classified into two types: delay-dependent conditions, 
which include information on the size of delays [12] [13], and delay-independent conditions, which are applica-
ble to delays of arbitrary size [14] [15]. Since the stability of systems depends explicitly on the time-delay, the 
delay-independent conditions are more conservative, especially for small delays. While the delay-dependent 
conditions are usually less conservative, and the conservatism will dependent on the chosen of Lyapunov func-
tional, the inequality bounding technique and so on. Two approaches were used to prove the stability of the sys-
tem in the existing literature. The first approach consists of decomposing the system into fast and slow subsys-
tems and the stability of the slow subsystem is proved using some Lyapunov functional. Then, the fast variables 
are expressed explicitly by an iterative equation in terms of the slow variables [16]. The second approach con-
sists of constructing a Lyapunov-Krasovskii functional that corresponds directly to the descriptor form of the 
system [17]. Some other methods have also been provided to reduce the conservative, for example, convex 
analysis method [18] and delay partitioning approach [19] [20]. To the best of our knowledge, most of the exist-
ing delay-dependent asymptotically stable criteria only depend on the upper bound of the delay-derivative, and 
to the differential-algebraic systems, the delay and its time-derivative dependent stability criterion has not estab-
lished, which motivates this paper. 

This article deals with the problem of asymptotic stability for a class of linear differential-algebraic system 
with time-varying delay. The obtained criteria depend not only on the upper bound but also on the lower bound 
of the delay derivative. Based on the Lyapunov functional method and the delay partitioning approach, some 
delay and its time-derivative dependent stable criteria are obtained. One numerical example is provided to 
demonstrate the effectiveness of the proposed results. All the developed results are in the LMI framework which 
makes them more interesting since the solutions are easily obtained using existing powerful tools like the LMI 
toolbox of Matlab or any equivalent tool. 

Notation: Throughout this paper, TA  represents the transpose of A; The symbol “∗” in matrix inequality 
denotes the symmetric term of the matrix; 0A >  ( )0<  means A is a symmetrical positive (negative) definite 
matrix; ( )Sym M  stands for TM M+ ; I is a unit matrix. 

2. Problem Statement 
Consider the following differential-algebraic system: 

( ) ( ) ( )( )1 .Ex t Ax t A x t tτ= + −                                   (1) 

where ( ) nx t ∈R  is the state vector, the matrix n nE ×∈R  may be singular, and we assume that  
( )rank E r n= ≤ , A and 1A  are constant matrices with appropriate dimensions. ( )tτ  is time-varying delay, 

( ) [ ],a bt h hτ ∈ , 0ah ≥ , and it is assumed to satisfy ( )1 2d t dτ≤ ≤ , where d1, d2 are constants. The initial con- 
dition is given by ( ) ( )0x t θ φ θ+ = , [ ], 0bhθ ∈ − , ( ) Wφ θ ∈ , where W is the space of absolutely continuous 
function φ : [ ], 0 n

bh− → R  with the square integrable derivative and with the normal  

( ) ( ) ( )
202 22 0 d

bW h
s s sφ φ φ φ

−
 = + +  ∫  . 

The following definition, lemmas and notation are introduced, which will be used in the proof of the main 
results. 

Definition 1 ([6]) System (1) is said to be regular if the characteristic polynomial, ( )det sE A−  is not 
identically zero. 

2) System (1) is said to be impulse-free if ( )( ) ( )deg det ranksE A E− = . 
Lemma 1 ([4]) Let H, F and G be real matrices of appropriate dimensions then, for any scalar 0ε >  for all 

matrices F satisfying TF F I≤ , we have: 
T T T T 1 T .HFG G F H HH G Gε ε −+ ≤ +  

