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Abstract 
It is quite common in statistical modeling to select a model and make inference as if the model had 
been known in advance; i.e. ignoring model selection uncertainty. The resulted estimator is called 
post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data 
at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper 
is concerned with the properties of Bayesian estimator obtained after model selection when the 
frequentist (long run) performances of the resulted Bayesian estimator are of interest. The pro-
posed method, using Bayesian decision theory, is based on the well known Bayesian model aver-
aging (BMA)’s machinery; and outperforms PMSE and BMA. It is shown that if the unconditional 
model selection probability is equal to model prior, then the proposed approach reduces BMA. 
The method is illustrated using Bernoulli trials. 
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1. Introduction 
Statistical modeling usually deals with situation in which some quantity of interest is to be estimated from a 
sample of observations that can be regarded as realizations of some unknown probability distribution. In order to 
do so, it is necessary to specify a model for the distribution. There are usually many alternative plausible models 
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available and, in general, they all lead to different estimates. Model uncertainty refers to the fact that it is not 
known which model correctly describes the probability distribution under consideration. A discussion of the is-
sue of model uncertainty can be found e.g. in Clyde and George [1]. In Bayesian context, Bayesian mode aver-
aging (BMA) has been successfully used to deal with model uncertainty (Hoeting et al. [2]). The idea is to use a 
weighted average of the estimates obtained using each alternative model, rather than the estimate obtained using 
a single model. BMA and applications can be found in Marty et al. [3], Simmons et al. [4], Fan and Wang [5], 
Corani and Mignatti [6], Tsiotas [7], Lenkoski et al. [8], Fan et al. [9], Madadgar [10], Nguefack-Tsague [11], 
and Koop et al. [12]. Clyde and Iversen [13] developed a variant of BMA in which it is not assumed that the true 
model belongs to competing ones (M-open framework). 

In frequentist approach the estimator obtained after model selection is referred to as post-model selection es-
timator (PMSE) whose properties are difficult to derive (Berk et al. [14], Leeb and Poetscher [15]). Other fre-
quenstist references dealing with model selection uncertainty include Burnham and Anderson [16], Nguefack- 
Tsague ([17]-[20]), Zucchini et al. [21], Nguefack-Tsague and Zucchini [22], and Zucchini [23]. Model selec-
tion uncertainty occurs when the same data are used to estimate and to make inference on the quantity of interest 
(Burnham and Anderson [16]).  

Bayesian model selection involves selecting the “best” model with some selection criterion; more often the 
Bayesian information criterion (BIC), also known as the Schwarz criterion [24] is used; it is an asymptotic ap-
proximation of the log posterior odds when the prior odds are all equal. More information on Bayesian model 
selection and applications can be found in Guan and Stephens [25], Clyde et al. [26], Clyde [27], Nguefack- 
Tsague [28], Carvalho and Scott [29], Fridley [30], Robert [31], Liang et al. [32], and Bernado and Smith [33]. 
Other variants of model selection include Nguefack-Tsague and Ingo [34] who used BMA machinery to derive a 
focused Bayesian information criterion (FoBMA) which selects different models for different purposes, i.e. their 
method depends on the parameter singled out for inferences. Nguefack-Tsague and Zucchini [35] propose a 
mixture-based Bayesian model averaging method. 

Conditioning on data at hand (it is usually the case), Bayesian model selection is free of model selection un-
certainty. Since Bayesian inference is mostly concerned with conditional inference, this phenomenon is often 
overlooked so long as one is concerned with unconditional inference. Thus the motivation of this paper to raise 
awareness of the fact that model selection uncertainty is present in Bayesian modeling when interest is focused 
on frequentist performances of Bayesian post-model selection estimator (BPMSE). 

The present paper is organized as follows: Section 2 presents the problem while Section 3 highlights the dif-
ficulties of assessing the frequentist properties of BPMSEs. The new method for taking into account model se-
lection uncertainty is shown in Section 4 while an application for Bernoulli trials is given in Section 5. The pa-
pers ends with Concluding remarks. 