3. Main Results 
Theorem 1 System (1) is asymptotically stable for all differentiable delays ( ) [ ],a bt h hτ ∈  with ( )1 2d t dτ≤ ≤ , 
if there exist symmetric positive-definite matrices Q, iR  ( )0,1, 2i = , 0S , 11S , 12S , 13S , kP  satisfying  
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( )TT 0k kE P P E= ≥  ( )1, 2,3k = , and appropriately dimensioned matrices 2 jP , 3 jP , 1 jY , 2 jY , 1 jZ , 2 jZ ,  

jT  ( )1, 2j = , 1W  and 3W  such that LMIs: ( ) 2| 0t hτ <Ψ < , for ( ) 1t hτ →  and ( ) 2t hτ → , and ( ) 2| 0t hτ >Ψ < ,  

for ( ) 2t hτ →  and ( ) 3t hτ → , where ( ) 1 2,t d dτ = . ( ) 2| 0t hτ <Ψ <  and ( ) 2| 0t hτ >Ψ <  are denoted in (8) and 
(11), respectively. 

Proof. The proof of this theorem is divided into two parts. First, we prove that the results, when ( ) 2t hτ < , 
( ) 2t hτ >  and ( ) 2t hτ = , respectively, ensure that the derivative of Lyapunov functional is negative. Finally, 

we prove the results given in the first part ensure that system is regular and impulse-free. 
First of all, we divide the delay interval [ ],a bh h  into two segments: [ ]1 2,h h  and [ ]2 3,h h , where we denote  

1 ah h= , 3 bh h= , and 2 2
a bh hh +

= . Then, system (1) can be represented as 

( ) ( ) [ ] ( )( ) [ ] ( )( )
1 2 1 21 1, ,1h h h hEx t Ax t A x t t A x t tχ τ χ τ = + − + − −                      (2) 

where [ ] { }
1 2, : 0,1h hχ →R  is the characteristic function of [ ]1 2,h h  

[ ] ( ) [ ]
1 2

1 2
,

1, if ,
0, otherwise.h h

s h h
sχ

 ∈= 


 

Consider the following Lyapunov functional: 
( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5t t t t t tV x V x V x V x V x V x= + + + +                      (3) 

where 

( ) ( )( ) ( )T T
1 ,tV x x E P t x tτ=  

( ) ( ) ( ) ( )1 T
2 d ,

t h
t t t

V x x s Qx s s
τ

−

−
= ∫  

( ) ( ) ( )
1

T
3 0 d ,

t
t t h

V x x s S x s s
−

= ∫  

( ) ( ) ( )1

2

11 12T
4

13

d ,
t h

t t h

S S
V x s s s

S
ξ ξ

−

−

 
=  ∗ 
∫  

( ) ( ) ( )( ) ( )( )
1

2 T
5 1

=0
d d ,i

i

h t
t i i ih t

i
V x h h Ex s R Ex s s

θ
θ

+

−

+ − +
= −∑ ∫ ∫    

( ) ( ) ( )( ) T 11 12T T
0 2 1 0

13

0, , , 0, 0, 0, 0.i

S S
h s x s x s h h Q R S

S
ξ

  = = − − > > > >   ∗ 
 

In addition, we define the continuous function ( )( )P tτ  as the following form: 

( )( ) [ ] ( )( ) ( ) ( )

[ ] ( )( ) ( ) ( )

1 2

1 2

1 21 2
,

2 1 2 1

2 33 1
,

3 2 3 2

1 ,

h h

h h

t h h t
P t t P P

h h h h

t h h t
t P P

h h h h

τ τ
τ χ τ

τ τ
χ τ

− − 
= + − − 

− −  + − +   − − 

                     (4) 

When ( ) 2t hτ ≠ , one can obtain 

( )( ) ( )
( ) ( ) ( )1 2 3 1

2 1 3 2

1
,

P P P P
P t t

h h h h
χ χ

τ τ
 − − −
 = +

− −  



  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2T T T 1 2
1

2 1 2 1

2 33 1

3 2 3 2

2

1 ,

t
t h h t

V x x t E P t x t x t P P
h h h h

t h h t
P P Ex t

h h h h

τ τ
τ χ

τ τ
χ

 − − 
= + +  − −  

− − 
+ − +  − −  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )
1

2 2T T2
5 1 1

0 =0
di

i

t h
t i i i i i it h

i i
V x Ex t h h R Ex t h h Ex s R Ex s s

+

−

+ + −
=

 = − − −  
∑ ∑ ∫

     