2. Typical Bayesian Model Selection and the Problem 
Bayesian model selection (formal or informal) can be summarized by the following main steps: 

1. Quantity of interest µ  
2. Data ( )1, , nx x x=   
3. Use x for exploratory data analysis 
4. From (3), specify =  ( )1, , KM M , alternative plausible (parametric η) models, more often ( )hµ η= . 
5. Use any model selection criteria and data x to select a model (model uncertainty) ( ) ( )ˆ

ˆ
k x

M x M= ∈ , 
( ) { }ˆ 1, ,k x K∈  . 
6. Specify a prior distribution for ( ):η π η  from the selected model. 
7. Compute the posterior distribution for ( ): | xη π η  from the selected model. 
8. Define a loss function. 
9. Find the optimal decision rule. E.g. for square error loss, ( )E | xη , ( )Var | xη  or any quantity, e.g. 

posterior properties for µ . 
More on Bayesian theory can be found in Gelman et al. [36]. When the analysis is conditioned on the ob- 

served data (conditional inference); there is no model selection uncertainty, only model uncertainty, since the 
data x (viewed as fixed) are used for all steps (including steps 3 and 4). However, if one needs the frequentist 
properties, the data should be viewed as random because steps 3 and 4 introduce model selection uncertainty and 

( ) ( )ˆ
ˆ

k X
M X M= ∉ , ( ) { }ˆ 1, ,k X K∉  . The difficulties are now similar those of frequentist model selection. 
The remaining uncertainty includes the choice of the statistical model, the prior, and the loss function. 
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3. Bayesian Post-Model-Selection Estimator 
Bayesian post-model-selection estimator (BPMSE) is referred to the Bayes estimator obtained after a model 
selection procedure has been applied. Here, a squared error loss is considered, but the main idea remains 
unchanged for any other loss function. Given the selection procedure, BPMSE can been written as 

( ) ( ) ( )
1

| , | , E | , ,
K

k k
k

X S I X S X Mµ µ
=

= ∑                                 (1) 

where ( )| , 1kI X S =  if model kM  is selected and 0 otherwise. In the rest of the paper, for simplicity, kµ  
each model kM  will be replaced only by µ  in the integrals. 

Long-run performance of Bayes estimators: Usually, the goal of the analysis is to select a model for inference 
using any selection procedure. One is interested in evaluating the long run performance (frequentist performance) 
of the selected model. In general, Bayes estimators have good frequentist properties (e.g. Carlin and Louis [37]; 
Bayarri and Berger [38]). The Bayesian approach can also produce interval estimation with good performance, 
for example coverage probabilities. It is also known that if a Bayes estimator associated with a prior is unique, 
then it is admissible (Robert [31]). There are also conditions under which Bayes estimator are minimax. The 
point is to see whether these frequentist properties still hold for Bayes estimators after model selection. 

( ) ( ) ( ){ }1| , E | , , ,E | , .KX S X M X Mµ µ µ∉
  

Interest is focused on studying the frequentist properties of ( )| ,X Sµ  . The difficulties here are similar to 
those encountered in frequentist PMSEs. This is due to the partition of the sample space X by the selection 
procedure. This makes it difficult to derive the coverage probability of confidence intervals. 

The frequentist risk: The frequentist risk of BPMSEs is defined as  

( )( ) ( )( )R , | , E L , | , ,tX S X Sµ µ µ µ =                              (2) 

where L is a loss function. One can now see that this risk is difficult to compute; it is hard to prove admissibility 
and minimaxity properties of BPMSEs, since their associated priors are not known. 

Coverage probabilities: When the data have been observed, one can construct a confidence region. 
Suppose that after observing the data, model *k

M  is selected. For large samples, Berger [39] considers the 
normal approximation  

( ) ( )( )* *| ~ E | , ,Var | ,p k k
x x M x Mµ µ µ                              (3) 

and then derives an approximate region at the 1 α−  level given by 

( ) ( )( ) ( ) ( )( ){ }* * *
1 2; E | , Var | , E | , ,

k k k
C x x M x M x M dα αµ µ µ µ µ µ−′= − − ≤  

where 2dα  is the α-quantile of 2
pχ . 