To obtain the main results, we consider the following three cases: ( ) [ )1 2,t h hτ ∈ , ( ) ( ]2 3,t h hτ ∈  and 
( ) 2t hτ = . 
Case 1: ( ) [ )1 2,t h hτ ∈  

Using the fact that ( ) ( ) ( ) ( ) ( )
1 1

d d dj j

j j

t h t t t h
j j jt h t h t t

f s s f s s f s s
τ

τ+ +

− − −

− − −
= +∫ ∫ ∫ , where ( ) ( )( ) ( )( )T

j if s Ex s R Ex s=   , we 

easily obtain the following inequalities by Jensen’s inequality: 

( ) ( ) ( )( ) ( )( )
1 1 1

T
1 d d d ,i i i

i i i

t h t h t h
i i i it h t h t h

h h f s s Ex s sR Ex s s
+ + +

− − −

+− − −
− ≥∫ ∫ ∫   

( ) ( ) ( ) ( )( ) ( ) T
1 1 1 1d ,jt h

j j j j j j j j jt t
h h f s s t h h h R

τ
τ υ υ

−

+ +−
− ≥ − −∫  

( ) ( ) ( ) ( )( ) ( )
1

T
1 1 1 2 2d ,

j

t t
j j j j j j j j jt h

h h f s s h t h h R
τ

τ υ υ
+

−

+ + +−
− ≥ − −∫  

where 
( ) ( ) ( )( )1

1 djt h
j t t

j

Ex s s
t h τ

υ
τ

−

−
=

− ∫  , 
( )

( ) ( )( )
1

2
1

1 d
j

t t
j t h

j

Ex s s
h t

τ
υ

τ +

−

−
+

=
− ∫  , 0, 2i = , 1j = . Then, the time-  

derivative of ( )tV x  along the solution of (2) is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

2 2

2T 2
1 1| |

0

T T
1 1

T T
0 1 0 1

T
11 121 1

132 2

T
2 211 12

3 313

1

t t i i it h t h
i

V x V x Ex t h h R Ex t

x t h Qx t h t x t t Qx t t

x t S x t x t h S x t h

S Sx t h x t h
Sx t h x t h

x t h x t hS S
x t h x t hS

τ τ

τ τ τ

+< <
=

 = + −  
+ − − − − − −

+ − − −

 −   −  
+     ∗− −    

 −  − 
−    − −∗  

∑ 

 



( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )

( )( ) ( )

T T
1 0 1

T T
2 3 2 2 3

T
1 1 1

T
1 1 2 2 ,

j j j j j j

j j j j j j

x t x t h E R E x t x t h

x t h x t h E R E x t h x t h

t h h h R

h t h h R

τ υ υ

τ υ υ

+

+ +

 
 
 

− − − − −      

   − − − − − − −   

− − −

− − −

            (5) 

Letting ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
TT T T T T T T T

1 1 2 11 12 3, , , , , , ,t x t Ex t x t h x t h x t t x t hη υ υ τ = − − − −  , and adding the 
following terms 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )T T T T T T T
11 21 1 1 1 110 2 ,x t Y x t E Y x t t T Ex t h Ex t t t hτ τ τ υ   = + + − − − + − + −     

( ) ( ) ( ) ( ) ( )( ) ( )( )T T T T T T T
11 21 3 3 2 2 120 2 ,x t Z x t E Z x t h W Ex t h Ex t t h tτ τ υ  = + + − − − − + −     

( ) ( ) ( ) ( )( ) ( )T T T T T
21 31 10 2 x t P x t E P Ax t A x t t Ex tτ  = + + − −                                  (6) 

to (5) gives 

( ) ( ) ( ) ( ) ( ) ( )
22

2T
1 1 1||t t ht h

V x t t x tττ
η η α<<

≤ Ψ ≤ −                           (7) 

for some scalar 1 0α > , if 
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( ) 2

T
11 12 13 11 15 16 17

T T
22 21 21 25 26 27

T
33 12 1

44 48
|

55 57

66 68
T

77 3

88

0
0

0 0 0
0 0 0

0
0 0

0

t h

Z E
Y E Z E

S E T

E W

τ <

 Π Π Π Π Π Π
 
∗ Π − Π Π Π 

 ∗ ∗ Π −
 
∗ ∗ ∗ Π Π Ψ = < ∗ ∗ ∗ ∗ Π Π 
∗ ∗ ∗ ∗ ∗ Π Π 

 ∗ ∗ ∗ ∗ ∗ ∗ Π − 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π 

            (8) 

where 

( ) ( ) ( ) ( )( )
( ) ( )( )

T1T 1 2 1
11

2 1 2 1

T2 2 T T T
0 0 21 21

2 1

Sym

Sym ,

t t h
E P P P A

h h h h
h t

P A S E R E A P P A
h h

τ τ

τ

−
Π = − +

− −

−
+ + − + +

−



 

T T T
12 21 31 13 0 11, ,P A P E R E Y EΠ = − + Π = −  

( )( ) ( )( )T T
15 1 11 16 2 11, ,t h Y h t Zτ τΠ = − Π = −  

( ) ( )1 21 2 T T T
17 1 1 11 11 21 1

2 1 2 1

,
t h h t

P A P A Y E Z E P A
h h h h
τ τ− −

Π = + + − +
− −

 

( ) ( )( )
2 2T T

22 31 31 1 25 1 21
0

, ,i i i
i

P P h h R t h Yτ+
=

Π = − − + − Π = −∑  

( )( ) T T T T
26 2 21 27 21 21 31 1, ,h t Z Y E Z E P AτΠ = − Π = − +  

T T
33 0 11 0 44 11 13 2, ,Q S S E R E S S E R EΠ = − + − Π = − + −  

( )( ) ( )T T
48 12 2 3 55 1 2 1 1, ,S E R E E W t h h h RτΠ = − + + Π = − − −  

( )( ) ( )( ) ( )57 1 1 66 2 2 1 1, ,t h T h t h h Rτ τΠ = − Π = − − −  

( )( ) ( )( ) T T
68 2 3 77 1 1, 1 ,h t W t Q T E E Tτ τΠ = − Π = − − + +  

T
88 13 2 .S E R EΠ = − −  

Inequality (8) contains two variables which make it difficult to solve by LMI tool. In order to overcome this 
difficulty, we seek the sufficient conditions for inequality (8). When ( ) 1t hτ →  and ( ) 2t hτ → , the inequality 
(8) leads to the following LMIs: 

( )
( )

( ) ( )

T T
11 12 13 11 2 1 11 17

T T T
22 21 21 2 1 21 27

T
33 12 1

44 481
2

2 1 1 2 1 3
T

77 3

88

0
0

0 0
0 0 0

0

Z E h h Z
Y E Z E h h Z

S E T

h h R h h W
E W

 Π Π Π − Π
 
∗ Π − − Π 

 ∗ ∗ Π −
 
∗ ∗ ∗ Π ΠΨ = < 

 
∗ ∗ ∗ ∗ − − − 

 ∗ ∗ ∗ ∗ ∗ Π −
 
∗ ∗ ∗ ∗ ∗ ∗ Π  

            (9) 

and 
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( )
( )

( ) ( )

T T
11 12 13 11 2 1 11 17

T T T
22 21 21 2 1 21 27

T
33 12 1

44 482

2
2 1 1 2 1 1

T
77 3

88

ˆ ˆ 0

0

0 0

0 0 0

0

Z E h h Y

Y E Z E h h Y

S E T

h h R h h T

E W

 Π Π Π − Π
 
∗ Π − − Π 

 
∗ ∗ Π − 

 ∗ ∗ ∗ Π ΠΨ = < 
 ∗ ∗ ∗ ∗ − − − 
 ∗ ∗ ∗ ∗ ∗ Π − 
 ∗ ∗ ∗ ∗ ∗ ∗ Π 

            (10) 

where 

( ) ( ) ( ) ( )1 1 2 211 17 11 1711| 17| 11| 17|
ˆ ˆ, , , .t h t h t h t hτ τ τ τ= = = =Π = Π Π = Π Π = Π Π = Π  