A stochastic version (assuming normality) is given by 

( ) ( )( ) ( )( ) ( )( ){ }1 2; | , Var | , | , .C X X S X S X S dα αµ µ µ µ µ µ−′ ′= − − ≤      

The coverage probability of the stochastic form is given by 

( )( ) ( ) ( )E ,C XP C X I
αµ α µµ µ∈ =  

which is now difficult, as it involves computing the variance and expectation of BPMSE. 
Consistency: Another frequentist property of Bayes estimators is consistency. It is shown that, under appro-

priate regularity conditions, Bayes estimators are consistent (Bayarri and Berger [38]). A question is whether 
BPMSEs are consistent, but it is hard to prove because one does not know the priors associated with BPMSEs. 

4. Adjusted Bayesian Model Averaging 
In this framework, interest is focused with the long run performance of BPMSES, not on posterior evaluation, 
since in the posterior evaluation, the model selection uncertainty problem does not exist. Under model selection 
uncertainty, from Equation (1), a fundamental ingredient is the selection procedure S. This selection procedure 
should depend on the objective of the analyst and should be taken into account in modeling uncertainty at two 
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levels: prior and posterior to the data analysis. In the following, we define the posterior quantity and derive 
Bayesian-post-model selection in a coherent way. The new method is referred to as Adjusted Bayesian model 
averaging (ABMA). 

4.1. Prior Model Selection Uncertainty 
The initial representation of model uncertainty is captured by parameter prior uncertainty and the model space 
prior, the selection procedure is used to update model prior. Formally, consider the possible models 1, , KM M ; 
assign a prior probability ( )|k kP Mη  to the parameter of each model and a prior probability ( )kP M  to each 
model with the data X viewed as random. Let ( )kM S  be event model kM  is selected, kM  is considered to 
be the event model kM  is true. The probability of this event is referred to as prior model selection probability 
of model kM  and denoted by ( )( )kP M S . This is to update prior model ( )kP M  using the selection proce- 
dure S. ( )kP M  may be informative or not, but ( )( )kP M S  is an informative prior. Making use of the fact 
that one of the models is true, ( )( )kP M S  can been computed as 

( )( ) ( )( ) ( )1 | ,K
k k j jjP M S P M S M P M

=
= ∑                            (4) 

where ( )( )|k jP M S M  is the prior model selection probabilities of model kM  given that jM  is the true  
model. ( )( )|k kP M S M  is the probability that kM  is actually selected given that it is really the true model.  

The true state of the nature is that a given model is true; the decision here is to select a model. Given that model 
jM  is true, ( )( )1

| 1K
k jk

P M S M
=

=∑ . These probabilities can be computed as 

( )( ) ( )( )| E E .X
k j j j kP M S M I Xη  =                                (5) 

The expectation is taken with respect to the true model jM , provided that these expectations exist. Note that 
these probabilities do not longer depend on the observed data. 

Table 1 shows the true state of the world (nature) and the decision (the selected model). The jkP =
 ( )( )|k jP M S M , the probability that kM  is selected, given that jM  is the true model. Suppose that jM  is 

the true model, one would like jjP  to be higher, ideally 1 (the correct decision). If model jM  is not selected  
with probability one, 

1,1 1 K
j jj jkk k jP Pα

= ≠
= − = −∑  is called the probability of Type I error for model jM .  

That is, if jM  is the true model and the selection procedure S incorrectly does not select it, then the selection 
procedure has made a Type I Error.  

On the other hand, if kM  is the true model, but the selection procedure selects jM , then this selection 
procedure has made a Type II error, with probability kjP , j k≠ . The reliability of the selection criterion is 
given by the closeness of jjP  to 1. 