Note that we have omitted the zero row and zero column in 1Ψ  and 2Ψ . Letting  

( ) ( )( ) ( ) ( ) ( )( ) ( )
TTT T T T T T

1 1 2 3, , , , , ,i jix t Ex t x t h x t h x t t x t hη υ τ = − − − −  
 , the latter two LMIs imply (8), 

which is because 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

1 2T T
11 2 11 12 1 12

2 1 2 1
2T

1 1 1| .t h

t h h t
t t t t

h h h h

t t x tτ

τ τ
η η η η

η η α<

− −
Ψ + Ψ

− −

= Ψ ≤ −

 

Thus, ( ) 2| t hτ <Ψ  is convex in ( ) [ )1 2,t h hτ ∈ . 

When ( ) it dτ = , it follows from (9) that 

( )1 1| 0, 1, 2.
ii t d iτ =Ψ = Ψ < =



                                 (11) 

The LMI (11) implies (9), since 

( ) ( )2 2
11 12 1

2 1 2 1

0.
d t t d
d d d d

τ τ− −
Ψ + Ψ = Ψ <

− −

 

 

Thus, 1Ψ  is convex in ( ) [ ]1 2,t d dτ ∈ . Similarly, we can obtain that 2Ψ  is also convex in ( ) [ ]1 2,t d dτ ∈ . 
Case 2: ( ) ( ]2 3,t h hτ ∈  
By the definition of the characteristic function 0χ = , we apply the above arguments and representations 

with 0,1i =  and 2j = . In addition, we replace (6) with the following equations: 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( )

T T T T T T T T T
12 22 2 1 1

2 2 11

0 2

,

x t Y x t E Y x t t T x t h W

Ex t h Ex t t t h

τ

τ τ υ

 = + + − + − 
 ⋅ − − + − + − 



 

( ) ( ) ( ) ( )( ) ( )( )T T T T T
12 22 3 3 220 2 ,x t Z x t E Z Ex t h Ex t t h tτ τ υ  = + − − − + −     

( ) ( ) ( ) ( )( ) ( )T T T T T
22 32 10 2 ,x t P x t E P Ax t A x t t Ex tτ  = + + − −      

and letting ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
TTT T T T T T T

2 1 2 21 22 3, , , , , , ,t x t Ex t x t h x t h x t t x t hη υ υ τ = − − − −  
 . It is easy to 

obtain that 

( ) ( ) ( ) ( ) ( ) ( )
22

2T
2 2 2||

,t t ht h
V x t t x tττ

η η α>>
≤ Ψ ≤ −  

for some scala 2 0α > , where 
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( ) 2

T T T
11 12 0 12 15 16 17 12

T T
22 22 25 26 27 22

T
33 34 35 1

T
44 2 12

|
55 57

66

77

13

0
0 0

0 0
0

0 0
0 0

0

t h

E R E Y E Z E
Y E Z E

W E
E T S

S

τ >

 Π Π − Π Π Π
 
∗ Π − Π Π Π 

 ∗ ∗ Π Π Π
 
∗ ∗ ∗ Π − − Ψ = < ∗ ∗ ∗ ∗ Π Π 
∗ ∗ ∗ ∗ ∗ Π 

 ∗ ∗ ∗ ∗ ∗ ∗ Π 
 ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 

    

   

  



 





             (12) 

where 

( ) ( ) ( ) ( )( )
( ) ( )( )

T2T 3 1 3
11

3 2 3 2

T3 1 T T T
0 0 22 22

3 2

Sym

Sym ,

t t h
E P P P A

h h h h
h t

P A S E R E A P P A
h h

τ τ

τ

−
Π = − +

− −

−
+ + − + +

−





 

( )( ) ( )( )T T T T
12 22 32 15 2 12 16 3 12, , ,P A P t h Y h t Zτ τΠ = − + Π = − Π = −    

( ) ( ) ( ) ( )T T2 33 1 T T T
17 1 1 12 12 22 1

3 2 3 2

,
t h h t

P A P A Y E Z E P A
h h h h
τ τ− −

Π = + + − +
− −

  

( ) ( )( )
2 2T T

22 32 32 1 25 2 22
0

, ,i i i
i

P P h h R t h Yτ+
=

Π = − − + − Π = −∑   

( )( ) T T T T
26 3 22 27 22 22 32 1, ,h t Z Y E Z E P AτΠ = − Π = − +   

( )T T T
33 0 11 0 1 34 1 1 12, ,Q S S E R R E E R E W E SΠ = − + − + Π = − +   

( )( ) T T
35 2 1 44 11 13 1, ,t h W S S E R EτΠ = − Π = − + −   

( )( ) ( ) ( )( )55 2 3 2 2 57 2 2, ,t h h h R t h Tτ τΠ = − − − Π = −   

( )( ) ( ) ( )( ) T T
66 3 3 2 2 77 2 2, 1 .h t h h R t Q T E E Tτ τΠ = − − − Π = − − + + 

  

Similar to the case I, we obtain the results when ( ) 2t hτ →  and ( ) 3t hτ → , which can be marked as 
1 0Ψ <  and 2 0Ψ < , respectively. Further, we can verify ( ) 2| t hτ >Ψ  is convex in ( ) ( ]2 3,t h hτ ∈ , 1Ψ  and 2Ψ  

are also convex in ( ) [ ]1 2,t d dτ ∈ . 
From Case 1 and Case 2, we have 

( ) [ ] ( )( ) ( ) ( ) ( ) [ ] ( )( )( ) ( ) ( ) ( ) ( )
2 2 21 2 1 2

2T T
1 1 2 2| | |, ,1 ,t h t h t hh h h hV t t t t t t x tτ τ τχ τ η η χ τ η η α≠ < >≤ Ψ + − Ψ ≤ −      (13) 

for some scalar 0α > . 
Case 3: ( ) 2t hτ =  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )
2 2 2

2T T
1 1 2 2| | |max , .t h t h t hV t t t t x tτ τ τη η η η α= < >≤ Ψ Ψ ≤ −                 (14) 

Therefore, ( ) ( ) 2
tV x x tα≤ −  when ( ) [ ],a bt h hτ ∈ , ( ) [ ]1 2,t d dτ ∈ . 

Now the asymptotic stability of system (1) can not be obtained yet, since the existence and uniqueness of a 
solution to system (1) are not always guaranteed and the system may have undesired impulsive behavior. In the 
following, we will prove that the above-mentioned results ensure the regular and impulse-free. It follows form 
(8), that 
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( )
0

11 12 2 2
22 1

0

0
0.

i i i
i

S

h h R+
=

 Π Π   − <   ∗ Π ∗ −    
∑

                          (15) 

Pre- and post-multiplying (15) by T,I A    and 
TT,I A   , respectively, we obtain 

( ) ( ) ( ) ( )( ) ( ) ( )( )T T1 2T 1 2 1 2 T
0

2 1 2 1 2 1

Sym Sym 0
t t h h t

E P P P A P A E R E
h h h h h h
τ τ τ− −

− + + − <
− − −



     (16) 

Since rankE r n= ≤ , there must exist two invertible matrices G and n nH ×∈  such that 
0ˆ .