4.2. Posterior Model Selection Uncertainty 
When the data have been observed, the posterior model selection probability for each model kM  is given by 

( )( ) ( )( ) ( )( )
( )( ) ( )( )1

|
| ,

|
k k

k K
j jj

P x M S P M S
P M S x

P x M S P M S
=

=
∑

                       (6) 

 
Table 1. True state (M) and selected models ( ( )M  ).                                                                

Nature and Decision ( )1M   ( )2M   ... ( )jM   ... ( )KM   

1M  11P  12P  - 1 jP  - 1KP  

2M  21P  22P  - 2 jP  - 2KP  

... - - - - - - 

jM  1jP  2jP  - jjP  - jKP  

... - - - - - - 

KM  1KP  2KP  - KjP  - KKP  
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where 

( )( ) ( )( ) ( )( ) ( )( )| | | , | dj k k k k k kP x M S L x M S P x M S P M S
η

η η η= = ∫                     (7) 

is the marginal likelihood of ( )kM S . For ( )( )|k kP M Sη  discrete, (7) is a summation. ( )( )|kP M S x  is the 
conditional probability that kM  was the selected model. Computations are conditioned on each model, since 
one will never know the selection for random data. This is similar to the fact that the true model is not known, 
and each of the models can be viewed as a possible true model. 

Posterior distribution: After the data x is observed, and given the selection procedure S, from the law of total 
probability, the posterior distribution of µ  is then given by 

( ) ( )( ) ( )( )1
| , | , | .K

k kk
P x S P x M S P M S xµ µ

=
= ∑                            (8) 

( )| ,P x Sµ  is an average of the posterior of each model ( )kM S , ( )( )| , kP x M Sµ , weighted by posterior 
model selection probability. 

Posterior mean and variance: 
Proposition 1 Under Equation (8), the posterior mean and variance are given by 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( )( ){ }

1

2

1

ˆ E | , E | , | ,

Var | , | Var | , E | , E | , ,

K
k kk

K
k k kk

x S x M S P M S x

x S P M S x x M S x M S x S

µ µ µ

µ µ µ µ

=

=

= =

= + −

∑

∑
      (9) 

where ( )( )E | , kx M Sµ  and ( )( )Var | , kx M Sµ  are respectively the posterior mean and the posterior variance 
of µ  for model kM  if kM  was the selected model. 

Proof. Under Equation (8), the posterior mean is 

( ) ( ) ( )( ) ( )( ){ }
( )( ) ( )( ){ }

( )( ) ( )( )

1

1

1

E | , | , d | , | d

| | , d

| E | , .

K
k kk

K
k kk

K
k kk

x S P x S P x M S P M S x

P M S x P x M S

P M S x x M S

µ µ µ µ µ µ µ

µ µ µ

µ

=Λ Λ

= Λ

=

= =

 =  

=

∑∫ ∫

∑ ∫
∑

 

The posterior variance under Equation (8) is 

( ) ( )( ) ( )

( ) ( )( ) ( )( ){ }

( )( ) ( ) ( )( ){ }
( )

2

2

1

2

1

ˆ

Var | , E | d

ˆ | , | d

ˆ| | , d .

k

K
k kk

K
k kk

R

x S P x

P x M S P M S x

P M S x P x M S

µ

µ

µ µ µ µ µ

µ µ µ µ

µ µ µ µ

=Γ

= Γ

= −

= −

 
 

= − 
 
 

∫

∑∫

∑ ∫


 

( ) ( ) ( )( ) ( )( )( )
( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( )( ) ( )( )( )
( )( )( ) ( )( )( )( )

( )( ) ( )( )( )

22

2 2

2

| )

0
2

ˆ ˆ ˆR | E E E | , E | ,

ˆE E | , E E | ,

ˆ2E E | , E | ,

ˆVar | , E | ,

ˆ2 E | , E E | ,

ˆVar | , E | , .

k

k k k k k

k k k

k k

k k

x
k k

k k

S x M S x M S

x M S x M S

x M S x M S

x M S x M S

x M S x M S

x M S x M S

µ

µ µ µ µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ

µ µ µ µ

µ µ µ

=

= − = − + −

= − + −

 − − − 

= + −

+ − −

= + −



 