0 0
rI

E GEH  
= =  

 
                                    (17) 

Similar to (17), we define 

11 12 T 1 2

21 22 3 4

ˆ ˆ, , 1, 2.
i i

i i
i i

A A P P
A GAH P G P H i

A A P P
−   

= = = = =  
   

 

Then, using ( )TT 0k kE P P E= ≥ , it can be shown that 2 0iP = . Pre- and post-multiplying (16) by TH  and 
H, we can formulate the following inequality easily 

( )( )T 1 2
22 4 4

0
Sym A P P

 
  <

+  

 


                               (18) 

where   will be irrelevant to the following discussion. Form (18) we get ( )( )T 1 2
22 4 4Sym 0A P P+ < , and thus 

22A  is nonsingular, which implies that ( )det sE A−  is not identically zero and  
( )( )deg det ranksE A r E− = = . Hence, by Definition 1, the above-mentioned results guarantee system (1) is 

regular and impulse-free. This completes the proof. 
When the matrix E is nonsingular, the result in this case can be obtained by setting E equal to I with the 

appropriate transformations. The corresponding result is given by the following corollary: 
Corollary 1 System (1) with E I=  is asymptotically stable for all differentiable delays ( ) [ ],a bt h hτ ∈  with 

( )1 2d t dτ≤ ≤ , if there exist symmetric positive-definite matrices Q, ( )0,1, 2iR i = , 0S , 11S , 12S , 13S , kP  
( )1, 2,3k = , and appropriately dimensioned matrices 2 jP , 3 jP , 1 jY , 2 jY , 1 jZ , 2 jZ , jT  ( )1, 2j = , 1W   
and 3W  such that LMIs: ( ) 2| 0t hτ <Ψ < , for ( ) 1t hτ →  and ( ) 2t hτ → , and ( ) 2| 0t hτ >Ψ < , for ( ) 2t hτ →  and  

( ) 3t hτ → , where ( ) 1 2,t d dτ = . ( ) 2| 0t hτ <Ψ <  and ( ) 2| 0t hτ >Ψ <  are denoted in (8) and (11), respectively. 

When 1d  is unknown, let kP P=  ( )1, 2,3k =  and ( ) 2t dτ = , we have the following corollary. 
Corollary 2 System (1) is asymptotically stable for all differentiable delays ( ) [ ],a bt h hτ ∈  with ( ) 2t dτ ≤ , 

if there exist symmetric positive-definite matrices Q, iR  ( )0,1, 2i = , 0S , 11S , 12S , 13S , P satisfying 
T T 0E P P E= ≥ , and appropriately dimensioned matrices 2 jP , 3 jP , 1 jY , 2 jY , 1 jZ , 2 jZ , jT  ( )1, 2j = , 1W   

and 3W  such that LMIs: ( ) 2| 0t hτ <Ψ < , for ( ) 1t hτ →  and ( ) 2t hτ → , and ( ) 2| 0t hτ >Ψ < , for ( ) 2t hτ →  and  

( ) 3t hτ → , where ( ) 2t dτ = . ( ) 2| 0t hτ <Ψ <  and ( ) 2| 0t hτ >Ψ <  are denoted in (8) and (11), respectively. 

Remark 1. It should be pointed out that if ah  is big enough, delay partitioning of [ ]0, ah  may improve the  
results. In addition, the better results may be obtained if we divide the delay interval [ ],a bh h  into N ( )2N >   
segments. 

4. A Numerical Example 
In this section, a numerical example will be presented to show the validity of the main results derived above. 

Example Consider the following linear differential-algebraic system described by systems (1) with 

1

1 0 0.3 0.5 0.5 0
, , .

0 0 0.3 1 0 0.1
E A A

− −     
= = =     − − −     
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For 0ah = , choosing 1 0.3d = −  and 2 0.9d =  and applying Theorem 1, the maximum values of bh  is 
5.27, which guarantees that the system is asymptotically stable. 

5. Conclusion 
In this paper, the asymptotic stability of differential-algebraic system with time-varying delay has been investi- 
gated. Some delay and its time-derivative dependent asymptotically stable criteria have been obtained by de- 
composing time-varying delay in a convex set. The obtained criteria depend not only on the upper but also on 
the lower bound of the delay derivative. One numerical example has been given to illustrate the effectiveness of 
the proposed main results. 
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