( )ˆR |k Sµ  is the posterior expectation loss for model kM  for taking the decision rule µ̂  rather than 
( )( )E | , kx M Sµ . 
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The method can be then summarised as follows: 
1. ( )kP M  represents the prior model uncertainty, 
2. ( )( )kP M S  updates prior model uncertainty by taking into account the selection procedure, 

3. ( )( )|kP M S x  is the overall posterior representation of the model selection uncertainty. 
Note that if the unconditional model selection probability is equal to model prior, then the proposed weights 

are the same as BMA weights, namely the probability that each model is true given the data, ( )|kP M x . For the 
proposed weights, one needs to compute the marginal likelihood and these model selection probabilities. 
Methods exist in the literature for doing such computations. These include Markov chain Monte Carlo methods, 
non-iterative Monte Carlo methods, and asymptotic methods. Other Bayesian methods based on mixtures 
include Ley and Steel [40], Liang et al. [32], Schäfer et al. [41], Rodrguez and Walker [42], and Abd and Al- 
Zaydi [43]. Some frequentist mixtures include Abd and Al-Zaydi [44], and AL-Hussaini and Hussein [45]. 

A basic property: From the non-negativity of Kullback-Leiber information divergence, it follows that 
1, ,j K∀ =  : 

( )( ) ( )( ){ } ( )( )1
E log | , | E log | , ,K

k k j jk
P x M S P M S x P x M Sµ µ

=
   ≥    ∑             (10) 

where the expectation is taken with respect to the posterior distribution in Equation (8). This logarithm score 
rule was suggested by Good ([46]). This means that under the use of a selection criterion and the posterior 
distribution given in Equation (8), ABMA provides better predictive ability (under logarithm score rule) than 
any single selected model.  

For computational purposes, ( )( )|kP M S x  can be written as 

( )( ) ( )( ) ( )
( )( ) ( )1

|
| ,

|
k kj

k K
i i iji

P M S B x S
P M S x

P M S B x S
=

=
∑

                           (11) 

where ( )|ijB x S  is the Bayes factor, summarising the relative support for model iM  versus model jM  
using posterior model selection probabilities. Using Laplace approximation of the marginal likekihood, the 
weights in Equation (11) become 

( )( )
( )( ) ( )

( )( ) ( )
1

exp
2

| ,
exp

2

k
k k

k
K i

i ik

BIC S
P M S

P M S x
BIC S

P M S
=

 
− 
 =
 
− 
 

∑
                    (12) 

where ( )kBIC S  is Bayesian information criterion for model ( )kM S . 

5. Applications 
Let µ  be a quantity of interest with prior ( )tπ  and posterior ( )| xπ µ  (given data x); χ  a sample space 
for any decision rule ( )xδ ; ( )|f x µ  a statistical model distribution of x. The frequentist risk of ( )xδ  is 

( ) ( ) ( )( ) ( )2
R , MSE | d .x x f x xµ χ

δ δ δ µ µ= = −∫  

The Bayes risk of ( )xδ  is ( ), dR
µ

µ δ µ∫  and is constant. 

For some models, beta prior will be used for µ ; e.g beta prior as follows: ( )| ~ binomial ,X nµ µ ,  
( )~ beta ,µ α β , then ( )| ~ beta ,x x n xµ α β+ − + , therefore 

( )ˆ E | xx
n

αµ µ
α β

+
= =

+ +
 

is the Bayes estimate of µ . The marginal distribution of X is the beta-binomial ( ), ,n α β , whose probability 
density function (Casella and Berger [47]) is given by 

( ) ( ) ( ) ( )
( ) ( ) ( )

.
x n xn

f x
x n

α β α β
α β α β

Γ + Γ + Γ − + 
=   Γ Γ Γ + + 
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Various results obtained in this Section are not sensitive to the variation of different parameters. R software 
[48] was used for computing. 

5.1. Long Run Evaluation 
5.1.1. Two-Model Choice 
(a) 1 1:M µ µ=  and 2 2:M µ µ= ; with degenerate priors ( ) ( )1 2 1π µ π µ= = . Within the framework of 
hypothesis testing, Bernado and Smith [33] refer to (a) as “simple versus simple test” . 

( ) ( ) ( ) ( )| | | , 1, 2.k k k kP x M f x f x kµ π µ µ µ= = = =  

The posterior model probabilities ( )|kP M x  are given by 

( ) ( ) ( )
( ) ( )2

1

|
|

|
k k

k
i ii

P M f x
P M x

P M f x

µ

µ
=

=
∑

. 

Model 1 is selected if ( ) ( )1 2| |P M x P M x> , 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 2 2
2 2

1 1

| |
,

| |i i i ii i

P M f x P M f x

P M f x P M f x

µ µ

µ µ
= =

⇔ >
∑ ∑

 

( )
( )

( )
( )

( )
( )

( )
( )

1 2 1 2

1 2 2 1

|
.

| | |
P M P M f x P M
f x f x f x P M

µ
µ µ µ

⇔ > ⇔ >  

( )( ) ( )( ) ( )
( )

2
1 2

1

log | log | log
P M

R f x f x
P M

µ µ
 

⇔ = − >  
  

 

( )
( )

21 1 1

2 2 2 1

1 1
log log log log

1 1
P M

x n
P M

µ µ µ
µ µ µ

      − −
⇔ − + >      − −         

 

( )
( )

( )
( ) ( ) ( )

( ) ( )
1

2 2 2
1 2 1 2

1 11 2

2 1

1log
1

log , log , .
1

log
1

n n

n
P M P M

x a b
P M P M

µ
µ

µ µ µ µ
µ µ
µ µ

 −
−      − ⇔ > − = − =   

 −       
 − 

 

( )( ) ( )( ) ( ) ( )( )1 1 2 1 2 1 2,, 1 , 1 , .n n nB np P X b P X b F bµ µ µµ µ µ µ µ µ= > = − < = −  

BMA corresponds to weighting the models with their posterior; the corresponding estimator is  
( ) ( )BMA 1 1 2 2| |P M x P M xµ µ µ= + . 

The BPMSE 1µ µ=  if 1M  is selected and 2µ  otherwise. 
For illustration of the case ( ) ( )1 2P M P M≠ , we take 41n = , ( )1 0.3P M = , ( )2 0.7P M = , 1 0.6µ = , 

2 0.4µ = . 
Figure 1 illustrates the performances of BPMSE, BMA and ABMA. BMA and ABMA have similar perfor- 

mances. Only points 1 0.6µ µ= =  and 2 0.4µ µ= =  are relevant since the true model is one of the two. 
However, for some regions of the parameter space, BMA does not perform better than BPMSE. It is clearly 
shown from Figure 1 that ABMA outperforms BPMSE and BMA. 

Figure 2 shows these estimators all together, with smallest risk being ABMA for all regions of the parameter 
space; again ABMA outperforms BMA and BPMSE. 

(b) Consider the following two models: ( )1 1: ~ Be ,M X n µ , ( )1 1P µ µ= = , noninformative prior and 
( ) ( )2 : ~ Be , , ~ beta ,M X n µ µ α β . 

Let the selection procedure consisting of choosing the model with higher posterior. 

( ) ( )1 1| |P x M f x µ=  and ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )2|

x n xn
P x M f x

x n
α β α β

α β α β
Γ + Γ + Γ − + 

= =   Γ Γ Γ + + 
, 
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Figure 1. Risk of two proportions comparing BPMSE, BMA and 
ABMA estimators as a function of µ.                               

 

 
Figure 2. Risk of two proportions comparing BPMSE, BMA and 
ABMA estimators as a function of µ.                                   

 

( )2ˆ | .xE x
n

αµ µ
α β

+
= =

+ +
 

1M  is chosen if ( ) ( )1 2| |P M x P M x> . 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
1

1 1 2

|
|

|
P M f x

P M x
P M f x P M f x

µ
µ

=
+

 

( ) ( ) ( )
( ) ( ) ( ) ( )

2
2

1 1 2

|
|

P M f x
P M x

P M f x P M f xµ
=

+
. 
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( ) ( )( ) ( ) ( )( )bpmse 1 1 1 2 2 2 1 2ˆ| | | |I P M x P M x I P M x P M xµ µ µ= > + ≤ . 

( ) ( )( )( )1 1 1 2| |p E I P M x P M xµ= >  and ( ) ( )( )( )2 2 1 2| |p E I P M x P M xµ= ≤ . 

The parameters for simulating Figure 3 are 41n = , 1α β= = , that is ( )~ 0,1Uµ , 1 0.5µ = . Again, 
Figure 3 clearly shows that ABMA performs better than BPMSE and BMA. 

(c) Consider the following two models: ( )1 : ~ binomial ,M X n µ , ( ) 1π µ =  (degenerate prior) and  
( ) ( )2 : ~ binomial , , ~ beta ,M X n µ µ α β . Similar degenerate priors for model 1 can be seen in Robert [31] and 

Berger [39]. 
Estimators for 1M : 

( ) ( ) ( ) ( )1 1
1 0 0

marginal | d | df x f x f xµ π µ µ µ µ= = =∫ ∫ . 

( ) ( ) ( )
( ) ( ) ( )1

1 1 0
1

|
ˆ| , | | d

f x
f x E x f x

f x
π µ µ

µ µ µ µ µ µ= = = ∫ . 

Figure 4 shows the MSE of BPMSE, BMA and ABMA. As can be seen BMA does not dominate BPMSE, 
but ABMA does. Figure 5 shows the MSE of BPMSE, BMA and ABMA. As can be seen BMA does not 
dominate BPMSE, but ABMA does. 

5.1.2. Multi-Model Choice 
(a) Consider also a choice between the following models: ( ): ~ binomial ,k kM X n µ  for arbitrary K models, 
with degenerate ( ) 1kπ µ = . Simulations shown in figure (fig:bma.30.simple.binomial.ps) are performed with 

30K =  and 41n =  
(b) Consider also a choice between the following models: ( ): ~ binomial ,k kM X n µ  for arbitrary K models, 

( )~ beta ,k k kµ α β , 30K = , 41n = , ( )0.5,10kα ∈  and ( )1,20kβ ∈ . 
Figure 6 shows the MSE of BPMSE, BMA and ABMA. As can be seen BMA does not dominate BPMSE, 

but ABMA does. 

5.2. Evaluation with Integrated Risk 
A good feature of integrated risk is that it allows a direct comparison of estimators (since it is a number). Con-  
 

 
Figure 3. Risk of two proportions comparing BPMSE, BMA and 
ABMA as a function of µ.                                           
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Figure 4. Risk of two proportions comparing BPMSE, BMA and 
ABMA as a function of µ.                                               

 

 
Figure 5. Risk of 30 simple models comparing BPMSE, BMA and 
ABMA as a function of µ.                                            

 
sider a choice between the following models: ( ): ~ binomial ,k kM X n µ  for arbitrary K models, ~kµ  ( )beta ,k kα β , 41n = , ( )1,50α ∈ , ( )2,20β ∈ . 

For each model (between 10 and 200), the integrated risk is computed and comparisons of estimators is given 
in Figure 7. The ABMA dominates BPMSE, BMA does not. All Figures 1-7 presented here showed that the 
new method ABMA outperforms BMA and BPMSE in the sense of having smallest risk throughout the 
parameter space. 

6. Concluding Remarks 
This paper has proposed a new method of assigning weights for model averaging in a Bayesian approach when  
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Figure 6. Risk of 30 full models comparing BPMSE, BMA and ABMA as 
a function of µ.                                                         

 

 
Figure 7. Integrated risks comparing BPMSE, BMA and ABMA as a func- 
tion of the number of models.                                         

 
the frequentist properties of the estimator obtained after model selection are of interest. It was shown via 
Bernoulli trials that the new method performs better than Bayesian post-model selection and Bayesian model 
averaging estimators using risk function and integrated risk. The method needs to be applied in more realistic 
and myriads situations before it can be validated. In addition, further investigations are necessary to derive its 
theoretical properties, including large sample theory. 
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